

7

Contents

1 Introduction 15

1.1 Programming Paradigms ... 17
1.1.1 Structured Programming ... 18
1.1.2 Object-Oriented Programming .. 20
1.1.3 Functional Programming ... 22
1.1.4 Reactive Programming ... 25

1.2 What Are Design Patterns and How Did They Come About? 27

1.3 What Are Software Architecture and Software Design? 31
1.3.1 Tasks of a Software Architecture .. 33
1.3.2 Architectural Styles and Architectural Patterns ... 35

1.4 The Evolution of Software Development and Architecture 38
1.4.1 Class-Responsibility-Collaboration Cards .. 38
1.4.2 The “Gang of Four” Patterns and Their Structure 39
1.4.3 Clean Code .. 43
1.4.4 Component-Based Development ... 45
1.4.5 Core J2EE Patterns .. 50
1.4.6 Enterprise Integration Patterns ... 54
1.4.7 Well-Architected Cloud .. 60

2 Principles of Good Software Design 63

2.1 Basic Concepts of Object-Oriented Programming .. 64
2.1.1 Objects and Classes ... 65
2.1.2 Encapsulation .. 66
2.1.3 Abstraction ... 68
2.1.4 Inheritance .. 72
2.1.5 Polymorphism ... 73

2.2 Clean Code Principles ... 75
2.2.1 Identifier Names and Conventions in the Code ... 77
2.2.2 Defining Functions and Methods ... 89
2.2.3 Don’t Repeat Yourself ... 104
2.2.4 Establishing Clear Boundaries Between Components 105
2.2.5 The Broken Windows Theory and the Boy Scout Rule in Software 107

2743.book Seite 7 Montag, 11. August 2025 5:54 17

7

Contents

8

2.3 SOLID Principles .. 108
2.3.1 The Single Responsibility Principle ... 109
2.3.2 The Open-Closed Principle .. 113
2.3.3 The Liskov Substitution Principle .. 119
2.3.4 The Interface Segregation Principle ... 123
2.3.5 The Dependency Inversion Principle and the Inversion of Control 128

2.4 Information Hiding ... 131

2.5 Inversion of Control and Dependency Injection .. 132

2.6 Separation of Concerns and Aspect Orientation ... 134

2.7 Quality Assurance with Unit Tests ... 137

3 Source Code and Documenting the Software
Development 143

3.1 Comments in the Source Code .. 143
3.1.1 Documenting Interfaces Using Comments ... 145
3.1.2 Creating Expressive Code .. 149
3.1.3 Necessary and Meaningful Comments ... 150
3.1.4 Comments Not Needed .. 154

3.2 Documenting the Software Architecture ... 157
3.2.1 Documenting Quality Features ... 158
3.2.2 Rules for Good Software Architecture Documentation 159
3.2.3 arc42 for the Complete Documentation .. 162

3.3 Representing Software in Unified Modeling Language 169
3.3.1 Use Case Diagram .. 170
3.3.2 Class Diagram .. 171
3.3.3 Sequence Diagram ... 174
3.3.4 State Diagram .. 175
3.3.5 Component Diagram .. 177

3.4 C4 Model for Representing Software Architecture .. 180
3.4.1 System Context (Level 1 or C1) .. 184
3.4.2 Container (Level 2 or C2) .. 186
3.4.3 Component (Level 3 or C3) .. 187
3.4.4 Code (Level 4 or C4) .. 188

3.5 Doc-as-Code ... 188
3.5.1 AsciiDoc ... 189
3.5.2 PlantUML ... 191
3.5.3 Structurizr ... 194

2743.book Seite 8 Montag, 11. August 2025 5:54 17

8

Contents

9

Contents

4 Software Patterns 197

4.1 Factory Method .. 198
4.1.1 Problem and Motivation .. 198
4.1.2 Solution .. 200
4.1.3 Sample Solution .. 201
4.1.4 When To Use the Pattern .. 203
4.1.5 Consequences .. 204
4.1.6 Real-World Example in Open-Source Software ... 205

4.2 Builder .. 206
4.2.1 Problem and Motivation .. 206
4.2.2 Solution .. 208
4.2.3 Sample Solution .. 209
4.2.4 When To Use the Pattern .. 213
4.2.5 Consequence .. 214
4.2.6 Real-World Example in Open-Source Software ... 214

4.3 Strategy .. 216
4.3.1 Problem and Motivation .. 216
4.3.2 Solution .. 216
4.3.3 Sample Solution .. 217
4.3.4 When To Use the Pattern .. 220
4.3.5 Consequences .. 221
4.3.6 Real-World Example .. 222

4.4 Chain of Responsibility ... 223
4.4.1 Problem and Motivation .. 224
4.4.2 Solution .. 224
4.4.3 Sample Solution .. 226
4.4.4 When To Use the Pattern .. 228
4.4.5 Consequences .. 228
4.4.6 Real-World Example .. 229

4.5 Command .. 232
4.5.1 Problem and Motivation .. 232
4.5.2 Solution .. 233
4.5.3 Sample Solution .. 235
4.5.4 When To Use the Pattern .. 238
4.5.5 Consequences .. 239
4.5.6 Real-World Example .. 239

4.6 Observer .. 243
4.6.1 Problem and Motivation .. 243
4.6.2 Solution .. 244

2743.book Seite 9 Montag, 11. August 2025 5:54 17

9

Contents

Contents

10

4.6.3 Sample Solution .. 245
4.6.4 When To Use the Pattern .. 248
4.6.5 Consequences .. 249
4.6.6 Real-World Example .. 249

4.7 Singleton ... 251
4.7.1 Problem and Motivation .. 251
4.7.2 Solution .. 252
4.7.3 Sample Solution .. 253
4.7.4 When To Use the Pattern .. 255
4.7.5 Consequences .. 256
4.7.6 Real-World Example .. 258

4.8 Adapter/Wrapper .. 259
4.8.1 Problem and Motivation .. 259
4.8.2 Solution .. 260
4.8.3 Sample Solution .. 261
4.8.4 When To Use the Pattern .. 264
4.8.5 Consequences .. 265
4.8.6 Real-World Example .. 265

4.9 Iterator ... 268
4.9.1 Problem and Motivation .. 269
4.9.2 Solution .. 269
4.9.3 Sample Solution .. 271
4.9.4 When To Use the Pattern .. 273
4.9.5 Consequences .. 274
4.9.6 Real-World Example .. 274

4.10 Composite ... 276
4.10.1 Problem and Motivation .. 276
4.10.2 Solution .. 277
4.10.3 Sample Solution .. 278
4.10.4 When To Use the Pattern .. 281
4.10.5 Consequences .. 281
4.10.6 Real-World Example .. 281

4.11 The Concept of Anti-Patterns ... 283
4.11.1 Big Ball of Mud .. 283
4.11.2 God Object .. 284
4.11.3 Spaghetti Code .. 285
4.11.4 Reinventing the Wheel ... 286
4.11.5 Cargo Cult Programming ... 287

2743.book Seite 10 Montag, 11. August 2025 5:54 17

10

Contents

11

Contents

5 Software Architecture, Styles, and Patterns 289

5.1 The Role of the Software Architect ... 290

5.2 Software Architecture Styles .. 292
5.2.1 Client-Server Architecture ... 293
5.2.2 Layered Architecture and Service Layers .. 294
5.2.3 Event-Driven Architecture ... 299
5.2.4 Microkernel Architecture or Plugin Architecture ... 304
5.2.5 Microservices ... 307

5.3 Styles for Application Organization and Code Structure 310
5.3.1 Domain-Driven Design ... 311
5.3.2 Strategic and Tactical Designs ... 315
5.3.3 Hexagonal Architecture/Ports and Adapters .. 315
5.3.4 Clean Architecture ... 320

5.4 Patterns for the Support of Architectural Styles ... 324
5.4.1 Model View Controller Pattern .. 324
5.4.2 Model View ViewModel Pattern ... 329
5.4.3 Data Transfer Objects ... 335
5.4.4 Remote Facade Pattern .. 339

6 Communication Between Services 347

6.1 Styles of Application Communication ... 349
6.1.1 Synchronous Communication ... 350
6.1.2 Asynchronous Communication and Messaging .. 351
6.1.3 Streaming .. 353

6.2 Resilience Patterns .. 356
6.2.1 Error Propagation ... 357
6.2.2 Subdivision of the Resilience Patterns .. 358
6.2.3 Timeout Pattern .. 361
6.2.4 Retry Pattern .. 366
6.2.5 Circuit Breaker Pattern ... 372
6.2.6 Bulkhead Pattern .. 378
6.2.7 Steady State Pattern .. 383

6.3 Messaging Patterns .. 388
6.3.1 Messaging Concepts ... 388
6.3.2 Messaging Channel Patterns ... 389
6.3.3 Message Construction Patterns .. 395
6.3.4 Messaging Endpoint Pattern .. 402

2743.book Seite 11 Montag, 11. August 2025 5:54 17

11

Contents

Contents

12

6.4 Patterns for Interface Versioning ... 411
6.4.1 Endpoint for Version Pattern .. 415
6.4.2 Referencing Message Pattern .. 415
6.4.3 Self-Contained Message Pattern .. 417
6.4.4 Message with Referencing Metadata ... 418
6.4.5 Message with Self-Describing Metadata ... 420

7 Patterns and Concepts for Distributed
Applications 421

7.1 Consistency .. 422

7.2 The CAP Theorem .. 423

7.3 The PACELC Theorem ... 424

7.4 Eventual Consistency ... 425

7.5 Stateless Architecture Pattern ... 428
7.5.1 Problem and Motivation .. 428
7.5.2 Solution .. 429
7.5.3 Sample Solution .. 431
7.5.4 When To Use the Pattern .. 433
7.5.5 Consequences .. 433

7.6 Database per Service Pattern ... 434
7.6.1 Problem and Motivation .. 434
7.6.2 Solution .. 434
7.6.3 Sample Solution .. 435
7.6.4 When To Use the Pattern .. 436
7.6.5 Consequences .. 436

7.7 Optimistic Locking Pattern .. 437
7.7.1 Problem and Motivation .. 437
7.7.2 Solution .. 438
7.7.3 Sample Solution .. 441
7.7.4 When To Use the Pattern .. 443
7.7.5 Consequences .. 443
7.7.6 Pessimistic Locking .. 444

7.8 Saga Pattern: The Distributed Transactions Pattern ... 446
7.8.1 Problem and Motivation .. 446
7.8.2 Solution .. 447
7.8.3 Sample Solution .. 447
7.8.4 When To Use the Pattern .. 449
7.8.5 Consequences .. 449

2743.book Seite 12 Montag, 11. August 2025 5:54 17

12

Contents

13

Contents

7.9 Transactional Outbox Pattern ... 450
7.9.1 Problem and Motivation .. 450
7.9.2 Solution .. 451
7.9.3 Sample Solution .. 452
7.9.4 When To Use the Pattern .. 454
7.9.5 Consequences .. 455

7.10 Event Sourcing Pattern ... 455
7.10.1 Problem and Motivation .. 455
7.10.2 Solution .. 456
7.10.3 Sample Solution .. 457
7.10.4 When To Use the Pattern .. 460
7.10.5 Consequences .. 461

7.11 Command Query Responsibility Segregation Pattern .. 461
7.11.1 Problem and Motivation .. 461
7.11.2 Solution .. 463
7.11.3 Sample Solution .. 464
7.11.4 When To Use the Pattern .. 467
7.11.5 Consequences .. 467

7.12 Distributed Tracing Pattern .. 467
7.12.1 Problem and Motivation .. 468
7.12.2 Solution .. 468
7.12.3 Sample Solution .. 470
7.12.4 When To Use the Pattern .. 476
7.12.5 Consequences .. 476

The Author ... 479

Index .. 481

2743.book Seite 13 Montag, 11. August 2025 5:54 17

13

Contents

143

3

Chapter 3
Source Code and Documenting
the Software Development
Software must be documented. Good documentation not only consists
of detailed information about the source code but also covers the archi-
tecture of a software system. Documentation enables developers to un-
derstand, adapt, and maintain software efficiently and thus contributes
to the success, traceability, and quality management of a system. This
chapter describes how you can create comprehensive, high-quality
documentation for your software.

Documentation often makes a decisive contribution to the success of a project. How-
ever, each target group has different interests in software documentation. For example,
users and customers need user documentation that describes how to use the finished
software. Developers, project managers, even perhaps your quality management team,
are more interested in technical details, information on the structure of the software,
or even fundamental decisions made during development.

The goal of creating software documentation is to provide clear insights into the struc-
ture, functionality, and implementation of the software and thus create a better under-
standing among all team members. Detailed, meaningful information allows the code
to be understood, expanded, and maintained more efficiently.

Many projects are not created, expanded, and maintained with a constant project team:
Developers leave the project, while new developers join the project team. Documenta-
tion is therefore an indispensable part of the development process to ensure the long-
term success of software and create a uniform understanding of the solution.

This chapter shows how software can be documented in the development process for
various technically interested target groups.

3.1 Comments in the Source Code

Comments in the source code can be enormously helpful in making code that is diffi-
cult to understand more comprehensible for others or, after a certain time, for yourself.
For example, they can provide further, additional details that enables the expansion or
adaptation of the corresponding code. Poorly formulated or even outdated comments

2743.book Seite 143 Montag, 11. August 2025 5:54 17

143

3 Source Code and Documenting the Software Development

144

in the code often have the exact opposite effect and lead to confusion or incorrect
assumptions.

For this reason, one goal in software development should be to write expressive, read-
able code that speaks for itself and that a developer can understand even without sep-
arate, explicit comments within the source code. Robert C. Martin, the author of the
Clean Code book, even describes certain comments as errors, because these comments
reveal that the developer couldn’t express themselves via the source code alone and
couldn’t produce comprehensible code. However, Martin also makes clear that, in some
cases, comments are necessary, but you should never be proud of them.

In Martin’s opinion, every comment should be checked to see whether the code itself
can be written more clearly—and the comment thus becomes superfluous.

Bad code cannot be improved by a comment. You’ll often find comments at particularly
confusing code positions about what is done or intended in the respective section. If
you have the feeling during development that a code point should be documented for
clarity, you should consider rewriting this code block so that no additional comments
are needed.

Writing fewer comments in the code also has a major advantage: It reduces the effort
involved in maintaining the software. In any case, comments—like the source code
itself—must be well maintained and carefully considered. If fewer comments are
needed to understand the code, less maintenance is required. In projects that have
undergone several revisions, comments are often outdated, incorrect, or in the wrong
place due to code shifts. Unfortunately, comments cannot be fully relied upon.

A major challenge is to keep the comments synchronized with the current code. How-
ever, developers are often fail to make this effort or overlook this task.

This problem can be mitigated with code that is self-documenting and self-explanatory.
Comments then fade into the background as they are no longer needed, and revisions
to the code do not directly lead to outdated comments. If code is moved to another loca-
tion, for example, the corresponding comment does not have to be moved as well.

“Truth can only be found in one place: the code.” —Robert C. Martin

Although you might be getting the impression that no comments are useful, you must
not regard all comments or all documentation as mistaken, bad, or superfluous. In
some situations, comments might be useful or even absolutely necessary due to vari-
ous conditions (e.g., licensing terms). Public interfaces, such as the application pro-
gramming interfaces (APIs) of libraries, must or should always be documented so that
other developers can use them.

In the following sections, I will discuss how you can create comments in the source code
and how you can minimize the scope of these comments or avoid them entirely by
using more expressive code. I will show you examples where comments are useful or
superfluous.

2743.book Seite 144 Montag, 11. August 2025 5:54 17

144

3 Source Code and Documenting the Software Development

145

3.1 Comments in the Source Code

3

Formatting Comments in Your Source Code

In most programming languages, source code comments are introduced either by two
slashes (//) or by the combination of a slash and an asterisk (/*). The latter is used to
define comment blocks, which must then be closed using */. The two slashes, on the
other hand, are used for single-line comments.

3.1.1 Documenting Interfaces Using Comments

In most languages, you can document a programming interface with the specific posi-
tion and syntax of the comments. You can then use the appropriate tools to create a
document that you can make available to other developers as documentation.

Documenting Java Source Code Using JavaDoc

In Java, for example, you can use the javadoc command-line tool to generate a clear col-
lection of HTML pages from Java source code, as shown in Figure 3.1. Such documenta-
tion is available for all versions of the standard Java library.

Figure 3.1 JavaDoc Documentation from Source Code Comments

2743.book Seite 145 Montag, 11. August 2025 5:54 17

145

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

146

The documentation of the API is included via comments directly above the implemen-
tation. A few keywords or annotations control the appearance and meaning of the spec-
ified values. Using @param, for example, you document a parameter, while @return or
@throws describe return values or indicate that exceptions may be thrown, as shown in
Listing 3.1.

/**
* Allocates a new {@code String} so that it represents the sequence of
* characters currently contained in the character array argument. The
* contents of the character array are copied; subsequent modification of
* the character array does not affect the newly created string.
*
* @param value
* The initial value of the string
*/
public String(char[] value) {
this(value, 0, value.length, null);
}

Listing 3.1 JavaDoc Example for the java.lang.String Class

Generating Documentation from Source Code

The concept that documentation can be generated from the source code can be found
in many programming languages. This approach is based on the DocBook format in
which technical documentation is stored in structured XML documents and can be con-
verted into various output formats.

In Python, for example, you can use Sphinx to convert the DocStringx format into docu-
mentation.

Code Examples as Documentation in Go

In addition to the documentation options via text, Go also provides the option of cre-
ating example tests. They are implemented in the same way as unit tests and executed
like a unit test during a test run using go test.

The code examples contained in the tests are intended to show how methods or func-
tions can be used correctly.

Each test is assigned to a specific method or function via a test method name pattern
and is automatically displayed as text under the specified method or function when the
HTML representation of the documentation is created. The documentation therefore
contains not only the written interface descriptions but also example code demonstrat-
ing their use.

2743.book Seite 146 Montag, 11. August 2025 5:54 17

146

3 Source Code and Documenting the Software Development

147

3.1 Comments in the Source Code

3

Creating Go HTML Documentation Using Godoc

To create an HTML representation of your Go documentation, you can install and use
the godoc tool. The installation is carried out via a go install command, which down-
loads the required files and installs them locally:

go install golang.org/x/tools/cmd/godoc@latest

If the Go environment is configured correctly and the GOBIN directory is contained in the
operating system environment variable PATH, you can generate the documentation via
the following command and it will be accessible at http://localhost:6060 on your local
machine:

godoc -http :6060

Because the code examples are implemented as tests and checked during each test run,
the examples are always executable, and the documentation remains up to date. A user
can rely on the examples given.

The checks and test conditions for the sample code are written using a special syntax.
At the end, a check can be initiated using the //Output: string. The character string fol-
lowing this expression must have been output within the test via an fmt.Print output.

Our next example, shown in Listing 3.2, is an example test in which a Car object is cre-
ated, and the Color attribute, which is pre-initialized to the value Blue, is changed to the
value Red by a corresponding method call. This step is followed by an output and a check
using the //Output: string.

func ExampleCar_PaintRed() {

 a := &Car{Color: "Blue"}
 a.PaintRed()
 fmt.Println(a.Color)
 //Output: Red
}

Listing 3.2 Example Test with a Color Check (Go)

Many use cases exist in the standard Go library. Our next example, shown in Listing 3.3,
illustrates a Get function from the http package, which is implemented without verifi-
cation. It should “only” show the use of the function.

func ExampleGet() {
 res, err := http.Get("http://www.google.com/robots.txt")
 if err != nil {
 log.Fatal(err)
 }

2743.book Seite 147 Montag, 11. August 2025 5:54 17

147

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

148

 body, err := io.ReadAll(res.Body)
 res.Body.Close()
 if res.StatusCode > 299 {
 log.Fatalf("Response ..: %d and\nbody: %s\n", res.StatusCode, body)
 }
 if err != nil {
 log.Fatal(err)
 }
 fmt.Printf("%s", body)
}

Listing 3.3 Example Test from the "net/http" Package for the Get Function (Go)

Figure 3.2 shows the representation for this code shown, which is an example of the Get
function from the net/http package.

Figure 3.2 Presentation of the Test in the Documentation

2743.book Seite 148 Montag, 11. August 2025 5:54 17

148

3 Source Code and Documenting the Software Development

149

3.1 Comments in the Source Code

3

The doctest Package in Python

In Python, you can use the doctest package to enter code within DocStrings and have the
code executed at test time.

The following example shows the syntax in the documentation of the factorial func-
tion:

"""
This is the "example" module.

The example module supplies one function, factorial(). For example,

>>> factorial(5)
120
"""

def factorial(n):
...//Implementation was omitted

3.1.2 Creating Expressive Code

I already mentioned it in the introduction to this chapter: The more readable and self-
explanatory a code section is, the fewer comments are needed to explain the meaning
and purpose of the section to other developers. The basic principles of clean code or the
use of software patterns can make an important contribution to clarity and readability.

Simple refactoring techniques, such as the extract method or decompose conditional,
can be used, for example, to make details in the code that are difficult to understand
clearer and thus avoid comments.

In the code example shown in Listing 3.4, a comment is helpful to understand quickly
the nature of the check.

// Check if date is in summer
if (!aDate.isBefore(plan.summerStart) &&
 !aDate.isAfter(plan.summerEnd)){
...
}

Listing 3.4 Complex If Condition (Java)

However, extracting a method for the condition check makes the code clearer and eas-
ier to read, as shown in Listing 3.5. The comment can then be removed since the code is
self-explanatory in this case.

2743.book Seite 149 Montag, 11. August 2025 5:54 17

149

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

150

if (isSummer(aDate)) {
...
}

Listing 3.5 Decompose Conditional Refactoring for Greater Clarity (Java)

3.1.3 Necessary and Meaningful Comments

As mentioned earlier, one of the goals in software development should be to create
source code that is readable and expressive and for these reasons does not require
explicit comments to explain code passages. However, in some situations, comments
are important and helpful or are mandatory due to various framework conditions, such
as licensing terms.

The following sections contain examples of source code comments to illustrate when
the use of a comment in the code can be helpful or even necessary.

License Terms

Licensing information at the beginning of each source code file provides clarity about
the conditions for the use and redistribution of the corresponding software.

Some companies and many open-source licenses, for example, require that the license
text be provided together with the source code in order to provide transparent infor-
mation about the applicable license terms and to ensure that the code is used accord-
ingly.

In addition, licensing information ensures transparency with regard to company or
developer copyright and helps comply with these rights.

In development environments, this kind of standard header can be configured for
source code files so that the same comments can be automatically included in every file.

When commenting on license terms, you should ensure that the comment does not
contain the complete license terms, only a reference to where the specific version can
be found.

In the Apache Commons library for Java, for example, you can find the information
shown in Listing 3.6 in each file.

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at

2743.book Seite 150 Montag, 11. August 2025 5:54 17

150

3 Source Code and Documenting the Software Development

151

3.1 Comments in the Source Code

3

 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Listing 3.6 Example License Terms for an Apache Commons File

Useful Information

Short and clear information for a specific code passage can help you to understand it
quickly. The example shown in Listing 3.7 demonstrates how a dense regular expression
can be made easier to understand with a comment. Without the comment, someone
might ask why only certain characters, and why precisely those specified, are permitted.

// regularExpression validates a "Vehicle Identification Number" (VIN)
// that it has a valid length and no illegal characters.
var regularExpression = regexp.MustCompile("^[A-HJ-NPR-Z0-9]{17}$")

Listing 3.7 A Regular Expression with a Comment (Go)

As an alternative to an explicit comment, renaming the variables in this example could
further improve readability and make the comment superfluous again, as shown in Lis-
ting 3.8.

In this case, when reading the calling code, you shouldn’t need to read the comment or
jump to the corresponding entry in the documentation.

var vinLengthAndValidCharacterExpression =
 regexp.MustCompile("^[A-HJ-NPR-Z0-9]{17}$")

Listing 3.8 Variable Renamed for Easier Understanding (Go)

Renaming variables is certainly not possible in all situations; a variable name can rarely
replace a longer, more complete, or more informative comment.

We could also combine both aspects and use a more expressive variable name and a
short informative note, as shown in Listing 3.9, possibly with a reference to an external
resource. In this case, the code is more readable, since what the regular expression
checks is clear, and details of the expression can be looked up in the documentation.

2743.book Seite 151 Montag, 11. August 2025 5:54 17

151

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

152

// regularExpression validates a VIN that it has a valid length
// and no illegal characters.
var validVinExpression =
 regexp.MustCompile("^[A-HJ-NPR-Z0-9]{17}$")

Listing 3.9 Combining an Informative Comment and a Variable Name (Go)

Explanatory Comments

In some situations, code passages appear incorrect or at strange when reading. A short
comment on why you have implemented this passage in this way and a brief explana-
tion of your decision could help others to understand the block. Regardless of whether
the passage could have been solved differently, the intention will become clearer.

The example shown in Listing 3.10 contains an excerpt from the standard Go library
with a brief explanation of why the loop was written in the way it was.

// The loop condition is < instead of <= so that the last byte does not
// have a zero distance to itself. Finding this byte out of place implies
// that it is not in the last position.
for i := 0; i < last; i++ {
 f.badCharSkip[pattern[i]] = last - i
}

Listing 3.10 Example from the Standard Library with Explanatory Comment in Go

Clarifications

If code cannot be formulated more clearly, for example, due to confusing return values
or other parameters, short, expressive comments can make your code more readable
or easier to understand.

First and foremost, you should look for a solution with clearer code so that no com-
ments are necessary. However, clearly not every code can be adapted. If you use an
external library, for example, or if data is mapped into a data object, as shown in Listing
3.11, you still might need a comment for clarity.

type Subscription struct {
 // true/1 = switched on (no restriction)
 // false/0 = switched off (everything affected)
 PrivacyEnabledByUser bool
}

Listing 3.11 Clarifying Values via Comments

Like any comment, explanatory comments can be wrong and should be replaced by
meaningful code.

2743.book Seite 152 Montag, 11. August 2025 5:54 17

152

3 Source Code and Documenting the Software Development

153

3.1 Comments in the Source Code

3

Warnings and Requirements

You can use comments to point out side effects that are caused by a change as shown
in Listing 3.12.

if err != nil {
 //Attention: this string/message is used for alerting in splunk
 return fmt.Errorf("failed to doSth: %v", err)
}

Listing 3.12 A Warning with a Comment on Possible Consequences (Go)

Even seemingly awkward design decisions or implementations can benefit from warn-
ings or notes on their consequences so that overly diligent, refactoring-obsessed devel-
opers are slowed down and don’t “make the code worse.” Listing 3.13 shows an example.

//SimpleDateFormat is not thread safe!
//We need to create each instance independently.
SimpleDateFormat df =
 new SimpleDateFormat("MMM dd yyyy HH:mm:ss");

Listing 3.13 A Warning about the Consequences of Multithreading (Java)

Side effects or requirements for calling code must be fully and clearly formulated in
comments or documentation. The example shown in Listing 3.14 therefore clearly indi-
cates the responsibility of the client.

// Body is the request's body.
//
// For client requests, a nil body means the request has no
// body, such as a GET request. The HTTP Client's Transport
// is responsible for calling the Close method.
// ...
Body io.ReadCloser

Listing 3.14 Documenting Requirements for User Code (Go)

Still to Do: TODO Comments

Many developers leave hints in the source code that indicate changes are still necessary
in certain places, which they have not yet achieved for various reasons, as shown in Lis-
ting 3.15.

Such //TODO comments only make sense if the change cannot actually be made at the
moment. The example shown in Listing 3.15 refers to a bug that must first be solved in
a third-party system.

2743.book Seite 153 Montag, 11. August 2025 5:54 17

153

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

154

if testv.Builder() == "darwin-amd64-10_14" {
 // TODO(#23011): When the 10.14 builders are gone, remove this skip.
 t.Skip("skipping due to platform bug on macOS 10.14;
 see https://golang.org/issue/43926")
}

Listing 3.15 Notes on Dependencies (Go)

You should not use TODO comments to mark code blocks with notes indicating that no
ideal solution has yet been found for this block! Some developers also consider every
TODO in the code as a built-in bug because it will probably never be fixed.

For this purpose, most integrated development environments (IDEs) provide an auto-
matic check or display of TODO comments prior to the check-in into a version control
system (VCS). This check-in/check-out mechanism prevents unfinished code from
being accepted by mistake.

3.1.4 Comments Not Needed

In addition to the comments that can and should be used in a reasonable manner, some
comments in the source code are just superfluous. Ideally, well-structured and clearly
structured code does not need any comments to explain itself.

Listing 3.16 shows an example of a superfluous comment that provides no added value.

public interface Validated {
 //Empty
}

Listing 3.16 Is the Interface Still Empty? (Java)

If you write a comment, it should definitely make sense and provide the reader with
additional information. Every comment should be well considered and make things
clear. Don’t leave the reader with new questions!

In the example shown in Listing 3.17, the comment still leaves questions unanswered.
Why is an attempt being made to disable the feature, or why can an error be ignored? Is
the feature not important after all? What are the consequences if the feature cannot be
deactivated?

For this reason, in this example, a helpful step would be to add at least one further com-
ment with the reason why the feature should be deactivated.

@Override
protected DocumentBuilderFactory createDocumentBuilderFactory(int
 validationMode, boolean namespaceAware)
 throws ParserConfigurationException {
 DocumentBuilderFactory factory =

2743.book Seite 154 Montag, 11. August 2025 5:54 17

154

3 Source Code and Documenting the Software Development

155

3.1 Comments in the Source Code

3

 super.createDocumentBuilderFactory(validationMode, namespaceAware);
 try {
 factory.setFeature("../features/..", false);
 } catch (Throwable e) {
 // we can get all kinds of exceptions from this
 // due to old copies of Xerces and whatnot.
 }
 return factory;
}

Listing 3.17 Comment in Java Apache CXF Source Code (Feature Name Shortened)

Avoiding Duplicate Statements via Comments

Each comment should provide additional information about the code. If the code is
listed again in the comment in different words, the comment is simply superfluous.

If code seems to need “structuring” via comments, as shown in Listing 3.18, a better
approach is to revise the code instead.

//do the calculation
result := thing.calculate()

//check the result if it is valid
isValid := result.IsValid()

//return error if not valid
if !isValid {
....return errors.New("result is not valid")
}

Listing 3.18 Duplicate Statement with Comments

In some projects, getter and setter methods are documented via comments due to proj-
ect or company rules. What added value is the documentation shown in Listing 3.19 sup-
posed to provide? This duplication can be omitted since it does not provide any addi-
tional information.

/**
 * Sets the bus
 * @param bus the bus
 */
public void setBus(Bus bus) {
 this.bus = bus;
}
/**
 * Gets the bus

2743.book Seite 155 Montag, 11. August 2025 5:54 17

155

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

156

 * @return the bus
 */
public Bus getBus() {
 return bus;
}

Listing 3.19 Sample Documentation on Getter and Setter Methods in Apache CXF

Likewise, the statement shown in Listing 3.20 applies to the documentation of the fields
of a class or for things that can be clearly read from the code.

//the license
private String license;

Listing 3.20 Documentation of a Field

History of a File

Back when version management was not as widespread as today, and source code was
passed on via file repositories, developers often included the history of a file as a com-
ment in the code. Fortunately, these times are over, and version management systems
such as Git have become established practice. History comments have thus become
unnecessary and should therefore no longer be used.

Development environments often automatically generate documentation or com-
ment templates. You should therefore evaluate whether each automatically introduced
comment is necessary and what additional information it provides.

In turn, you must also check whether the code is comprehensible and clearly formu-
lated. You may need to modify it or add useful comments so that the code is better
understood and can be used correctly.

Commented-Out Code

Even though commented-out code is not a comment in the traditional sense, I would
like to discuss this topic here.

Commented-out code often remains in the code base, even if it is no longer needed. The
reasons for commenting out code are usually unclear, which can confuse other devel-
opers reading the code: You cannot judge whether the commented-out code is still rel-
evant or not. The code may have been replaced by a better alternative and simply for-
gotten at this point. Such ambiguities make it difficult to understand code.

If code is commented out, the reason for this should either be noted as a comment or
the code should be deleted completely. Commented-out code contributes to what’s
called technical debt, which describes the additional costs and effort caused by an
unstructured, outdated, or insufficiently maintained code base.

2743.book Seite 156 Montag, 11. August 2025 5:54 17

156

3 Source Code and Documenting the Software Development

157

3.2 Documenting the Software Architecture

3

3.2 Documenting the Software Architecture

The documentation of a software and especially its architecture fulfills several pur-
poses.

Robert C. Martin’s quote that the truth lies in the code is true, but the truth usually
involves more than just looking at a section. The documentation of a software architec-
ture has a greater focus; it represents and documents more complex systems.

“The code doesn’t tell the whole story.” —Simon Brown

In their book Documenting Software Architectures: Views and Beyond, Paul Clements
and his coauthors have identified three task areas for the documentation of software
architectures:

▸ Development

▸ Communication

▸ Basis for analysis and further development

Documenting Software Architectures: Views and Beyond

In 2003, the first edition of Documenting Software Architectures: Views and Beyond by
Paul Clements and colleagues on the subject of architectural documentation was pub-
lished. The second edition, published in 2010, was revised and extended and is often
described as a groundbreaking, indispensable reference work.

The book not only presents the importance of architecture documentation for commu-
nication but also considers it instrumental for supporting decisions, minimizing risks,
and ensuring the long-term maintainability of your software.

If new developers or software architects join an existing team, documentation about
the architecture helps onboard new members to the existing solution and its structure.
With a corresponding presentation, new members and even interested external parties
can obtain a structured overview and expand or deepen their knowledge of the soft-
ware.

In addition to this type of knowledge transfer about the software, the documentation
serves to ensure more efficient communication between the members of a develop-
ment team or across its boundaries.

One of the main tasks of a software architect is to communicate solutions that have
been developed or are yet to be developed. The software architecture documentation
supports this communication and provides a clear and precise way of exchanging infor-
mation. In addition to the specific solutions, it also documents the decisions made and
the associated justifications so that they can be retraced later, for a deeper understand-
ing.

2743.book Seite 157 Montag, 11. August 2025 5:54 17

157

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

158

In many cases, the architect himself is one of the main consumers of the documenta-
tion. In most cases, the decisions made and their justifications are interrelated in a com-
plex network, and remembering every decision and its justification is impossible with-
out informative documentation.

Decisions that have been documented can form the basis for future developments and
influence them. Cumbersome design decisions can be revised; good decisions can be
retained and reapplied during implementation.

In addition to successful decisions, negative experiences can also be documented. In
this way, you can learn from your mistakes, and transparent documentation means you
can develop more successfully in the future. Mistakes can and should also have an influ-
ence on future development and the associated decisions.

Fundamental decisions made early on about the software design within a project
should be documented and communicated as soon as possible. This approach prevents
similar considerations from being made more than once and possibly leading to
slightly different approaches at different points in the application.

Good documentation leads to long-term maintainability of software. Knowledge is
passed on and stored and can be used in future considerations.

3.2.1 Documenting Quality Features

In addition to the technical requirements (for example, that some code performs calcu-
lations correctly), most software must fulfill further quality features. Software that can
generate the right result but can’t deliver it correctly or at the right time has little or no
added value for a user. Non-technical quality characteristics of a software solution may
include the following:

▸ Performance

▸ Stability

▸ Security

▸ Maintainability

▸ Capability for incremental updates

High performance can be achieved, for example, by parallelizing tasks or with opti-
mized remote calls that generate a smaller volume of data or are executed less fre-
quently. The possible solutions are varied and depend on the area of application.

If software is to remain maintainable, it can be subdivided into individual components,
each of which fulfills its specific task and can be developed independently of one
another. Applying the single responsibility principle can help.

2743.book Seite 158 Montag, 11. August 2025 5:54 17

158

3 Source Code and Documenting the Software Development

159

3.2 Documenting the Software Architecture

3

All of these quality features must be considered and addressed by the software architec-
ture. Accordingly, these features must be included as requirements in the software
architecture documentation, and the selected solution must be documented.

Three questions should be answered for each quality feature:

▸ What quality feature was addressed with the architecture?

▸ What solution was chosen to solve the challenge?

▸ Why does the solution ensure the quality feature?

3.2.2 Rules for Good Software Architecture Documentation

In Documenting Software Architectures: Views and Beyond, Paul Clements and his coau-
thors set out seven rules for good software architecture documentation. Let’s now take
a closer look at these rules.

Write from the Reader’s Point of View

All documentation should be created with a certain target group in mind, and it is pre-
cisely for this target group that the documentation should be written.

The authors of the book refer to Edsger Wybe Dijkstra who claimed to spend two hours
thinking about how he could make a single sentence in the documentation clearer. He
was of the opinion that comments are read by many people and that these two hours
quickly pay off if each person can save one to two minutes of confusion.

Dijkstra’s principle can be applied to source code, which is usually written once, but read
several times.

Target group-oriented documentation is generally not only read and understood but
can serve as a reference later. If the reader does not receive the information they need,
the documentation will play no further role for them.

Some tips to bear in mind when writing documentation include the following:

▸ Know the readers: Uninformed assumptions about the readership should be
avoided. Know what is expected of the documentation. A brief exchange, if possible,
can be helpful.

▸ Structured documentation: Information should be prepared in a structured manner
and appear in appropriate places.

▸ Use clear terminology: The documentation is read by a wide range of people, some-
times even by people not familiar with the specialist terminology or jargon. When
special terms are used, they should therefore be clearly defined, for example, in a
glossary.

▸ No overloading with acronyms: Acronyms (i.e., short words made up of the first let-
ters of their components, such as “API”) sometimes make communication within a

2743.book Seite 159 Montag, 11. August 2025 5:54 17

159

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

160

project more efficient. However, in documentation, these abbreviations should be
used with caution and should always be listed in a glossary.

Avoid Unnecessary Repetition

The same documentation should not be repeated in multiple places. You run the risk
that, due to adjustments or different formulations, the information can vary one day.
Which part is decisive and actually represents the correct information may not be clear.

Repetition may be useful if the same information is presented in several places with a
slightly different perspective or in a slightly different focus.

Avoid Ambiguity

As soon as documentation is not formulated clearly enough and can be interpreted dif-
ferently, ambiguities will arise. This problem leads to differing opinions and false con-
clusions.

This kind of problem can be avoided or mitigated with the help of standardized formu-
lations or presentations.

Requests for Comments: Indicate Requirement Level

The requirement levels defined for RFCs are an example of standardized text formula-
tions. They are used, for example, to define the meaning of the expressions “must,”
“must not,” “should,” “should not,” and “may” within the RFC documents.

For more information, see https://datatracker.ietf.org/doc/html/rfc2119.

Regardless of which format is used, the corresponding meaning must be clearly
defined. Classic box-and-line diagrams, such as those often found on whiteboards, can
easily cause misunderstandings.

Figure 3.3 Box-and-Line Diagram

As shown in Figure 3.3, for example, the arrow can mean several different things: Does
A call B synchronously? Does A instantiate type B, or is a message sent asynchronously
from A to B? Is class A possibly a derivative of class B?

In many cases, the best approach is to use widespread, standardized representation for-
mats, for example, Unified Modeling Language (UML) or the C4 model, to create clarity
about the representation. Detailed descriptions of both formats will be provided later
in this book.

A B

2743.book Seite 160 Montag, 11. August 2025 5:54 17

160

3 Source Code and Documenting the Software Development

161

3.2 Documenting the Software Architecture

3

Use a Standardized Structure

The documentation should be created using a predefined structuring template—i.e.,
using a template, which already specifies sections that are filled with the actual docu-
mentation.

This is an advantage for the reader, as the clear structure makes it easier to find infor-
mation. The template can also be used in more than one project. This means that you
can familiarize yourself with new projects and find your way around them more
quickly.

In addition, the predefined structures also provide many advantages at the time of cre-
ation. Information can be added directly to the respective section as soon as it is created—
regardless of whether upstream areas have already been filled or not. In this way, the tem-
plate serves as a suitable repository for the snippets of information, which together make
more sense.

At all times, there is transparency about how much documentation is available and
whether sub-areas still need to be filled. If sections are not filled, information is missing;
if all sections are complete, the documentation is accordingly complete.

For example, the arc42 template has become widespread as a standardized structure.

Keep Track of Decisions and the Underlying Reasons

In software development, many individual decisions together lead to a software archi-
tecture. Every decision should be made consciously and ultimately result in a well
thought-out, suitable software architecture.

Unconsciously made decisions often lead to unclear structures within the application
or to unintended dependencies in the source code or in external systems. Changes can
be more difficult to implement, and the stability or security of the software may suffer.

Overall, unconscious decisions in a software architecture can lead to a variety of prob-
lems and should therefore be avoided at all costs.

Some of the most important decisions that need to be made are, for example:

▸ Programming language or technology stack

▸ Chosen architectural style

▸ Identification of components and interfaces

▸ Data modeling

▸ Integration and interoperability

▸ Security guidelines, mechanisms, protocols, etc.

Every important decision made must be recorded in the documentation with the cor-
responding justification. It is also best to list the alternatives considered and the argu-
ments in favor of the chosen solution. This means that the decision can be retraced at
a later date and the reasons why an alternative is not used can be reviewed.

2743.book Seite 161 Montag, 11. August 2025 5:54 17

161

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

162

Keep the Documentation Up to Date, But Not Too Up to Date

For documentation to be useful, it must be up to date and correct. Outdated documen-
tation that does not represent the actual situation causes confusion and will be avoided
by the target group as soon as they discover the issue. Questions that could be answered
by the documentation then require research elsewhere and generate additional work
for the readership.

All documentation should be up to date. But in return, not every innovation requires
immediate documentation. If alternative approaches are evaluated or new approaches
are quickly discarded, the documentation can be delayed to minimize unnecessary
effort. The first thing to consider in this context is how sustainable an innovation is.

Updating the documentation should be a fixed point in the development process. For
Scrum, for example, the term definition of done has become popular. This definition
serves as a checklist of items that must be completed before a task can be considered
finished. One item on the list should be updating the documentation.

Check the Documentation for Suitability for Use

Every documentation has its own specific target group. Only this group of people
should give feedback on the content and decide whether the information their mem-
bers are looking for is included in an appropriate way.

For this reason, the documentation should be read and reviewed regularly by the rele-
vant target group.

3.2.3 arc42 for the Complete Documentation

In German-speaking countries, arc42 has spread as a structured architecture descrip-
tion. Initially developed by Gernot Starke and Peter Hruschka, this document structure
often serves as the basis for a separate architecture documentation or is sometimes as
a process model for an architecture design. These open-source templates can be used
directly in your own projects in various formats. For each section, the template also pro-
vides a brief description of what should be included in the corresponding section.

Although arc42 is open source and available in several languages, it is not yet widely
used in English-speaking countries. However, the adoption of the iSAQB (International
Software Architecture Qualification Board), an international association that offers a
standardized training program and certifications for software architects, is certainly
contributing to its further spread. The C4 model by Simon Brown, which is often seen
as an alternative, will also be presented later.

arc42 provides a clear, simple, and efficient structure for the documentation and com-
munication of software architectures and comprises twelve sections that cover the
most important aspects of an architecture or application. Figure 3.4 shows the structure
of the entire document template.

2743.book Seite 162 Montag, 11. August 2025 5:54 17

162

3 Source Code and Documenting the Software Development

163

3.2 Documenting the Software Architecture

3

Not all structure points are always required, and some chapters can be omitted in doc-
umentation based on arc42.

Figure 3.4 Overview of arc42 (Source: https://arc42.org/overview)

arc42 Documentation and Examples

The arc42 templates can be found at https://arc42.org. Either blank or prefilled tem-
plates are available for download; the prefilled documents themselves represent an
extended documentation of arc42 itself.

In addition, you will find detailed examples of various projects at https://arc42.org/
examples.

We’ll use the HtmlSanityCheck sample application by Gernot Starke is used for the pre-
sentation. You can find it at https://hsc.aim42.org.

The graphics used are licensed as follows: https://creativecommons.org/licenses/by-sa/
4.0/deed.en.

The following sections walk through the structure points of the arc42 template.

Introduction and Objectives

The introductory section describes the basic requirements and objectives of the system
as well as the intention and motivation behind the development of the software solu-
tion.

In addition to the technical requirements and the basic business objectives, the most
important quality requirements for the architecture are described, as well as all import-
ant stakeholders and their expectations about the software.

Cross-Cutting Topics,
often very technical and
detailed

Hardware, Infrastructure,
and Deployment

Important and Specific
Terminology and Concepts
(Common Language)

Fundamental
Requirements,

especially
Quality Goals

External Systems
and Interfaces

Important
Runtime Scenarios

Core Ideas and
Solution Approaches

Structure of the Source
Code, Modularization

(Hierarchical)

Quality Tree,
Quality Scenarios

Major Decisions
(not described
otherwise)

Known Problems
and Risks

1. Introduction and Goals

6. Runtime View

4. Solution Strategy

5. Building Block View

3. Context and Scope

2. Constraints 8. Cross-cutting Concepts

10. Quality Requirements

12. Glossary

7. Deployment View

9. Architectural Decisions

11. Risks and Technical Debt

2743.book Seite 163 Montag, 11. August 2025 5:54 17

163

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

164

Constraints

Most software architectures are not created without specifications or framework con-
ditions. In many projects, special attention must be paid to data privacy or other legal
framework conditions, for example. Some companies also restrict the choice of tech-
nology or the technology stack used.

This section lists all the points that restrict the team’s freedom with regard to design
and implementation decisions.

If many restrictions exist, differentiating between technical, organizational, and politi-
cal framework conditions may make sense.

Context and Scope

Every system or architecture must differentiate itself from all other systems and must
define a clear context and the corresponding responsibilities of the system. These
delimitations also help to define and display interfaces to other external systems.

A context should always be documented from a business- or domain-related perspec-
tive. In the event that infrastructure or hardware play an important role, a technical per-
spective can also be presented.

The contexts and their system dependencies can be presented as text or with the help
of diagrams, for example with UML diagrams, as shown in Figure 3.5.

Figure 3.5 HtmlSanityCheck Sample Application: Context

2743.book Seite 164 Montag, 11. August 2025 5:54 17

164

3 Source Code and Documenting the Software Development

165

3.2 Documenting the Software Architecture

3

Solution Strategy

This chapter provides an overview of all the fundamental decisions and approaches that
determine the design and implementation of the system. They form the basic frame-
work of the application and influence many other decisions and implementation rules.

Let’s say, for example, you’ve selected a Go-based technology stack in the solution strat-
egy. This decision also influences later decisions on the selection of external libraries.

The list of solutions and decisions usually contains the following items:

▸ Technology decisions

▸ Representation of the modularization at the highest level of abstraction

▸ Use of formative design or architectural patterns

▸ Decisions on the most important quality features

▸ Relevant organizational decisions

Building Block View

The building block view can serve as an initial overview and shows the static breakdown
of a system into its components and their relationships with each other. The included
modules, components, subsystems, classes, interfaces, packages, libraries, frameworks,
layers, partitions, and more are best listed using diagrams. This view refines the context
view in which the system is displayed as a large box.

The abstract representation of the structure of the system can help you obtain a better
overview of the source code and can serve as a basis for communications at an abstract
level. Implementation details do not play a role in this context.

A distinction can be made in the presentation between white boxes and black boxes as
well as between multiple levels with different degrees of detail.

In the first level, the most important subsystems, components, or parts of the system
are listed, and in the second level, if necessary, these elements can be described in more
detail in the white boxes.

Not every component from level 1 must be shown in the second level.

The diagram shown in is a representation of level 1 of the HtmlSanityCheck (HSC in the
diagram) example from https://hsc.aim42.org/. The individual boxes and the corre-
sponding interfaces with their tasks are described in table format in the documentation
for the respective level.

2743.book Seite 165 Montag, 11. August 2025 5:54 17

165

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

166

Figure 3.6 HtmlSanityCheck Sample Application: Level 1 (Source: https://github.com/aim42/
htmlSanityCheck)

In level 2, the HSC core components are shown in detail using a white box, as shown in
Figure 3.7. Here too, the individual components are explained in the documentation in
a table with their corresponding tasks.

Figure 3.7 HtmlSanityCheck Sample Application: Core Display on Level 2 as a White Box

2743.book Seite 166 Montag, 11. August 2025 5:54 17

166

3 Source Code and Documenting the Software Development

167

3.2 Documenting the Software Architecture

3

Runtime View

The runtime view shows important or critical concrete processes, tasks, and relation-
ships between the building blocks of the architecture. These building blocks can be
internal or external components.

Scenarios are used to deepen the knowledge of the individual components and their
interactions with other components. Individual scenarios can be described using text
or diagrams.

Deployment View

Software is executed on hardware. The distribution view shows the technical infrastruc-
ture with all environments, computers, processors, networks, and network topologies
and assigns the software modules accordingly, as shown in Figure 3.8.

Figure 3.8 HtmlSanityCheck Sample Application: Distribution View of the Application

CrossCutting Concepts

This section documents key regulations, solutions, and concepts that affect multiple
building blocks. These elements can involve widely different topics, such as the follow-
ing:

2743.book Seite 167 Montag, 11. August 2025 5:54 17

167

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

168

▸ Models, especially business models

▸ The architecture style used

▸ Architecture or design patterns used

▸ Rules for the specific use of technologies or libraries

▸ Implementation rules

Architectural Decisions

Architecture decisions should always be clearly thought through, consciously made,
and documented with sound reasons.

In this section, the important architecture decisions are documented with a corre-
sponding justification, and the documentation of rejected alternatives should also be
included here.

Quality Requirements

Every quality requirement can influence the software architecture. For this reason,
knowing your quality requirements and presenting them in a transparent way are
important.

In this section of the template, the most important quality objectives already listed in
the introduction are presented as completely as possible with all other quality require-
ments in a what’s called a quality tree with scenarios. This tree structure is defined in
the Architecture Tradeoff Analysis Method (ATAM), a systematic evaluation method
that helps identify risks and understand the compromises between competing quality
attributes, such as performance, security, and modifiability, in a software architecture
early in its development lifecycle.

The listed scenarios are supposed to illustrate how a system will respond if specific
events occur as well as concretize any vaguely formulated requirements as well as pos-
sible.

For example, performance requirements could be defined with specific values: “The
system must return a response in a maximum of 100 ms.”

Risks and Technical Debt

Every piece of software contains potential problems or immature areas with which the
development team is not yet satisfied. In this section, these problems are presented in
a prioritized list and are therefore transparent.

The items in the list can already be provided with suggested solutions so that they can
be scheduled directly.

2743.book Seite 168 Montag, 11. August 2025 5:54 17

168

3 Source Code and Documenting the Software Development

169

3.3 Representing Software in Unified Modeling Language

3

Glossary

The glossary explains all important domain and technical terms used for communica-
tion with individual stakeholders. Generally known acronyms such as HTTPS or REST
do not need to be listed here.

A glossary can also be helpful as a reference for translations in international environ-
ments.

3.3 Representing Software in Unified Modeling Language

The Unified Modeling Language (UML) is a modeling language that was developed,
among other things, to improve communications between software developers and
make it easier for them to understand the software. The graphical language elements of
UML can be used to specify, design, document, and visualize software systems.

The first version of UML was developed in the 1990s, after several modeling languages
and methods for object-oriented software development had already been created.
Grady Booch, Ivar Jacobson, and James Rumbaugh were instrumental in defining the
language during their time at Rational Software and are therefore considered the
“fathers” of UML.

In 1997, UML was handed over to the Object Management Group (OMG) and accepted as
standard. Since then, UML has been continuously developed.

In today’s software systems, UML is a widely used tool for modeling and for standard-
ized documentation, even if the full range of functions of the language is rarely used.
The familiar graphical notation is only one aspect of the representation of the models
described by UML.

The UML 2.3 specification defines 14 different diagrams, which can be roughly divided
into two main categories:

▸ Structure diagrams

– Class diagram

– Object diagram

– Package diagram

– Component diagram

– Deployment diagram

– Profile diagram

– Composite structure diagram

▸ Behavior diagrams

– Activity diagram

– Use case diagram

2743.book Seite 169 Montag, 11. August 2025 5:54 17

169

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

170

– Interaction overview diagram

– Communication diagram

– Sequence diagram

– Timing diagram

– State diagram

UML diagrams are often used in modern software development. For this reason, the
most well-known and widely used diagrams are presented in the following sections.
This discussion will enable you to create your own diagrams; however, for reasons of
space, I cannot offer a complete introduction to UML introduction in this book. For the
diagrams in this book, I also use the UML notation for visualization. The widely used,
easy-to-use, and (unlike many commercial tools) lightweight open-source modeling
tool PlantUML allows you to create graphical UML diagrams from text files, usually
directly from the development environment. I will present this tool in more detail in
Section 3.5.2.

PlantUML

PlantUML is an open-source component for creating diagrams from text files. You can
find PlantUML and its documentation at https://plantuml.com/.

3.3.1 Use Case Diagram

A use case diagram can illustrate the functions or actions of a system and their interac-
tions with users or other systems. The objective is to show the functional requirements
of the system and visualize how a user can interact with the system to achieve their
goals.

Three elements are defined, as shown in Figure 3.9:

▸ Actor: An actor is a user who interacts with a system. Actors are depicted as stick fig-
ures. They can be people, but also external systems.

▸ Use case: This is a single action that can be performed by a user. It is displayed as an
ellipse and can be subdivided by corresponding relationships or extended by means
of inheritance.

▸ Context: The system context is drawn as a rectangle and encloses the use cases
defined in it.

Figure 3.9 Elements of a Use Case Diagram

Context

Use Case

Actor

2743.book Seite 170 Montag, 11. August 2025 5:54 17

170

3 Source Code and Documenting the Software Development

171

3.3 Representing Software in Unified Modeling Language

3

Use case diagrams do not contain any further details, such as information on the order
in which the individual interactions must be carried out. They are primarily intended
to provide an overview of the system and its context and are usually supplemented by
a textual description.

Figure 3.10 shows examples of use cases for a training company in which a customer
can book training courses, either online or by telephone. Once a booking has been
received, the reservation is confirmed by a member of the training management team,
who must first book a corresponding room. The appointment confirmation includes
dispatching a confirmation message to the participant.

Figure 3.10 A UML Use Case Diagram

3.3.2 Class Diagram

Class diagrams are by far the most frequently used diagrams in object-oriented pro-
gramming. They are used for the graphical representation of classes and interfaces and
their relationships with each other.

Each class and each interface are displayed as a rectangle that contains the attributes
and methods of the class or interface in addition to the name.

Figure 3.11 shows the PlantUML modeling tool for classes as it is used in this book. The
following information can be displayed for a class or an interface:

▸ Name: The name of the class or interface.

▸ Type: Whether it is a class, an abstract class, or an interface. In PlantUML, classes are
labeled with “C”; interfaces, with “I”; and abstract classes, with “A.”

▸ Stereotype: The purpose of a class can be represented with stereotypes. Some types,
such as the entity type used in our example, have already been defined in UML 2.1.

Training Registration

Room Organization

Book Training

Book Online

Book via Phone

Send Confirmation to Attendee

Book Room

Customer

Training
Management

extends

extends

include
Confirm Date

and Time

2743.book Seite 171 Montag, 11. August 2025 5:54 17

171

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

172

Classes marked with entity, for example, are classes for implementing business
logic.

▸ Generics information: Some programming languages allow classes to be parameter-
ized. In Java or Go, for example, these classes are called generics. With this addition,
called template arguments, the corresponding information can be specified.

▸ Attributes: A list of all attributes with their corresponding visibilities.

▸ Methods: Like attributes, all methods are listed with their visibility, parameters, and
return types.

Figure 3.11 Representation of a Class Using PlantUML

The textual representation of the individual attributes of a class diagram typically
adheres to the following schema in various UML tools (and in accordance with the UML
standard):

[Visibility] [/] name [: Type] [Multiplicity] [= default value] [{property
value*}]

In PlantUML, the visibility of the elements is defined accordingly within the text files
via individual characters and visualized via symbols in the graphical representation.
The PlantUML syntax uses the following characters and symbols:

▸ A circle corresponds to public or “+”

▸ A square corresponds to private or “-”

▸ A diamond corresponds to protected or “#”

▸ A triangle corresponds to package or “~”

Method signatures are described and visualized in the same way. An important point
in this context is that the return value is included at the end of the signature, not at the
beginning as in many programming languages:

[Visibility] name [({Parameter})] [: Return type] [{property value*}]

The example shown in Figure 3.12 is a class diagram for the administration of a training
session, in which relationships between the classes are also shown.

A "entity"
MyClass

GenericInfo

startDate: Date
numberOfDays: int
attendees: Attendee [0:*]
maxPersons: int = 8 {1-10}

addAttendee(Attendee): void

Stereotype

Attributes

Methods

Type Generics Info

Name

2743.book Seite 172 Montag, 11. August 2025 5:54 17

172

3 Source Code and Documenting the Software Development

173

3.3 Representing Software in Unified Modeling Language

3

Figure 3.12 Example Class Diagram

This example contains the abstract TrainingInstance class, which is extended by the
OnlineTrainingInstance, OnsiteTrainingInstance, and InhouseTrainingInstance classes.
This generalization is represented by a straight, solid arrow that leads from the specific
to the general implementation and has an unfilled arrowhead.

Interface implementations are also displayed using a generalization arrow, but the line
of the arrow is dashed. In this example, the SQLTrainingRepository class implements the
TrainingRepository interface.

Relationships between classes, associations, are represented by simple arrows. For exam-
ple, TrainingService uses TrainingRepository to store data. Multiplicities are often used
to specify how many of the referenced objects are related to the other objects. This
information is then written to the arrow as additional information. In our example,
TrainingService has exactly one TrainingRepository instance and therefore is not spec-
ified here.

C
C

C

<<service>>
TrainingService

bookTraining(Attendee, TrainingInstance): void

<<repository>>
TrainingRepository

createTrainingInstance(TrainingInstance): void

<<repository>>
SQLTrainingRepository

createTrainingInstance(TrainingInstance): void

<<entity>>
TrainingInstance

startDate: Date
numberOfDays: int
attendees: Attendee[0:*]

addAttendee(Attendee): void

<<entity>>
OnlineTrainingInstance

connectUrl String

<<entity>>
OnsiteTrainingInstance

roomInfo String

<<entity>>
InhouseTrainingInstance

roomNo String

Attendee

name: String
eMail: String

getName(): String

extends extends

attendees
1

many

stores information

implements

uses

uses

Abstract Class

Concrete Class

Generalization Arrow

Generalization Arrow

extends

I

A

C C C

2743.book Seite 173 Montag, 11. August 2025 5:54 17

173

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

174

One or more participants are required to carry out a training session, which is imple-
mented as TrainingInstance in our example. For this reason, the relationship between
TrainingInstance and Attendee has multiplicities, and this information is added to the
relationship arrow.

The information that at least one participant must be present can be mapped with UML
using special types of association, namely, composition and aggregation, as shown in
Figure 3.13.

Figure 3.13 Composition and Aggregation

Let’s briefly explore these two association types:

▸ A composition describes a relationship between a whole and its parts in which the
whole cannot exist without its parts. A classic example is how a building cannot exist
without at least one room.

▸ If the whole can also exist without its parts, the relationship is an aggregation. This
relationship is possible, for example, when a training course is conducted: Even if a
TrainingInstance without an attendee makes little sense, it must be possible to create
a TrainingInstance without an attendee during planning.

An aggregation is shown with an unfilled diamond, which is located at the end of the
relationship on the whole. In a composition, a filled diamond is used instead, as shown
in Figure 3.13.

3.3.3 Sequence Diagram

Sequence diagrams represent interactions in a system and model the exchange of mes-
sages between different objects.

Each object has what’s called a lifeline in the diagram, which serves as the starting point
for sending or receiving a message and is shown as a dashed line below the object. The
exchange of messages between the objects is represented by arrows.

A branching or decision syntax is not provided for in sequence diagrams, and a variant
of a sequence is always shown. If multiple variants of a process are required, multiple
diagrams must be created accordingly.

Building

Room

Training Date

Attendees

Composition

1

1..*

Aggregation

0..1

1..*

C

C

C

C

2743.book Seite 174 Montag, 11. August 2025 5:54 17

174

3 Source Code and Documenting the Software Development

175

3.3 Representing Software in Unified Modeling Language

3

The example shown in Figure 3.14 is a sequence diagram for booking a training. A cus-
tomer, whose lifeline is not shown for better readability, first triggers a new booking in
the booking system.

Figure 3.14 Sequence Diagram Example

The system then saves the data in a database and generates a message in the messaging
system that a new booking has been received. The process is completed for the cus-
tomer for the time being. However, the message with the information that a new book-
ing has been created is transmitted asynchronously to the TrainingManagementSystem.

The distinction between synchronous and asynchronous messages is made via the tip
of the arrow during message transmission: If the arrowhead is filled in, it is a synchro-
nous message. If the arrowheads are not filled in, this message is an asynchronous mes-
sage, as shown in our example, on the right, when a message is redirected to the Train-
ingManagementSystem.

3.3.4 State Diagram

Each object in a system can assume different combinations of internal information and
thus different states during its life cycle. The possible states and their transitions can be
visualized using a UML state diagram.

Each state diagram has a start point and an end point, which are also displayed as such.
Unlike the start point, the end point has a border.

BookingSystem

BookingSystem

Database

Database

Messaging

Messaging

TrainingManagementSystem

TrainingManagementSystem

Customer
books
Training

Save Booking

Async Information

Response
to
Customer

Information About New Booking

2743.book Seite 175 Montag, 11. August 2025 5:54 17

175

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

176

An object’s states and their possible transitions are listed between “Start” and “End.”
Transitions are represented by arrows with an optional label; states are visualized as
rectangles with rounded corners.

Figure 3.15 shows the possible states for a training date in a training administration sys-
tem as an example. A training date can therefore have the status “On Offer,” and as soon
as a booking is received, the status changes to “Scheduled.” If no booking is received by
the deadline, the status changes to “Canceled” and so on.

In addition to the state diagram shown for a behavioral state, in which the behavior of
an object is modeled, you can also use UML to model what are called protocol states.

Figure 3.15 TrainingInstance State Diagram (Behavioral State)

On OfferCanceled
No Booking

Mail to Attendees

Training Course Finished

Start Training Course

Another Booking

Booking comes in

Finished

In Progress

Traing Course Scheduled

Manually,
without Feedback

Feedback Received

Completed

Feedback Requested

2743.book Seite 176 Montag, 11. August 2025 5:54 17

176

3 Source Code and Documenting the Software Development

177

3.3 Representing Software in Unified Modeling Language

3

Protocol states describe the permissible use of an object or its behavior, as in our exam-
ple shown in Figure 3.16. The diagram specifies the possible methods that can be called
in addition to the states.

Figure 3.16 Protocol States with State Diagram

3.3.5 Component Diagram

A component diagram, another structural diagram in UML, represents components and
their relationships to other components in the system.

In UML, the term component refers to a module that consists of several classes and can
be regarded as an independent system or subsystem. Interfaces define the connections
to other components of the rest of the system.

Component diagrams can be used to visualize software systems at a high level of
abstraction in order to provide the best possible overview of all components involved.
This representation is particularly useful in cloud or microservice-based applications,
where multiple self-contained components interact with each other.

dataChanged

notComplete

complete

changeData()
changeData()

checkComplete()

All Data Available

data missing or wrong

informUser()

storeData()

2743.book Seite 177 Montag, 11. August 2025 5:54 17

177

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

178

Figure 3.17 Components of a Component Diagram

The diagrams consist of several components:

▸ Component: The components are displayed as rectangles with a small component
symbol. Some display variants use the <<component>> stereotype for marking.

▸ Package: Several components can be combined into one package to illustrate their
close relationship. Packages are also displayed as rectangles or frames.

▸ Interface: Each component can provide one or more interfaces for the communica-
tion with other components. These interfaces can be used as interaction points.
Available interfaces are represented by a circle with a connecting line. Used inter-
faces are documented with a semicircle and a corresponding line.

▸ Port: Sometimes, calls to a provided interface are delegated to internal classes, which
is visualized via ports represented as squares.

▸ Dependency/relationship: As in other UML diagrams, dependencies are drawn as a
line between the components. As before, the arrow indicates the direction of the
dependency.

Figure 3.18 shows a component diagram for a training administration software. The dia-
gram shows three independent application components and a cloud-based messaging
solution that are connected to each other.

A booking can be triggered via the Booking component, which is redirected to the Admi-
nistration component as an event using the Messaging solution. The Print component
is called via an HTTP endpoint and produces documents for the training course, which
are saved in a file repository.

Packet

«service»
ComponentA DB

HTTP

JMS

«subsystem»
Messaging

use

Interface
Provided

Dependence
Use of an
Interface

Port

Component
IconPacket

2743.book Seite 178 Montag, 11. August 2025 5:54 17

178

3 Source Code and Documenting the Software Development

179

3.3 Representing Software in Unified Modeling Language

3

Figure 3.18 Component Diagram for the Training Application

Booking

Messaging

Administration

Print

«service»
BookingService

BookingMongoDB

HTTP

NewBookingProducer «subsystem»
MessagingSystem

«service»
TrainingManagementSystem Consumer

PostgresDB

«service»
ScriptProductionTrainingDB

HTTPEndpoint

FileStorage

use

CloudEvent

CloudEvent

Produce New Documents

2743.book Seite 179 Montag, 11. August 2025 5:54 17

179

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

180

3.4 C4 Model for Representing Software Architecture

The C4 model is another visualization concept designed by Simon Brown, an indepen-
dent British software architect, as a lightweight approach to visualizing software archi-
tectures. In his book Software Architecture for Developers, published in 2012, Brown
describes his experience as a software architect and introduces C4, a documentation
option that has become quite popular with developers due to its pragmatic approach.
It can also be used as an alternative to the arc42 template described earlier.

Simon Brown’s approach critiqued the box-and-line diagrams that are so often used to
visualize software. This representation of an architecture can easily lead to confusion
because the notation and its meaning are not clearly expressed. In addition, different
levels of detail are usually mixed in each diagram, and the information contained, such
as the technologies or protocols used, often differs from diagram to diagram. Therefore,
many diagrams cannot be understood without additional context.

In Brown’s opinion, diagrams should be clear and understandable to outsiders without
further explanation:

“Diagrams are the maps that help software developers navigate a complex code-
base.” —Simon Brown

The C4 model represents software systems using four hierarchical levels of abstraction
and levels of detail associated with the levels. As the relevant key terms of the individual
levels all contain the letter C, Brown speaks of the “C4” model:

▸ System context (level 1) provides an overview of how the software system fits into
the rest of the system landscape.

▸ Container (level 2) is an enlarged and more detailed representation of the system in
the form of coarse-grained, technical components (called containers) and their rela-
tionships with each other.

▸ Component (level 3) provides an enlarged view of a container with its internal com-
ponents.

▸ Code (level 4) provides a further enlargement of a component and the representation
of its implementation in the classic form of UML class diagrams, for example.

Several views can be created for each of these levels, each of which only shows a specific
section of the level.

The division into predefined levels creates a standardized terminology for the individ-
ual building blocks of an architecture and describes corresponding levels of detail for a
representation. Figure 3.19, Figure 3.20, Figure 3.21, Figure 3.22, and Figure 3.23 provide
an overview of C4 representations and their levels of detail and scope. More precise
details cannot yet be seen in this overview. I will describe them in the following sec-
tions.

2743.book Seite 180 Montag, 11. August 2025 5:54 17

180

3 Source Code and Documenting the Software Development

181

3.4 C4 Model for Representing Software Architecture

3

Figure 3.19 C4 Model: System Context (Level 1)

Figure 3.20 C4 Model: System Context (Level 1), Legend

Zoom in Level 2

Level 1
Context

Send Email to
[SMTP]

Inform Attendee
About Training

[SMTP]

Stores Material
and Certificates to
[CloudAPI/HTTP]

Add Material
and Create

Certificates to
[HTTP]

Retrieve Material
and Certificate from

[HTTP]

Book a Training
[HTTP]

External Email Server

Email Server
[Software System]

 Stores Large Files Like Material
and Certificates.

Blob Storage
[Software System]

Attendee
[Person]

Anonymous User
[Person]

 Provides Functionality to
Book, Organize and Manage

Trainings.

Training Fellow
[Software System]

Adminstrator
[Person]

Trainer
[Person]

Training Fellow - System Context

Create New
Trainings

and Organize
Instances in

[HTTP]

Component Container Container,
Database

Person

Software
System,
external

Relationship

2743.book Seite 181 Montag, 11. August 2025 5:54 17

181

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

182

Figure 3.21 C4 Model: Container (Level 2)

Figure 3.22 C4 Model: Component (Level 3)

Zoom in Level 3

Level 2
Container

Training Fellow - Containers

Training Fellow
[Software System]

Training Management
Database

[Container: MongoDB]

Holds a List of All
Trainings and

Customers

Online Booking
Application

[Container: Go]

 Provide Booking
Functionality
for Customers

Booking Database
[Container: MongoDB]

 Holds a List of All
Training Dates and
Bookings for Fault

Tolerance

Course Material
Application

[Container: Go]

Provide Functionality for
the Production and

Delivery of Slides, Scripts
and User Certificates

Messaging System
[Container: Nats]

 Exchange
Asynchronous

Messages
Training Management

System
[Container: Go]

 Provides Training
Management

Functionality to
Administrative Clients

Anonymous
User

[Person]

Attendee
[Person]

Trainer
[Person]

Adminstrator
[Person]

Blob Storage
[Software System]

Stores Large Files
Like Material

and Certificates

Email Server
[Software System]

External
Email Server

Create New
Trainings

and Organize
Instances in

[HTTP]

Send New
Training
Event to
[TCP/IP]

Stores Trainings,
Rooms and

Customers to
[HTTP/BSON]

Book a Training
[HTTP]

Stores
Bookings to

[HTTP/BSON]

Add Material
and Create

Certificates to
[HTTP]

Stores Material and
Certificates to

[CloudAPI/HTTP]

Inform Attendee
About Training

[SMTP]

Send Email to
[SMTP]

Receive
Booking

Information
from [TCP/IP]

Send Booking
Information with

[TCP/IP]

Receive New
Training

Event from
[TCP/IP]

Receive
Booking

Information
[TCP/IP]

Send Account
Data to
[SMTP]

Retrieve Material
and Certificate

from [HTTP]

Detailing in Level 4

Training Fellow - Course Material Application - Components

Course Material Application
[Container: Go]

DataDeliveryHandler
[Component:

Go/Gin Web Framework]

Allows Customers to
Download Material

and Certificates.

DataProductionHandler
[Component:

Go/Gin Web Framework]

Allows Trainers to
Produce Material,

Scripts and Certificates

CourseMaterialService
[Component: Go]

Provides Functionality
for Production and
Delivery of Slides,

Scripts, Material and
User Certificates Attendee

[Person]

Trainer
[Person]

Messaging System
[Container: Nats]

Exchange
Asynchronous

Messages

Blob Storage
[Software System]

Stores Large Files Like

Material and Certificates

Email Server
[Software System]

External

Email Server

Retrieve Material
and Certificate from

[HTTP]

Add Material
and Create

Certificates to
[HTTP]

Receive Booking
Information

[TCP/IP]

Stores Material
and Certificates to
[CloudAPI/HTTP]

Send Account
Data to
[SMTP]

Send Email to
[SMTP]

Level 3
Component

Receive New
Training

Event
[TCP/IP]

Stores and
Organizes

Material and
Certificates

Get Material
and Certificates

from

2743.book Seite 182 Montag, 11. August 2025 5:54 17

182

3 Source Code and Documenting the Software Development

183

3.4 C4 Model for Representing Software Architecture

3

Figure 3.23 C4 Model: Code (Level 4)

With various tools, you have the option of displaying the models in such a way that you
can switch to the corresponding refinement level during display, thus allowing the
viewer to navigate interactively through the model.

C4 diagrams are often compared with maps, for instance, Google Maps. In these cases
as well, various information is displayed at different levels of detail, and special views
provide selected details. For example, a railway map does not contain any information
about the highway network, which is not relevant in this context. You can zoom in for
more information and zoom out again for a better overview.

In contrast to UML, since no fixed notation or design language is prescribed for C4 dia-
grams, you can define and use your own custom elements or designs.

However, as recommended by Brown, if you create your own elements, you should cre-
ate a legend either directly in the diagram or in a separate explanation. Doing so allows
you to clearly indicate the meaning of shapes, line type, color, borders, and abbrevia-
tions and thus increase comprehensibility. Figure 3.20 shows a legend for the diagram
shown in Figure 3.19.

A notation of the C4 diagrams, as generated for the examples using Structurizr, is widely
used. Structurizr is a modeling tool that enables you to generate different views from a
common textually described model. I present the tool in more detail in Section 3.5.3.

The common forms of presentation are summarized in Figure 3.24. Each element has a
name, a specified element type, and a description. Technical details can also be
included, which can be displayed depending on the view’s level of detail. Colors support

I

CC C

C
C C

C

A

Level 4
Code

DataDeliveryHandler

listTrainings(): TrainingInstance

«service»
TrainingService

listTrainings(Attendee): TrainingInstance

«repository»
TrainingRepository

createTrainingInstance(TrainingInstance): void

«repository»
SQLTrainingRepository

createTrainingInstance(TrainingInstance): void

«entity»
TrainingInstance

startDate: Date
numberOfDays: int
attendees: Attendee[0:*]

addAttendee(Attendee): void

«entity»
OnlineTrainingInstance

connectUrl String

«entity»
OnsiteTrainingInstance

roomInfo String

«entity»
InhouseTrainingInstance

roomNo String

Attendee

name: String
eMail: String
getName(): String

Attendees
1

Many

Stores Information

Uses

UsesUses

2743.book Seite 183 Montag, 11. August 2025 5:54 17

183

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

184

the presentation. External systems are highlighted in gray, for example. For the exam-
ple, no distinction was made between synchronous and asynchronous calls, but such
details could also be displayed by choosing different colors for the relationship arrows.

Figure 3.24 Legend for the Notation Used

3.4.1 System Context (Level 1 or C1)

The system context diagram is intended to give both technically and non-technically
interested parties an overview of the system and answer the following questions:

▸ What is the software system that has been or will be created?

▸ Who uses the system?

▸ How does it fit into the system landscape?

At this level, only a few details are displayed, as shown in Figure 3.25 for the Training
Fellow sample application. The goal is to provide a rough overview of the system and its
dependencies, the big picture.

The system is represented as a central box around which the other participants are
arranged. All dependencies to external systems and users are drawn in the diagram, and
ideally, each relationship is provided with brief information on why and how commu-
nication with the external system or user takes place.

System Boundary

Relationship

External System

Description

Technology

Element Type

Name

Holds a List of All Training
Dates and Bookings for Fault

Tolerance

Booking Database
[Container: MongoDB]

Inform Attendee
About Training

[SMTP]

 External Email Server

Email Server
[Software System]

 Provides Functionality to
Book, Organize, and Manage

Trainings

Training Fellow
[Software System]

 A Trainer that Gives a
Training

Trainer
[Person]

Source Fellows

2743.book Seite 184 Montag, 11. August 2025 5:54 17

184

3 Source Code and Documenting the Software Development

185

3.4 C4 Model for Representing Software Architecture

3

Figure 3.25 C4 System Context Example

Training Fellow - System Context

Source Fellows

Trainer
[Person]

A Trainer that Gives a

Training

Adminstrator
[Person]

An Administrative User that
Organizes Trainings

Training Fellow
[Software System]

Provides Functionality to

Book, Organize and Manage
Trainings

Anonymous User
[Person]

Interested User.

Attendee
[Person]

A Customer who Booked a

Training

Blob Storage
[Software System]

Stores Large Files Like Material

and Certificates

Email Server
[Software System]

External Email Server

Create New
Trainings

and Organize
Instances in

[HTTP]

Book a Training
[HTTP]

Retrieve Material
and Certificate from

[HTTP]

Add Material
and Create

Certificates to
[HTTP]

Stores Material
and Certificates to
[CloudAPI/HTTP]

Inform Attendee
About Training

[SMTP]

Send Email to
[SMTP]

2743.book Seite 185 Montag, 11. August 2025 5:54 17

185

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

186

3.4.2 Container (Level 2 or C2)

At the second level of abstraction, container diagrams indicate the rough structure of
the software architecture and the responsibilities of the individual components it con-
tains. The diagram already contains details of the technologies used, albeit at a fairly
high level of abstraction.

The following questions should be answered by the container diagrams:

▸ How is the system’s software architecture structured?

▸ Which technology decisions were made at a high level of abstraction?

▸ How are the responsibilities distributed across the individual components?

▸ How do the individual containers communicate with each other?

▸ In which container should functionality be implemented by the development team?

The example shown in Figure 3.26 refines the system context view of the Training Fel-
low sample application, showing that the application consists of three separate contain-
ers that communicate with each other asynchronously via a messaging system. In this
case, the messages are exchanged between the container and the messaging system via
a TCP/IP connection.

Figure 3.26 Example of a C4 Container Diagram

The responsibilities of each component are noted in each case so that extensions can
be made at the appropriate points.

Training Fellow - Containers

Training Fellow
[Software System]

Training Management
Database

[Container: MongoDB]

 Holds a List of All
Trainings

and Customers

Online Booking
Application

[Container: Go]

 Provide Booking
Functionality
for Customers

Booking Database
[Container: MongoDB]

Holds a List of All Training

Dates and Bookings
for Fault Tolerance

Course Material
Application

[Container: Go]

Provide Functionality for
the Production and Delivery

of Slides, Scripts and
User Certificates

Messaging System
[Container: Nats]

 Exchange Asynchronous
Messages

Training Management
System

[Container: Go]

Provides Training

Management
Functionality to

Administrative Clients

Anonymous User
[Person]

Interested User

Attendee
[Person]

A Customer who
Booked a Training

Trainer
[Person]

A Trainer that Gives

a Training

Adminstrator
[Person]

An Administrative
User that Organizes

Trainings

Blob Storage
[Software System]

Stores Large Files Like
Material and Certificates

Email Server
[Software System]

External
Email Server

Create New
Trainings

and Organize
Instances in

[HTTP]

Receive Booking
Information from

[TCP/IP]

Stores Trainings,
Rooms and

Customers to
[HTTP/BSON]

Send Booking
Information

with [TCP/IP]

Stores Bookings to
[HTTP/BSON]

Retrieve Material
and Certificate from

[HTTP]

Add Material
and Create

Certificates to
[HTTP]

Stores Material and
Certificates to

[CloudAPI/HTTP]

Send Account
Data to
[SMTP]

Send Email to
[SMTP]

Inform
Attendee

About Training
[SMTP]

Book a
Training
[HTTP]

Receive Booking
Information

[TCP/IP]

Receive New
Training Event
from [TCP/IP]Send New

Training
Event to
[TCP/IP]

2743.book Seite 186 Montag, 11. August 2025 5:54 17

186

3 Source Code and Documenting the Software Development

187

3.4 C4 Model for Representing Software Architecture

3

The diagram captures how the training management system (TMS) container is respon-
sible for managing training courses, for example, and makes this functionality available
to an administrative user via an HTTP connection. The container is implemented in Go
and uses its own MongoDB database for its tasks, in which all training courses and cus-
tomer data are stored. The diagram also shows that the TMS container sends status
changes of training bookings to the participants via email and exchanges messages
with the other containers via the messaging system. The TMS is informed about newly
scheduled training dates and receives messages when new bookings have been made,
which is indicated by the arrows pointing toward the container.

The level of detail of a container diagram is not explicitly specified and can be deter-
mined by the user. No technical details need to be provided, but certain decisions can
be better understood by presenting more information.

3.4.3 Component (Level 3 or C3)

The third level of the C4 diagrams shows individual components with additional details
on their technologies and internal structures. Figure 3.27 shows the Course Material
application, which is responsible for creating and managing training materials and cer-
tificates.

Figure 3.27 The Course Material Component in the C4 Model

The diagram always shows just one container and is intended to answer the following
questions:

▸ What components does a container consist of?

Training Fellow - Course Material Application - Components

Course Material Application
[Container: Go]

DataDeliveryHandler
[Component:

Go/Gin WebFramework]

Allows Clients to Download
Material and Certificates

DataProductionHandler
[Component:

Go/GinWeb Framework]

Allows Trainers to Produce
Material, Scripts and

Certificates

CourseMaterialService
[Component: Go]

 Provides Functionality for

Production and Delivery of
Slides, Scripts, Material and

User Certificates

Attendee
[Person]

A Customer who Booked

a Training

Trainer
[Person]

A Trainer that Gives
a Training

Messaging System
[Container: Nats]

Exchange Asynchronous
Messages

Blob Storage
[Software System]

Stores Large Files Like

Material and Certificates

Email Server
[Software System]

External Email Server

Retrieve Material
and Certificate from

[HTTP]

Add Material
and Create

Certificates to
[HTTP]

Get Material and
Certificates from

Stores and
Organizes

Material and
Certificates

Receive Booking
Information

[TCP/IP]

Stores Material
and Certificates to
[CloudAPI/HTTP]

Send Account
Data to
[SMTP]

Send Email to
[SMTP]

Receive New
Training

Event
[TCP/IP]

2743.book Seite 187 Montag, 11. August 2025 5:54 17

187

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

188

▸ Are all components assigned to a container?

▸ Is it clear on an abstract level how the software works?

Three internal components are listed for the Course Material application in our exam-
ple: two handler implementations, which are responsible for HTTP-based communica-
tion with users, and a service component, which contains the business logic. Each com-
ponent has its own responsibilities as well as additional information on the internal
technical details. The container diagram shows that our app is a Go-based application,
and from the additional details, we can clearly see that the Gin web framework is used
for its handler implementations.

No infrastructure components or cross-cutting concerns, such as those required for log-
ging, are listed in this sample diagram because these components are not business-
critical for the use case. If this information is important or critical, the required compo-
nents can be included, or their use can be indicated by an additional comment. You can
also display the affected components separately by color-coding and describing the
coding in a legend.

The same rule applies to shared functionalities. If a functionality is business critical, the
information should be included; if not, a reference is usually sufficient.

3.4.4 Code (Level 4 or C4)

The last and highest level of detail in the C4 diagrams are found in code-level diagrams.
These diagrams should show how an individual component is set up or structured at
the code level and how it works internally.

UML diagrams or excerpts from UML diagrams can be used for representations at this
level. This approach is particularly suitable for class diagrams or sequence diagrams.

Incidentally, Simon Brown recommends not including this level in the model since the
content can largely be created automatically from the source code using tools: The
effort involved in manually creating the level is too high compared to its benefits.

Generating C4 Diagrams

No tools are required or necessary for creating C4 models. Hower, in Section 3.5.2 and
Section 3.5.3, I present the PlantUML and Structurizr tools, which you can use to describe
and visualize C4 models.

3.5 Doc-as-Code

In the past, software documentation or architecture documentation would often be cre-
ated and managed in parallel with development work using separate tools, such as a
standalone UML editor, Microsoft PowerPoint, Microsoft Word, or Wiki systems like

2743.book Seite 188 Montag, 11. August 2025 5:54 17

188

3 Source Code and Documenting the Software Development

189

3.5 Doc-as-Code

3

Atlassian Confluence. These tools cannot be integrated into the development process,
or only integrated poorly, and developers are often forced to leave their familiar envi-
ronment (i.e., the development environment) and switch to the documentation tools
for their work. The necessary tools may not be available for their development platform
and must then require virtual machines or remote connections.

Tools that are difficult or even impossible to integrate into the development process
have disadvantages: New or adapted features, for example, must be consistently docu-
mented or subsequently documented separately. Even if the development team has the
necessary discipline, a great deal of effort is required to keep the documentation up to
date and complete.

In addition, some tools prevent team members from collaborating in a meaningful way
because their file formats cannot be edited by several people at the same time or
because manual workflows are required in the release process. If, for example, UML dia-
grams are integrated as PNG images, they cannot be worked on collaboratively.

Doc-as-code, on the other hand, takes the approach of viewing documentation as source
code and creating, editing, and managing it accordingly. The individual documents are
created in lightweight text formats and versioned and managed in the source code
repository used. Different versions can be compared with the usual development tools
and restored to a specific state if necessary.

Changes to the documents, like source code changes, can be coordinated with team
members and integrated via pull requests or review processes, for example.

Storing documents within a source code repository provides advantages, not only
during creation and editing: Various output formats or scopes can be generated from
the predominantly plain text formats by integrating them into existing build pro-
cesses. A special output document with the appropriate content can be provided for
each target group from the same text source.

You can also aggregate information from multiple such as text files and source code.
Automatically created UML diagrams can be integrated directly into the documenta-
tion and don’t require separate updating or redundant storage.

Instead, with each release of an application, up-to-date documentation is automatically
created and delivered. The documentation itself becomes an artifact to be delivered and
is integrated into the agile development process known as continuous documentation.

In the following sections, I will introduce you to formats and tools that you can use to
pursue a doc-as-code approach.

3.5.1 AsciiDoc

AsciiDoc is a text format for creating plain text documents for structured documenta-
tion. A human-readable, platform-independent markup language, AsciiDoc is similar to
Markdown, but with many additional functions and a clearly defined syntax.

2743.book Seite 189 Montag, 11. August 2025 5:54 17

189

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

190

AsciiDoc was developed to bridge the gap between plain text and complex markup lan-
guages such as HTML or LaTeX. Various output formats can be generated from the doc-
uments, such as HTML, PDF, Word, or EPUB.

AsciiDoc and Asciidoctor

AsciiDoc is a simple text markup language for creating technical content. You can find
the language specification at https://asciidoc.org/. Plugins are available for common
development environments that provide support for editing and allow documents to be
previewed.

The transformation of AsciiDoc documents into the various source formats is performed
by Asciidoctor (https://asciidoctor.org/), which can be easily integrated into a separate
build pipeline with its many extensions.

The AsciiDoc format is quite similar to other markup languages. The text file shown in
Listing 3.21 can be generated as a PDF using Asciidoctor, for example, as shown in Figure
3.28.

= Hello, AsciiDoc!

The syntax description can be found at https://asciidoc.org[AsciiDoc].

== Section Title

* A list item
* Another list item

[source,go]

fmt.Println("Hello, World!")

Listing 3.21 AsciiDoc Example

The advantages of AsciiDoc when creating technical documents, such as architecture
documentation, include the tooling, which can be easily integrated into your own build
pipeline, and the standardized syntax. This syntax contains all known markups (such
as tables, lists, and more), but also provides for the insertion of external content as well.

2743.book Seite 190 Montag, 11. August 2025 5:54 17

190

3 Source Code and Documenting the Software Development

191

3.5 Doc-as-Code

3

Figure 3.28 PDF Document Generated from the AsciiDoc File

The core of the tooling is the Asciidoctor text processor that converts AsciiDoc into var-
ious formats such as HTML and PDF.

Some of the advantages of AsciiDoc include the following:

▸ A defined syntax, not multiple grammars

▸ Generation of various output formats possible

▸ Extensive tooling for integration into the build pipeline

▸ Easy inclusion of content from external files (images, graphics, source code, AsciiDoc
documents, and more)

▸ Possible use of variables in documents

▸ Creation of target group-oriented documentation through the customized aggrega-
tion of content

3.5.2 PlantUML

With the help of the PlantUML, an open-source project, you can create various graphical
representations from simple text descriptions. Several UML diagrams are supported, as
well as other diagram types such as wireframes or mind maps.

Strictly speaking, PlantUML is a drawing tool, as the models or drawings created are not
validated or checked for consistency.

2743.book Seite 191 Montag, 11. August 2025 5:54 17

191

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

192

PlantUML Diagram Types

The following diagrams and representations are supported by PlantUML:

▸ Sequence diagrams
▸ Class diagrams
▸ Activity diagrams
▸ Deployment diagrams
▸ Timing diagrams
▸ Displaying YAML (YAML Ain’t Markup Language) data
▸ Salt/wireframe
▸ Gantt charts
▸ Work breakdown structures (WBSs)
▸ Entity relationship diagrams
▸ Use case diagrams
▸ Object diagrams
▸ Component diagrams
▸ State diagrams
▸ Displaying JavaScript Object Notation (JSON) data
▸ Network diagrams
▸ ArchiMate diagrams
▸ Mind maps
▸ Math

The diagrams can either be created in a text editor or in a development environment or
generated from source code using various tools.

As soon as the text descriptions are ready, they can be transformed into a graphical rep-
resentation using the available command-line tool, for example, in PNG or SVG files.
PlantUML takes over the entire layout of the diagrams unless you override its defaults
with your own configuration.

Plugins with syntax highlighting and a direct preview of the diagrams are available for
most development environments.

The syntax is quite similar for the different diagram types. Elements are defined directly
or implicitly, and they are connected to each other via relationships.

The example shown in Listing 3.22 is a sequence diagram in which the Alice and Bob ele-
ments are defined implicitly and communicate using calls described as arrows (-->).
Figure 3.29 shows the generated diagram.

2743.book Seite 192 Montag, 11. August 2025 5:54 17

192

3 Source Code and Documenting the Software Development

193

3.5 Doc-as-Code

3

@startuml
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response
Alice -> Bob: Another authentication Request
Alice <-- Bob: Another authentication Response
@enduml

Listing 3.22 PlantUML Example of a Sequence Diagram

Figure 3.29 Generated PlantUML Sequence Diagram

An explicit definition of elements is useful for class diagrams, for example, as soon as
the class has attributes and methods.

The example shown in Listing 3.23 is the explicit definition of class A with the counter
attribute and the abstract start method. Class B is implicitly defined and extends class
A. Figure 3.30 shows the generated result.

@startuml
class A {
{static} int counter
+void {abstract} start(int timeout)
}
note right of A::counter
This member is annotated
end note
note right of A::start
This method is now explained in a UML note
end note

A <|-- B

@enduml

Listing 3.23 Definition of a Class in PlantUML: Explicit and Implicit

Alice

Alice

Bob

Bob

Authentication Request

Authentication Response

Another Authentication Request

Another Authentication Response

2743.book Seite 193 Montag, 11. August 2025 5:54 17

193

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

194

Figure 3.30 Generated PlantUML Class Diagram

PlantUML diagrams can be integrated easily into AsciiDoc documentation and, under
certain circumstances, even generated directly from the source code during a build run
using plugins. In this way, the diagrams always show the current status of the applica-
tion, and the doc-as-code approach is expanded to become also a diagrams-as-code
approach.

Mermaid as an Alternative to PlantUML

As an alternative to PlantUML, the open-source tool Mermaid is becoming increasingly
popular. Mermaid is a JavaScript-based diagram and chart tool that also processes text
files and displays them graphically. Although the syntax of both tools is similar, some
users consider Mermaid more user-friendly and easier to learn, offering an even more
intuitive syntax and additional graphical editors.

You can find this tool at https://mermaid.js.org/.

3.5.3 Structurizr

Structurizr is a DSL (Domain Specific Language) for describing complete C4-based soft-
ware architecture models as text files and managing them as code. Although you can
also use other tools, such as PlantUML, Structurizr is a particularly simple method of
modeling.

For each architecture model created, you can generate several views or diagrams with
different levels of detail, as shown in Figure 3.31.

The starting point for the model is what’s called a workspace, in which the component, con-
tainer, or softwareSystem components known from C4 are defined in the area of a model.
Various views and their content are then defined below the views element.

The example shown in Listing 3.24 is an architecture model that contains the User user
and the software system named Software System. The software system consists of the
Web Application and Database containers. The relationships between the components

A

int counter

void start(int timeout)

This member is annotated

This method is now explained in a UML note

BC

C

2743.book Seite 194 Montag, 11. August 2025 5:54 17

194

3 Source Code and Documenting the Software Development

195

3.5 Doc-as-Code

3

are described via arrows (->) and are included in the model. In our example, User calls
the Web Application container.

Figure 3.31 Structurizr Model and Views

Two views are defined in the views area, in each of which all components are to be dis-
played.

The diagrams are generated either via the Structurizr command-line tool or via a server
that is either self-managed or used as a cloud service.

Structurizr diagrams can also be easily integrated into AsciiDoc documents and gener-
ated from code using tools.

workspace {
 model {
 user = person "User"
 softwareSystem = softwareSystem "Software System" {
 webapp = container "Web Application" {
 user -> this "Uses"
 }
 container "Database" {
 webapp -> this "Reads from and writes to"
 }
 }
 }
 views {
 systemContext softwareSystem {

workspace {

 model {
 user = person "User"
 softwareSystem = softwareSystem "Software System" {
 user -> this "Uses"
 }
 container "Database" {
 webapp -> this "Reads from and writes to"
 }
 }
 }

 views {
 systemContext softwareSystem {
 include *
 autolayout lr
 }

 container softwareSystem {
 include *
 autolayout lr
 }
 theme default
 }

}

Software System - Containers

Software System
[Software System]

Web Application
[Container]

Database
[Container]

User
[Person]

Uses

Reads from
and writes to

Software System - System Context

Uses

Model

Software System
[Software System]

User
[Person]

2743.book Seite 195 Montag, 11. August 2025 5:54 17

195

3 Source Code and Documenting the Software Development

3 Source Code and Documenting the Software Development

196

 include *
 }
 container softwareSystem {
 include *
 }
 }
}

Listing 3.24 Example of a Structurizr Architecture Model

2743.book Seite 196 Montag, 11. August 2025 5:54 17

196

3 Source Code and Documenting the Software Development

Kristian Köhler is a software architect and developer with a passion for
solving problems using efficient, well-structured software. He is the managing
director of Source Fellows GmbH.

We hope you have enjoyed this reading sample. You may
recommend or pass it on to others, but only in its entirety,
including all pages. This reading sample and all its parts
are protected by copyright law. All usage and exploitation
rights are reserved by the author and the publisher.

ISBN 978-1-4932-2743-3 • 488 pages • 09/2025

E-book: $54.99 • Print book: $59.95 • Bundle: $69.99

Kristian Köhler

Software Architecture
and Design
The Practical Guide to Design
Patterns

	■ Understand the fundamentals of
good software design

	■ Master architecture, design, applica-
tion organization, documentation,
and more

	■ Learn to use essential design
patterns by following detailed code
examples

rheinwerk-computing.com/6144

http://rheinwerk-computing.com/6144
http://rheinwerk-computing.com/6144

