

7

Contents

Foreword .. 17
Preface ... 19

Part I Basic Concepts and Technical Components

1 Introduction to the ABAP RESTful Application
Programming Model 25

1.1 What Is the ABAP RESTful Application Programming Model? 26
1.1.1 The Purpose of the Programming Model ... 26
1.1.2 The REST Architectural Style ... 30
1.1.3 OData ... 35
1.1.4 Technological Innovations with SAP S/4HANA .. 37
1.1.5 Evolution of ABAP-Based Programming Models ... 38

1.2 Architecture and Concepts of the ABAP RESTful Application
Programming Model .. 42
1.2.1 RAP Transaction Model .. 43
1.2.2 Implementation Types ... 43
1.2.3 Entity Manipulation Language .. 45
1.2.4 Technical Context of a RAP Application and RAP Runtime

Environment .. 45

1.3 Development Objects of the ABAP RESTful Application Programming
Model .. 48
1.3.1 Data Modeling with Core Data Services ... 48
1.3.2 Behavior Definition .. 49
1.3.3 Behavior Implementation ... 49
1.3.4 Projection Layer ... 50
1.3.5 Business Services .. 51
1.3.6 Interaction of the Artifacts .. 51

1.4 ABAP Development Tools as a Development Tool ... 52

1.5 Quality Attributes of the ABAP RESTful Application Programming
Model .. 54
1.5.1 Evolution Capability .. 54
1.5.2 Development Efficiency ... 55
1.5.3 Testability .. 56

2752-2.book Seite 7 Freitag, 13. Juni 2025 11:24 11

7

Contents

8

1.5.4 Separation of Business and Technology ... 56

1.6 Availability of the ABAP RESTful Application Programming Model 57
1.6.1 SAP BTP ABAP Environment .. 57
1.6.2 SAP S/4HANA Cloud ABAP Environment .. 58
1.6.3 ABAP Platform for On-Premise SAP S/4HANA .. 59

1.7 The Role of RAP in the ABAP Cloud Development Model 60

2 Core Data Services: Data Modeling 65

2.1 What Are Core Data Services? ... 66

2.2 Structure and Syntax of CDS .. 69
2.2.1 Creating a Basic Interface View ... 70
2.2.2 Analyzing the Data Model ... 74
2.2.3 Using CDS Views ... 77
2.2.4 Extending the Data Model .. 78

2.3 Associations ... 83

2.4 Annotations ... 86

2.5 Access Controls ... 91

2.6 Extensibility of CDS Entities ... 96
2.6.1 CDS View Extensions ... 97
2.6.2 CDS Metadata Extensions ... 100

2.7 Additional CDS Functionality ... 103
2.7.1 Virtual Elements ... 103
2.7.2 CDS Custom Entities .. 106

2.8 Virtual Data Model ... 110

2.9 CDS Language Elements for Modeling Business Objects 114

3 Behavior Definition 119

3.1 What Is a Behavior Definition? ... 119
3.1.1 Context and Structure of a Behavior Definition .. 120
3.1.2 Syntax of a Behavior Definition ... 123
3.1.3 Possible Behavior .. 124

3.2 Editing a Behavior Definition in ABAP Development Tools 131
3.2.1 Creating a Behavior Definition .. 131

2752-2.book Seite 8 Freitag, 13. Juni 2025 11:24 11

8

Contents

9

Contents

3.2.2 Changing and Activating a Behavior Definition .. 135
3.2.3 Finding and Opening a Behavior Definition .. 136
3.2.4 Documenting Behavior Definitions and Relationships 137

3.3 Implementation Types .. 139
3.3.1 Managed Scenario ... 141
3.3.2 Unmanaged Scenario .. 143

3.4 Strict Mode ... 144

3.5 Entity Behavior Definition ... 145

3.6 Defining a Behavior Pool .. 146
3.6.1 Behavior Pool for Behavior Definition ... 146
3.6.2 Behavior Pool for the CDS Entity ... 147
3.6.3 Behavior Pool for the Implementation Group .. 147

3.7 Numbering Assignment ... 148
3.7.1 Early, External Numbering Assignment .. 150
3.7.2 Early, Internal Numbering ... 150
3.7.3 Late Numbering .. 151

3.8 Field Properties ... 152
3.8.1 Mandatory Fields .. 152
3.8.2 Protection Against Write Access ... 153
3.8.3 Combination: Mandatory Field for Creation and Write Protection

for Updates ... 154

3.9 Field Mappings ... 155

3.10 Standard Operations for a CDS Entity .. 157
3.10.1 Create, Read, Update, and Delete ... 157
3.10.2 Create and Read Operations by Association ... 158

3.11 Specific Operations for a CDS Entity ... 160
3.11.1 Actions ... 161
3.11.2 Functions ... 168
3.11.3 Functions for Defaulting .. 170

3.12 Concurrency and Locking Behavior ... 173
3.12.1 Pessimistic Locking .. 173
3.12.2 Optimistic Locking .. 175

3.13 Internal Business Logic .. 177
3.13.1 Determinations ... 177
3.13.2 Validations .. 182
3.13.3 Calling Determinations or Validations via an Action 185

3.14 Authorization Checks .. 187
3.14.1 Authorization Master .. 188
3.14.2 Authorization-Dependent ... 190
3.14.3 Delegating Authorization Checks ... 191

2752-2.book Seite 9 Freitag, 13. Juni 2025 11:24 11

9

Contents

Contents

10

3.15 Draft Handling .. 192
3.15.1 Enabling Draft Handling .. 193
3.15.2 Draft Handling in the Business Object Composition Tree 193
3.15.3 Draft Lifecycle and Draft Actions .. 195
3.15.4 Side Effects ... 197

3.16 Events .. 204
3.16.1 Manually Triggered Events ... 204
3.16.2 Derived Events ... 206

3.17 Overarching Concepts ... 207
3.17.1 Dynamic Feature Control ... 207
3.17.2 Preliminary Checks of Operations .. 211
3.17.3 Internal Visibility of Operations .. 212

4 Entity Manipulation Language: Accessing
Business Logic 215

4.1 Data Types .. 216
4.1.1 Derived Data Types .. 216
4.1.2 Implicit Return Parameters ... 218

4.2 EML Operations .. 219
4.2.1 READ ENTITIES ... 220
4.2.2 MODIFY ENTITIES .. 222
4.2.3 GET PERMISSIONS .. 226
4.2.4 SET LOCKS ... 227
4.2.5 COMMIT ENTITIES .. 228
4.2.6 ROLLBACK ENTITIES ... 229

4.3 Using the EML Outside of Behavior Implementations ... 229
4.3.1 Use in the Context of an ABAP Report .. 230
4.3.2 Implementation in the Context of a Test Class ... 231

4.4 Concrete Use Cases ... 232

5 Behavior Implementation 239

5.1 Business Object Provider API .. 239

5.2 Runtime Behavior of the ABAP RESTful Application Programming Model 240
5.2.1 Interaction Phase and Transactional Buffer .. 241
5.2.2 Save Sequence ... 242

2752-2.book Seite 10 Freitag, 13. Juni 2025 11:24 11

10

Contents

11

Contents

5.3 Interfaces for the Interaction Handler and the Save Handler 243

5.4 Interaction Handler .. 244
5.4.1 FOR MODIFY ... 245
5.4.2 FOR INSTANCE AUTHORIZATION .. 248
5.4.3 FOR GLOBAL AUTHORIZATION ... 250
5.4.4 FOR FEATURES ... 252
5.4.5 FOR GLOBAL FEATURES ... 255
5.4.6 FOR LOCK ... 256
5.4.7 FOR READ ... 258
5.4.8 FOR READ by Association ... 259
5.4.9 FOR DETERMINE .. 261
5.4.10 FOR VALIDATE .. 262
5.4.11 FOR NUMBERING .. 263
5.4.12 FOR PRECHECK ... 264

5.5 Save Handler .. 265
5.5.1 FINALIZE ... 266
5.5.2 CHECK_BEFORE_SAVE .. 268
5.5.3 ADJUST_NUMBERS .. 269
5.5.4 SAVE .. 270
5.5.5 CLEANUP .. 272
5.5.6 CLEANUP_FINALIZE .. 273

5.6 Events .. 274
5.6.1 Triggering Events .. 275
5.6.2 Consumption of Events .. 275

6 Business Services 281

6.1 Projection Layer .. 282
6.1.1 CDS Projection View .. 283
6.1.2 Projection Behavior Definition ... 284

6.2 Service Definition .. 285

6.3 Service Binding ... 285

6.4 Testing Business Services in SAP Gateway Client ... 289

6.5 Testing UI Services Using the SAP Fiori Elements Preview 292

6.6 Business Object Interfaces .. 293
6.6.1 Structure of a Business Object Interface .. 293
6.6.2 Using Business Object Interfaces .. 296
6.6.3 Using Business Object Interfaces as New BAPIs .. 296

2752-2.book Seite 11 Freitag, 13. Juni 2025 11:24 11

11

Contents

Contents

12

7 Extensibility of Business Objects 301

7.1 Introduction to the Extensibility Concept .. 301

7.2 Extension Options ... 305
7.2.1 Extensions to the Data Model .. 305
7.2.2 Extensions to the Behavior ... 312
7.2.3 Extensibility with Additional CDS Entities ... 316

7.3 Extending a Standard Business Object .. 320
7.3.1 Description of the Use Case .. 320
7.3.2 Extending the Data Model .. 323
7.3.3 Extending the Behavior .. 332
7.3.4 Derived Events ... 342

8 Application Interfaces and SAP Fiori Elements 347

8.1 Development Tools ... 347
8.1.1 SAP Business Application Studio ... 347
8.1.2 Visual Studio Code ... 350

8.2 SAP Fiori Elements UIs for RAP Applications ... 351
8.2.1 Floorplans in SAP Fiori Elements ... 351
8.2.2 Selected UI Annotations .. 353
8.2.3 Defining UI Annotations in a CDS View .. 355
8.2.4 Generating Annotations via the Service Modeler 370

Part II Practical Application Development

9 Use Cases 385

9.1 Areas of Use for the ABAP RESTful Application Programming Model 385

9.2 Implementation Types .. 386

9.3 Decision Criteria for Selecting the Implementation Type 387

2752-2.book Seite 12 Freitag, 13. Juni 2025 11:24 11

12

Contents

13

Contents

10 Managed Scenario: Developing an Application
with SAP Fiori Elements 391

10.1 Description of the Use Case .. 392

10.2 Building the Data Model .. 392
10.2.1 Database Tables .. 392
10.2.2 CDS Modeling .. 396

10.3 Creating Behavior Definitions ... 405
10.3.1 Creating Behavior Definitions for Certificate Management 405
10.3.2 Enabling Draft Handling .. 410

10.4 Defining a Business Service .. 411
10.4.1 Creating a Service Definition .. 412
10.4.2 Creating the Service Binding .. 413

10.5 Creating an SAP Fiori Elements User Interface ... 416

10.6 Enrichment with a Determination ... 424

10.7 Enrichment with a Validation .. 428

10.8 Enrichment with an Action ... 432

10.9 Generation and Deployment of the App .. 434

10.10 File Upload .. 442

11 Managed Scenario with Unmanaged Save:
Integrating an Existing Application 445

11.1 Description of the Use Case .. 446

11.2 Building the Data Model .. 449
11.2.1 Overview of the Logical Data Model .. 450
11.2.2 Database Tables .. 452
11.2.3 CDS Modeling .. 455

11.3 Creating a Behavior Definition .. 460

11.4 Implementing the Create Purchase Order Function .. 463
11.4.1 Declaring Managed Numbering .. 463
11.4.2 Setting Field Properties .. 463
11.4.3 Creating the Behavior Pool .. 465
11.4.4 Implementing Determinations .. 466

2752-2.book Seite 13 Freitag, 13. Juni 2025 11:24 11

13

Contents

Contents

14

11.4.5 Save Sequence: Implementing Creation via the Business Object
Interface .. 472

11.4.6 Implementing Validations .. 481

11.5 Implementing the Delete Purchase Order Function .. 487
11.5.1 Save Sequence: Implementing Deletion via the Business Object

Interface .. 487
11.5.2 Implementing a Validation ... 492

11.6 Defining Business Services .. 492
11.6.1 Setting Up the Projection Layer for the My Purchase Orders App 492
11.6.2 Creating a Service Definition .. 494
11.6.3 Creating a Service Binding ... 495

11.7 Implementing Authorization Checks ... 495
11.7.1 Access Controls for Read Access .. 496
11.7.2 Access Controls for Write Access .. 497

11.8 Creating an SAP Fiori Elements User Interface ... 500
11.8.1 Creating a Metadata Extension ... 500
11.8.2 Generating and Deploying the Application ... 503

12 Unmanaged Scenario: Reusing Existing
Source Code 505

12.1 Description of the Use Case .. 505

12.2 Description of the Existing Application ... 507
12.2.1 Database Tables .. 507
12.2.2 Source Code of the Existing Application .. 510

12.3 Extending the Data Model .. 513

12.4 Creating a Behavior Definition .. 519

12.5 Creating a Behavior Implementation ... 523
12.5.1 Implementing the Interaction Phase ... 525
12.5.2 Implementing the Save Sequence .. 533

12.6 Defining a Business Service .. 537

2752-2.book Seite 14 Freitag, 13. Juni 2025 11:24 11

14

Contents

15

Contents

13 Special Features in the Cloud Environment 541

13.1 Basic Technical Principles ... 542
13.1.1 ABAP for Cloud Development .. 545
13.1.2 Technical Infrastructure Components .. 545
13.1.3 Migrating Legacy Code ... 547

13.2 Identity and Access Management ... 548

13.3 Deploying SAP Fiori Apps and Assigning Authorizations 551
13.3.1 Creating an IAM App and Business Catalog .. 552
13.3.2 Creating an IAM Business Role .. 554
13.3.3 Integration in SAP Fiori Launchpad .. 554

13.4 Consuming Business Services .. 558

Bibliography .. 563
The Authors ... 565
Index .. 567

2752-2.book Seite 15 Freitag, 13. Juni 2025 11:24 11

15

Contents

119

3

Chapter 3
Behavior Definition
In this chapter, you’ll learn how to add a behavior definition to a data
model defined with CDS and how to enrich it with the desired transac-
tional behavior and business logic using the behavior definition lan-
guage.

In the previous chapter, you learned how to model the structure of a business object in
core data services (CDS). For read-only operations (queries) on a business object, this
modeling is already sufficient. But what happens if you want to add write operations or
business logic, that is, behavior, to this business object and its child entities? This chap-
ter describes how you can create a behavior definition for that purpose.

After a short introduction in Section 3.1, we’ll show you how to create behavior defini-
tions in ABAP Development Tools (ADT) in Section 3.2. In Section 3.3, Section 3.4, and
Section 3.5, we’ll go into more detail about some general concepts of behavior defini-
tion, such as the definition of the different implementation types, strict mode, and
entity behavior definitions. In Section 3.6, you’ll learn how to define a behavior pool,
which you’ll then flesh out later in the behavior implementation.

The subsequent sections deal in greater detail with concrete behavior that you can
define. Section 3.7 explains the method of numbering assignment. In Section 3.8, you’ll
learn about field properties for the CDS data model. Section 3.9 is about field mappings,
Section 3.10 describes standard operations, and Section 3.11 deals with specific opera-
tions. Section 3.12 covers concurrent access and locking behavior, Section 3.13 describes
the definition of internal business logic, Section 3.14 covers authorization checks, and
Section 3.15 describes draft handling. Section 3.16 describes the events of a RAP business
object. Section 3.17 concludes this chapter with some overarching concepts of behavior
definition.

3.1 What Is a Behavior Definition?

The CDS behavior definition (hereafter referred to as behavior definition) is the central
development object for declaring the behavior of a business object via the behavior
definition language (BDL). When you add a behavior definition to a CDS root entity,
you’re defining a RAP business object.

2752-2.book Seite 119 Freitag, 13. Juni 2025 11:24 11

119

3 Behavior Definition

120

3.1.1 Context and Structure of a Behavior Definition

In Figure 3.1, you can see the artifacts in which a behavior definition is embedded. A
RAP business object consists of a CDS data model and a behavior. Using define root
view, you can create a behavior definition for a CDS root entity so you can add transac-
tional behavior. There can only be one such definition for a CDS root entity. No behav-
ior definition can be created for other CDS entities that aren’t root.

Figure 3.1 Artifacts for the Definition of a RAP Business Object

The behavior declared via BDL requires a suitable behavior implementation in ABAP in
any case. Either the ABAP RESTful application programming model provides the corre-
sponding behavior (e.g., a standard operation) or the respective application imple-
ments it. Depending on the application, mixed forms are also frequently encountered.
For more information on this, see Section 3.3.

For its part, a RAP application can consist of more than one RAP business object if the
data model of the application provides for this and the business mapping requires it.
Different RAP business objects may also refer to each other or invoke an appropriately
exposed behavior (e.g., an update operation or an action).

As an example, let’s take a look at the behavior definition of the Travel business object
from the ABAP Flight Reference Scenario. It represents a trip that consists of several
bookings (CDS child entity Booking). The Travel business object is represented by the
CDS root entity /DMO/R_Travel_D. Because there can only be one behavior definition for
a CDS root entity, its name is also simply /DMO/R_Travel_D. In ADT, this behavior defini-
tion can be found in Project Explorer under Core Data Services � Behavior Definitions
(see Figure 3.2).

RAP Application

RAP Business Object

CDS Data Model CDS Behavior

define root view
(CDS

Root Entity)

Behavior
Definition

(BDL)

1 0..1

0..*

0..*

Implementation

Behavior
Implementation

(ABAP)

define view
(CDS Child Entity)

2752-2.book Seite 120 Freitag, 13. Juni 2025 11:24 11

120

3 Behavior Definition

121

3.1 What Is a Behavior Definition?

3

Figure 3.2 Behavior Definition “/DMO/R_TRAVEL_D” in Project Explorer

Note: Projection Behavior Definition

The development objects /DMO/C_TRAVEL_A_D, /DMO/C_TRAVEL_D_D and /DMO/R_TRAVEL_D
shown in Figure 3.2 are projection behavior definitions, which represent a special type
of behavior definition. For more information, see Chapter 6, Section 6.1.2. The develop-
ment object /DMO/I_TRAVEL_D is a business object interface. You can find out more
about business object interfaces in Chapter 6, Section 6.6.

Double-clicking on the behavior definition /DMO/R_Travel_D takes you to the ADT edi-
tor, where the BDL source code is displayed (see Figure 3.3).

Figure 3.3 BDL Source Code of Behavior Definition “/DMO/R_Travel_D”

2752-2.book Seite 121 Freitag, 13. Juni 2025 11:24 11

121

3 Behavior Definition

3 Behavior Definition

122

A behavior definition is divided into four areas:

1 Header of the behavior definition

2 Area of the entity behavior definition

3 Header of the entity behavior definition with transactional properties

4 Body of the entity behavior definition

The header of the behavior definition starts with the choice of the implementation
type. In this example, managed declares that the managed scenario should be used for
the RAP business object. This area also defines properties that apply to the entire com-
position tree of the business object, such as draft handling (with draft).

For each CDS entity of the composition tree, an entity behavior definition can now fol-
low. Thus, there may be one or more entity behavior definitions within a behavior defi-
nition. An entity behavior definition consists of a head and a body.

The entity behavior definition is introduced with the define behavior for statement and
forms the beginning of the head section. Then, you can define a behavior pool via imple-
mentation in class (this is also possible at the behavior definition level; see Section 3.6).
You can also declare other transactional properties of the CDS entity. For example, in the
managed scenario, the database table for the CDS entity is set via persistent table.

The head section is followed by the body of the entity behavior definition. This is
enclosed in curly brackets { ... } and contains additional keywords that specify the
behavior of the CDS entity. For example, the BDL statements create, update, and delete
specify that this CDS entity can be created, updated, and deleted. With action, you can
declare an action (i.e., a specific operation, on the CDS entity), which you can implement
later in the behavior pool (here: action ... acceptTravel or action ... rejectTravel).

In Figure 3.3, due to space constraints, we’ve shown only one entity behavior definition
of the Travel business object, namely the mandatory definition for the CDS root entity.
However, the Travel business object consists of the additional CDS child entities /DMO/
R_Booking_D and /DMO/R_BookingSupplement_D, which in turn have their own entity
behavior definition, and, together with the CDS root entity, they form the composition
tree of the business object (see Figure 3.4).

Figure 3.4 Additional Entity Behavior Definitions of the Travel Business Object

2752-2.book Seite 122 Freitag, 13. Juni 2025 11:24 11

122

3 Behavior Definition

123

3.1 What Is a Behavior Definition?

3

The relationship between a business object’s CDS entities, that business object’s behav-
ior definition, and the entity behavior definitions it contains is illustrated in Figure 3.5.

Figure 3.5 Relationship Between Behavior Definition and CDS Entities

3.1.2 Syntax of a Behavior Definition

In Listing 3.1, you can see the behavior definition of the Travel business object. We’ve
shortened it considerably to illustrate the general BDL syntax with this example.

managed;
strict (2);
with draft;

define behavior for /DMO/R_Travel_D alias Travel
implementation in class /dmo/bp_travel_d unique
persistent table /dmo/a_travel_d
...
{
 create (precheck);
 update (precheck);
 delete;

 association _Booking { create; }
 validation validateCustomer on save { create; field CustomerID; }
}

Listing 3.1 BDL Syntax Based on the Behavior Definition for the “/DMO/R_Travel_D” Object

CDS Data Model - Business Object

define root view
(CDS Root Entity)

Behavior Definition

composition [0..*] of

Entity Behavior Definition

define view
CDS Child Entity

Header

0..1 1
Transactional Features

Body { … }

0..1 1

Entity Behavior Definition

Transactional Features

Body { … }

2752-2.book Seite 123 Freitag, 13. Juni 2025 11:24 11

123

3 Behavior Definition

3 Behavior Definition

124

The general syntax of the BDL is based on the CDS syntax. The following rules apply:

▪ Keywords
BDL keywords, such as managed or define behavior for, are written in lowercase. A
mixture of lowercase and uppercase letters isn’t allowed.

▪ Ending of statements
Statements usually end with a semicolon (;). This isn’t the case for statements in the
context of the entity behavior definition and its transactional properties.

▪ Names or identifiers
Names or identifiers, such as the name of the validation validateCustomer, aren’t
case sensitive. Here, the name of the validation is given in camel case notation for
better readability. Because of this rule, another validation called ValidateCustomer
would result in a syntax error because it has already been declared. Numbers and
underscores in the name are allowed.

▪ Comments
A line comment is introduced by a double slash //. This can be placed anywhere
within a line. All characters following the double slash are treated as comments. A
multiline comment is introduced by the string /* and ends with */. Text that’s
between these characters is treated as a comment.

3.1.3 Possible Behavior

This section provides an overview of the possible behaviors you can equip a RAP busi-
ness object with. In the ABAP RESTful application programming model, the behavior is
also summarized under the term features, which means the functions of a business
object. In addition, in this section, we’ll look at the effects of declaring behavior using
the BDL in the behavior definition. This way, you can assess what behavior is available
to you when designing a business object. Secondly, you’ll see the impact BDL state-
ments have, not only in initial design but also when you want to make changes to the
behavior definition and when there are already business object consumers.

Overview of Features
We assign the behavior of a RAP business object to the following categories:

▪ Transactional behavior and properties

▪ Standard operations

▪ Specific operations

▪ Internal business logic

▪ Fields

▪ Events

▪ UI-related behavior

▪ Overarching elements

2752-2.book Seite 124 Freitag, 13. Juni 2025 11:24 11

124

3 Behavior Definition

125

3.1 What Is a Behavior Definition?

3

If a business object supports write operations, other aspects become technically rele-
vant, such as the persistence of the business data or the handling of concurrent
accesses in the event of changes. The ABAP RESTful application programming model
summarizes these aspects via the terms transactional behavior and properties. In the
context of application development, you might think about how authorization checks
(authorization), lock behavior (lock, etag, etag total), numbering assignment (number-
ing), or persistence of data (persistent table) are implemented. Furthermore, you can
activate draft handling (with draft) and thereby use the draft mode built into the ABAP
RESTful application programming model for a business object (see Table 3.1).

Standard operations are operations that create, update, or delete instances of a CDS
entity. These operations make changes to the CDS entities of the business object and
thus count as write operations. Standard operations also include reading the business
object’s CDS entities and locking, in the context of a pessimistic locking procedure (see
Table 3.2).

Behavior BDL Keyword Properties

Authorization checks authorization master
authorization dependent by
...

Behavior implementation
required

Lock behavior
(pessimistic method)

lock master
lock dependent by ...

Managed by the RAP framework;
behavior implementation
required in the unmanaged
scenario

Lock behavior
(optimistic method)

etag master
etag dependent ...
total etag

Managed by the RAP framework

Numbering
assignment

early numbering
late numbering

Behavior implementation
required

Numbering
assignment
(universally unique
identifier [UUID])

field k1(numbering:managed) Managed by the RAP framework

Persistence persistent table ... Managed by the RAP framework

Draft handling with draft;
draft table ...
draft action ...;
draft determine action ...;

Managed by the RAP framework;
behavior implementation for
draft action possible

Table 3.1 Overview of Transactional Behavior and Properties

2752-2.book Seite 125 Freitag, 13. Juni 2025 11:24 11

125

3 Behavior Definition

3 Behavior Definition

126

Specific operations on a RAP business object are operations that go beyond the general
CRUD operations and have a functional reference to the business object. These include
actions (action) and functions (function, see Table 3.3).

Note: Two Meanings of “Side Effect”

We use the term side effect in two different contexts in this book. In the context of the
operations of a RAP business object, it refers to the effects the operation has on the data
of a business object instance (e.g., see Table 3.3). In this sense, an operation is without
side effects if it does not or may not perform any changes (like a function). However, it
does have side effects when it creates, changes, or deletes a business object instance.

Side effect also refers to a very specific feature that is defined using the side effects
keyword within the behavior definition. In the narrower sense, you must use this key-
word to formally define a side effect and thus express that a previously made change
to a business object instance results in the reloading of data via the UI (through an

Behavior BDL Keyword Properties

Create

Change

Delete

create;
update;
delete;

Business object externally
visible, callable

Read

Locks

read;
lock;

Business object externally
visible, callable

Explicit specification of read and
lock only for implementation
groups and the unmanaged
scenario

Creation via
association

association _a1 { create; } Business object externally
visible, callable

Reading via
association

association _a1 { } Business object externally
visible, callable

Table 3.2 Overview of Standard Operations

Behavior BDL Keyword Properties

Action action a1 ...;
static action a2;

Business object externally
visible, callable; write operation

Function function f1 ...;
static function f2 ...;

Business object externally
visible, callable; operation
without side effects

Table 3.3 Overview of Specific Operations

2752-2.book Seite 126 Freitag, 13. Juni 2025 11:24 11

126

3 Behavior Definition

127

3.1 What Is a Behavior Definition?

3

operation or determination that has a side effect in the broader sense). We take a
closer look at this feature in Section 3.15.4.

Internal business logic refers to all functionally motivated program logic within busi-
ness objects that’s used to implement business processes. While this is very broad and
also applies to actions, for example, we explicitly refer to internally visible business
logic here, that is, logic that isn’t visible and consumable from outside the business
object. The ABAP RESTful application programming model provides validation and
determination for this purpose, as well as the determine action, which makes both call-
able together (see Table 3.4).

The fields of a business object are determined by the fields of the respective CDS entity.
In the context of the behavior definition and the standard write operations already
described, you can decide which fields are mandatory (field(mandatory:create)) or
which fields can’t be changed (field(readonly)). You can also define a field mapping
(mapping) and thus make field mappings between structured ABAP Dictionary objects
and a CDS entity and then use them in the behavior implementation (see Table 3.5).

Behavior BDL Keyword Properties

Determination determination d1 ... on mod-
ify;
determination d2 ... on save;

Business object internal; calcula-
tion during interaction phase or
save sequence, with side effects

Validation validation v1 ... on save; Business object internal; data
check of the transactional buffer
without side effects

Determination action determine action da1 {...} Business object external; deter-
minations or validations
declared as externally callable

Table 3.4 Overview of Internal Business Logic

Behavior BDL Keyword Properties

Field properties field (...) f1, f2, fn; Business object external; declare
fields as mandatory or protect
against write accesses

Field mappings mapping ... {...} Business object internal; use
field mappings in the behavior
pool

Table 3.5 Overview of Fields

2752-2.book Seite 127 Freitag, 13. Juni 2025 11:24 11

127

3 Behavior Definition

3 Behavior Definition

128

Events of a CDS entity of a RAP business object enable event-based, asynchronous com-
munication with event consumers. In this way, the trigger of the event and its con-
sumer are only very loosely coupled. A consumer can be the local system or a remote
system. A CDS entity can declare an event without parameters (event) or with parame-
ters (event ... parameter ...). Furthermore, derived events (managed events) can be
declared on the basis of existing events (see Table 3.6).

UI-related behavior is part of the behavior definition. A UI can be based on its declara-
tion and integrate the corresponding behavior. UI-related behavior is defined in the
behavior definition independently of the specific UI technology. Therefore, the specific
UI technology is tasked with integrating the defined features in a suitable way. The fea-
tures for UI-related behavior include functions for field preallocation (default func-
tion) and side effects with which the UI can reload data (see Table 3.7).

In the last category, we have grouped BDL keywords that have an overarching charac-
ter. That is, these keywords can’t stand alone, but add certain properties to standard or
specific operations. For example, you can mark certain elements as visible only inter-
nally (internal) or use a dynamic feature control to determine at runtime whether a
field is protected against write access or not (features). Additionally, you can declare a
preliminary check (precheck) for an operation performed on the RAP business object
(see Table 3.8).

Behavior BDL Keyword Properties

Event (manually
triggered)

event e1; External to business objects;
behavior implementation
required

Event (manually
triggered with
parameter)

event e2 parameter p1; External to business objects;
behavior implementation
required

Derived event managed event e3 on e2 parame-
ter p2;

External to business objects;
managed by RAP framework

Table 3.6 Overview of Events

Behavior BDL Keyword Properties

Function for field
preallocation

... default function GetDe-
faultsFor...;

External to business objects,
behavior implementation
required; integration in SAP Fiori
elements

Side effects side effects { ... } External to business objects;
integration in SAP Fiori elements

Table 3.7 Overview of UI-Related Features

2752-2.book Seite 128 Freitag, 13. Juni 2025 11:24 11

128

3 Behavior Definition

129

3.1 What Is a Behavior Definition?

3

Effects of Behavior Declarations

If you declare behavior in the behavior definition, this has various effects on both busi-
ness object–internal and business object–external artifacts of a RAP application (see
Figure 3.6).

Figure 3.6 Features of the Behavior Definition and Surrounding Artifacts

The BDL keywords impact the following areas:

▪ Business object interface
Using the features in the behavior definition, you can design the external interface

Behavior BDL Keyword Properties

Dynamic feature
control

features:instance
features:global

Dynamic determination of field
properties, standard operations
and actions; behavior imple-
mentation required

Preliminary check of
operations

precheck Check for feasibility of standard
operations or actions before
reaching the transactional buf-
fer; behavior implementation
required

Visibility internal BDL feature only visible inter-
nally

Table 3.8 Overview of Cross-Sectional BDL Keywords

Consumers of RAP Business Objects

RAP
Business
Object

Behavior Implementation

Behavior Definition (BDL)Business
Object-
Internal

Business
Object-
External

EML Consumer
(ABAP) Business Services

Managed by
SAP

Asynchronous
Event

SAP Fiori Elements
UI

Read

MODIFY(Derived Data Types)
SAVE(Derived Data Types)

Lock

CDS
Data Model

Draft Provider

Managed BO
Provider

CDS Fields Draft API

Field
Properties

ActionCUD

Read Operations Write Operations

Declaration

Implement-
ation

Function

2752-2.book Seite 129 Freitag, 13. Juni 2025 11:24 11

129

3 Behavior Definition

3 Behavior Definition

130

of the RAP business object, consisting of read and write operations. This can com-
prise the standard create, read, update, delete (CRUD) operations (and a possible
locking operation in the context of pessimistic locking), actions, and functions. If a
RAP business object supports only the create and update operations, but not the
delete operation, you can declare only the corresponding standard operations cre-
ate and update, but not delete. The business object interface also includes the fields
of the respective CDS entities defined via the CDS data model and any field proper-
ties (field) specified in the behavior definition. Also included are events for which
interested recipients can register.

Note: Differentiation from the Term Business Object Interface

We use the term business object interface here in a broader, logical sense and refer to
the parts of a RAP business object that are visible to consumers. The ABAP RESTful
application programming model also provides a separate development object called
the business object interface, which you can use to explicitly model the public interface
of a RAP business object. We’ll discuss the business object interface development
object in Chapter 6, Section 6.6.

▪ Provision of the behavior implementation
The behavior definition also allows you to influence the way in which the RAP busi-
ness object is implemented, and thus how the operations provided in the business
object interface will come into effect. This concerns, for example, the basic choice of
the implementation type. For example, you can use the managed business object
provider (managed) or the draft handler of the RAP framework (with draft).

When you declare behavior via the BDL that requires a method implementation
(e.g., a validation or action), you enable the corresponding method in the behavior
implementation and can implement it. The behavior definition can thus be viewed
as an interface implemented by one or more classes. In addition, BDL behavior also
affects the derived data types in the context of behavior implementation and entity
manipulation language (EML) consumers.

▪ Business services
The business object interface has external characteristics, but initially can only be
called locally via the EML. The RAP business object with its remote interface, which
was first exposed to OData via a business service, is then found there in the meta-
data of the OData service on the one hand, and in the concretely usable operations
of the OData service on the other.

So, for example, if you’ve exposed a web API based on a RAP business object for inte-
gration purposes, then it’s important to keep this external interface compatible and
know that the behavior definition or artifacts of the projection layer can have a
direct impact on it, like when a field that was previously modifiable is now protected
against write access.

2752-2.book Seite 130 Freitag, 13. Juni 2025 11:24 11

130

3 Behavior Definition

131

3.2 Editing a Behavior Definition in ABAP Development Tools

3

▪ SAP Fiori elements UI
Even though the behavior definition in isolation has no direct impact on an SAP
Fiori elements UI, the default operations, for example, are still exposed via the
OData metadata and represented as buttons in an SAP Fiori elements UI. Draft han-
dling also affects the SAP Fiori elements UI via the declaration in the behavior defi-
nition and represents UI elements that implement draft handling.

Tip: Lean Interface for a RAP Business Object

Select only the behavior that is useful and necessary for the functionality of the busi-
ness object because all features are components of the business object interface (in
the broader sense). If a standard operation can only be used internally in the business
object (e.g., the create or update operation), you can use the additional internal oper-
ation (Section 3.17.3).

3.2 Editing a Behavior Definition in ABAP Development Tools

In this section, we’ll show you how to use ADT to create, update, activate, and search for
a behavior definition. The behavior definition is an independent development object
in the ABAP Repository. It’s assigned to a package and connected to the transport sys-
tem. It can be maintained exclusively via ADT.

3.2.1 Creating a Behavior Definition

In Figure 3.2 shown earlier, you’ve already seen how a behavior definition is displayed
in ADT’s Project Explorer. There are now two ways you can create a behavior definition
in ADT:

▪ By direct reference to the CDS root entity
You must use the context menu to select the CDS root entity for which you want to
create the behavior definition.

▪ By using the creation wizard for the behavior definition development object type
Here, you manually select the CDS root entity during the creation process.

If you want to create a behavior definition via the context menu, proceed as follows:

1. In the Project Explorer, select the CDS root entity for which you want to create the
behavior definition.

2. Right-click on the CDS root entity to open the context menu, and select the New
Behavior Definition entry (see Figure 3.7).

2752-2.book Seite 131 Freitag, 13. Juni 2025 11:24 11

131

3 Behavior Definition

3 Behavior Definition

132

Figure 3.7 Creating a Behavior Definition with Reference to the CDS Root Entity

3. The dialog box shown in Figure 3.8 opens. Here, the Name and Root Entity fields are
already predefined by the CDS root entity selection (here, ZI_TRAVELDEMO_M).

4. Enter an appropriate description for your behavior definition under Description,
and select the desired implementation type under Implementation Type. For our
example, we choose Managed. Confirm your entries by clicking Next.

Figure 3.8 Dialog Box for Creating a Behavior Definition

2752-2.book Seite 132 Freitag, 13. Juni 2025 11:24 11

132

3 Behavior Definition

133

3.2 Editing a Behavior Definition in ABAP Development Tools

3

5. Then, create a new transport request, or select an existing one. Confirm your entry
by pressing (Enter).

The Project Explorer display will refresh so you’ll see the newly created behavior defini-
tion there (see Figure 3.9).

Figure 3.9 The New Behavior Definition “ZI_TRAVELDEMO_M” in Project Explorer

After the creation, the editor for the BDL source code of the behavior definition ZI_
TRAVELDEMO_M opens (see Figure 3.10). The coding is already suggested here based on the
selected implementation type. For example, you’ll find the managed keyword in the
behavior definition head, the entity behavior definition for the selected CDS root
entity ZI_TRAVELDEMO_M, and the standard operations create, update, and delete. Fur-
thermore, the alias addition (//alias <alias_name>) is suggested in the entity behavior
definition when initially created. We recommend directly assigning a suitable, descrip-
tive alias name.

Figure 3.10 BDL Source Code Editor for the New Behavior Definition “ZI_TRAVELDEMO_M”

The gray diamond icon on the icon of the editor tab indicates that the behavior defi-
nition is still in an inactive state.

You can also select the creation via the wizard for the object type Behavior Definition.
Here, proceed as follows:

2752-2.book Seite 133 Freitag, 13. Juni 2025 11:24 11

133

3 Behavior Definition

3 Behavior Definition

134

1. Open the creation wizard via the menu path File � New � Other or using the keyboard
shortcut (Alt)+(N).

2. Select the ABAP � Business Services node, and then choose the Behavior Definition
development object type (see Figure 3.11). Confirm your selection by clicking Next.

3. The already familiar dialog window for creating the behavior definition opens (refer
back to Figure 3.8). Click the Browse button next to the Root Entity input field (which
is not shown in our example, but will appear when there is no given reference to a
CDS root entity), and select the CDS root entity for which you want to create the
behavior definition. Confirm your entries by clicking Next.

Figure 3.11 Selecting the Behavior Definition via the Creation Wizard

Note: Behavior Definition Name Can’t Be Changed

The behavior definition name always corresponds to the CDS root entity name because
there can only be one behavior definition for a CDS root entity. For this reason, you
can’t change the name.

4. Then, create a new transport request, or select an existing one. Confirm your entry
with (Enter).

Next, let’s look at how you can change and activate a behavior definition.

2752-2.book Seite 134 Freitag, 13. Juni 2025 11:24 11

134

3 Behavior Definition

135

3.2 Editing a Behavior Definition in ABAP Development Tools

3

3.2.2 Changing and Activating a Behavior Definition

Follow these steps if you want to change a behavior definition:

1. Double-click the behavior definition in the Project Explorer.

The editor for the behavior definition with the BDL source code opens.

2. Update the BDL source code. In addition to manual entries, you can also use the
auto-complete function (see Figure 3.12). To do this, position the cursor where you
want to add code, for example, in the body of the entity behavior definition, and
press the shortcut (Ctrl) + (Space).

Figure 3.12 Using Auto-Completion in the BDL Editor

3. Choose a suitable keyword, and confirm with (Enter). Make necessary further addi-
tions so that the syntax of the keyword is correct.

4. Save the BDL source code via the Save button or the keyboard shortcut (Ctrl) + (S).

You can activate the behavior definition via the Activate button or the keyboard
shortcut (Ctrl) + (F3).

As is the case with many other development objects, you can view details about your
behavior definition in the Properties view. The activation status (here, Inactive) can be
seen next to Version (see Figure 3.13).

Figure 3.13 Activation State of the Behavior Definition

2752-2.book Seite 135 Freitag, 13. Juni 2025 11:24 11

135

3 Behavior Definition

3 Behavior Definition

136

3.2.3 Finding and Opening a Behavior Definition

Proceed as follows if you want to search for a behavior definition that has already been
created:

1. Open the dialog for searching development objects via the Open icon for open-
ing development objects in the toolbar or via the shortcut (Ctrl) + (Shift) + (A). We
recommend using the shortcut. (The general use of shortcuts can speed up the han-
dling of ADT. There are corresponding shortcuts available for many development
tasks.)

2. In the search box, enter “type:”, and then press the (Ctrl) + (Space) keys. Select the
development object type BDEF (Behavior Definition) to restrict the search to this
type (see Figure 3.14).

Figure 3.14 Restricting a Search Run to Behavior Definitions

3. Then, enter the name of the behavior definition you want to find in the search field.
You can use wildcards (e.g., z*tra*demo).

4. The results list for the entered search query appears (see Figure 3.15). Double-click
the relevant entry to open the behavior definition.

Figure 3.15 Searching for a Behavior Definition by Wildcard with Result List

2752-2.book Seite 136 Freitag, 13. Juni 2025 11:24 11

136

3 Behavior Definition

137

3.2 Editing a Behavior Definition in ABAP Development Tools

3

3.2.4 Documenting Behavior Definitions and Relationships

You can document various development objects via Knowledge Transfer Documents
(KTDs), which also includes the behavior definition. With KTDs, you document various
elements of the behavior definition, such as the create operation or an action, using
Markdown syntax, a simplified markup language.

Note: Knowledge Transfer Documents

Until now, many development object types have been documented using SAPScript-
based technologies. The KTD is a relatively new option for documenting ABAP develop-
ment objects. The documentation is directly linked to the respective development
object. SAP’s focus when providing new KTDs is on the object types of the ABAP RESTful
application programming model. You also have a new, more elegant option for docu-
menting your own RAP development objects. The KTD is available from SAP Business
Technology Platform (SAP BTP), ABAP environment 2008, or from ABAP platform 7.55.

To create a KTD, you right-click to open the context menu of your behavior definition
and select New Knowledge Transfer Document (see Figure 3.16).

Figure 3.16 Creating a KTD for a Behavior Definition

You can maintain Markdown-based documentation in the Documentation section on
the Source tab. In the Object Structure section, you must select the behavior definition
element you want to document (here, the create operation). To display a preview of the
documentation, select the Output tab (see Figure 3.17).

If a KTD exists, the behavior definition editor displays a corresponding Open Documen-
tation option (see Figure 3.18).

Note: Documenting Other RAP Artifacts

You can also document a CDS entity or a projection behavior definition with a KTD.

2752-2.book Seite 137 Freitag, 13. Juni 2025 11:24 11

137

3 Behavior Definition

3 Behavior Definition

138

Figure 3.17 Documenting the Create Operation in Markdown Syntax

Figure 3.18 Jump to Documentation in the Behavior Definition

The Relation Explorer is a separate view in ADT that allows you to view contextual
information about a business object (or other development object). You can choose
whether you want to see the development object in question in the overview, in the
context of its users or in the context of the development objects used. You can open
the Relation Explorer view (see Figure 3.19) in the editor of the behavior definition via
the context menu path Show In � Relation Explorer.

Figure 3.19 Business Object “ZI_TRAVELDEMO_M” in the Relation Explorer View

2752-2.book Seite 138 Freitag, 13. Juni 2025 11:24 11

138

3 Behavior Definition

139

3.3 Implementation Types

3

The documentation created for an element in the previous section can also be viewed
in the Relation Explorer (see Figure 3.20). To do this, select the Show Element Informa-
tion entry in the context menu or press the (F2) function key.

Figure 3.20 Documentation for the Create Operation in the Relation Explorer View

3.3 Implementation Types

The implementation type is your first specification in the behavior definition. You use
it to specify the source of the RAP business object implementation. There are two
sources (see Figure 3.21):

▪ Managed
SAP provides the implementation through the RAP framework. The implementa-
tion can be done by a business object provider, the draft handling provider, or both
in combination.

▪ Unmanaged
The RAP business object itself provides the implementation via the behavior pool
(unmanaged business object provider).

The implementation type applies to all CDS entities of the business object composition
tree. It isn’t possible to declare one CDS entity as managed and another as unmanaged.

2752-2.book Seite 139 Freitag, 13. Juni 2025 11:24 11

139

3 Behavior Definition

3 Behavior Definition

140

Figure 3.21 Implementation Types of a Behavior Definition

In Table 3.9, we’ve summarized each implementation type of a RAP business object and
indicated in each case the responsibility for providing the implementation.

Implementation
Scope

Managed Managed with
Additional Save

Managed with
Unmanaged
Save

Unmanaged

Standard operations
in the interaction
phase and in the
transactional buffer

RAP RAP RAP Custom imple-
mentation

Complete save
sequence

RAP RAP RAP*

*except SAVE

Custom imple-
mentation

SAVE phase of the
save sequence (see
Chapter 5, Section
5.5.4)

- Custom Custom -

Specific operations
and internal business
logic

Custom Custom Custom Custom imple-
mentation; vali-
dations/
determinations
only in draft
mode

Table 3.9 RAP Business Object Implementation Deployment by Implementation Type

RAP Application

RAP Framework

Core Data Services Behavior

Implementation Types

define root view
(CDS Root Entity)

1 0..1

Managed BO Provider

Managed Draft
Provider

Unmanaged
BO Provider

Custom Behavior
Implementation

Behavior Definition
(BDL)

2752-2.book Seite 140 Freitag, 13. Juni 2025 11:24 11

140

3 Behavior Definition

141

3.3 Implementation Types

3

Note: Projection Behavior Definition

You can use projection to declare the implementation type of a projection behavior
definition that’s based on a behavior definition. Chapter 6 provides more information
about this type.

3.3.1 Managed Scenario

You can use the managed keyword if you want to use the managed business object pro-
vider to implement the RAP business object (see Listing 3.2). The managed business
object provider implements CRUD operations across the interaction phase and save
sequence.

managed;

define behavior for /DMO/I_Travel_M alias Travel
persistent table /DMO/TRAVEL_M...

Listing 3.2 “Managed” Implementation Type for a RAP Business Object

In the managed scenario, the ABAP RESTful application programming model takes care
of saving changes to the transactional buffer for you and stores them in the database.
For this purpose, you must specify the database table in the entity behavior definition
using persistent table, followed by the database table name. This specification is only
relevant in the managed scenario.

Note: Using Field Mappings

If you use persistent table, specifying a field mapping between the database table
and the CDS entity with mapping is necessary or recommended (Section 3.9).

The following save options are available in the managed scenario:

▪ Unmanaged save
You can implement the save process yourself.

▪ Additional save
You can implement additional save logic.

This allows you to influence the save sequence, but all other properties of the managed
implementation type are still valid.

In the following sections, we’ll first describe the behavior definition level specification
that applies to all CDS entities of a business object’s composition tree. Finally, we’ll
demonstrate how you can also declare a save option specifically for a CDS entity.

2752-2.book Seite 141 Freitag, 13. Juni 2025 11:24 11

141

3 Behavior Definition

3 Behavior Definition

142

Note: Other Combinations of the Save Options

It’s also possible to combine the save options at the behavior definition level with
those at the level of the respective CDS entity.

Unmanaged Save

By using the managed scenario with unmanaged save, you can implement the save
process within the save sequence yourself (see the “SAVE_MODIFIED Method” subsec-
tion in Chapter 5, Section 5.5.4). The default save implementation of the managed busi-
ness object provider (see the “SAVE Method” subsection in Chapter 5, Section 5.5.4) isn’t
run in this case. You can specify this using the addition with unmanaged save:

managed with unmanaged save;

define behavior for ZI_SalesOrder alias SalesOrder
...

If you specify the save option in the behavior definition head, it applies to all CDS enti-
ties. However, you can also define the save option at the level of the respective CDS
entity (see the “Save Options at the CDS Entity Level” subsection coming up).

You can add and cleanup to the unmanaged save option. This allows you to implement
the cleanup method in the behavior pool later:

managed with unmanaged save and cleanup;

define behavior for ZI_SalesOrder alias SalesOrder
...

Note: Using "persistant table" Not Permitted

If you use the managed scenario with unmanaged save, the specification of per-
sistent table isn’t allowed because you implement the save process within the save
sequence yourself. The specification can therefore no longer be meaningfully evalu-
ated by the RAP framework.

Using the further addition with full data, you can specify that you want to be supplied
with the contents of all fields of the respective instances during the save sequence—
regardless of whether they have been changed in the transactional buffer or not:

managed with unmanaged save with full data;

define behavior for ZI_SalesOrder alias SalesOrder
...

2752-2.book Seite 142 Freitag, 13. Juni 2025 11:24 11

142

3 Behavior Definition

143

3.3 Implementation Types

3

This means that you no longer have to read the complete field contents in the save
sequence yourself because the RAP runtime does this for you. This makes it easier, for
example, to set up a legacy application programming interface (API) for backing up
instances whose interface requires you to transfer all field contents of the data to be
saved in full.

Additional Save

If you want to add your own save logic to the process in the save sequence (whether
with managed or with unmanaged save), you can use the addition with additional save:

managed with additional save;

define behavior for ZI_SalesOrder alias SalesOrder
...

This allows you to implement the updating of simple update documents at a later
stage, for example. Here, you also have the option of using the additions and cleanup or
with full data. The same rules for the specification in the behavior definition apply for
the additional save option as for the unmanaged save option.

Save Options at the CDS Entity Level

You can also declare the additional or unmanaged save individually for one or more
CDS entities at the entity behavior definition level (see Listing 3.3).

managed implementation in class ... unique;
strict (2);

define behavior for ZI_SalesOrder alias SalesOrder
with additional save
...

Listing 3.3 Additional Save at the Level of a CDS Entity

The declaration of the unmanaged save would look as follows at this point:

...
define behavior for ZI_SalesOrder alias SalesOrder
with unmanaged save
...

3.3.2 Unmanaged Scenario

You can use the unmanaged keyword to declare the unmanaged implementation type for
a RAP business object. In the behavior pool, you make the full implementation of the

2752-2.book Seite 143 Freitag, 13. Juni 2025 11:24 11

143

3 Behavior Definition

3 Behavior Definition

144

interaction phase and save sequence in this case. Here, you need to specify a global
ABAP class as the behavior pool in the head of the behavior definition using the key-
word implementation in class (see Listing 3.4).

unmanaged implementation in class /DMO/BP_TRAVEL_U unique;
strict (2);

define behavior for /DMO/I_Travel_U alias Travel
...

Listing 3.4 Using the Unmanaged Scenario

We’ll describe the implementation process for this case in Chapter 5, Section 5.5. In
Chapter 12, we’ve implemented a use case for the unmanaged scenario.

Note: Abstract Implementation Type

You can alternatively declare an abstract implementation type using the abstract key-
word. Such a behavior definition is based on an abstract CDS entity. This implementa-
tion type is intended for typing purposes of parameters (of actions or functions). Only a
severely limited set of syntactic elements is available. You can’t declare transactional
behavior there.

3.4 Strict Mode

The keyword strict allows you to specify that a stricter syntax check of the BDL source
code should be performed. There are two versions of the strict mode available:

▪ Strict mode version 1 with a specification of strict

▪ Strict mode version 2 with a specification of strict (2)

When you create a behavior definition, strict (2) is used by default (see Listing 3.5).

managed implementation in class /DMO/BP_TRAVEL_M unique;
strict (2);

define behavior for /DMO/I_Travel_M alias Travel
...

Listing 3.5 Strict Mode Definition in the Behavior Definition Head

The stricter syntax checks are based on ABAP RESTful application programming model
best practices, and they ensure that the RAP business object remains stable against
changes in the programming model. For example, if the strict mode is used in the
unmanaged scenario, you must define the locking and authorization behavior for each

2752-2.book Seite 144 Freitag, 13. Juni 2025 11:24 11

144

3 Behavior Definition

145

3.5 Entity Behavior Definition

3

CDS entity. Otherwise, the behavior definition can’t be activated. Using strict mode
also ensures that you must declare implicit behavior explicitly in the BDL source code.
We recommend that you use the strict mode by default for your behavior definitions.

3.5 Entity Behavior Definition

You can use define behavior for, followed by the CDS entity name, to initiate an entity
behavior definition. You can specify any of the CDS entities in the business object com-
position tree, but you must specify the CDS root entity at a minimum (see Listing 3.6).

managed implementation in class /DMO/BP_TRAVEL_M unique;
strict (2);

define behavior for /DMO/I_Travel_M alias Travel
...

define behavior for /DMO/I_Booking_M alias Booking
...

define behavior for /DMO/I_BookSuppl_M alias Booksuppl
...

Listing 3.6 Different Entity Behavior Definitions within a Behavior Definition

The alias addition enables you to use a descriptive name for the CDS entity. This is in
contrast to the technical name of the CDS entity, which must be unique within the
ABAP Dictionary, satisfy certain naming conventions, and be created in a specific
namespace. The alias name is used as an identifier in derived data types to refer to the
respective CDS entity. This facilitates access to the business object via EML.

Warning: Alias Name Is Visible Outside the Business Object

Note that the alias name is an externally visible identifier. It can be used both inter-
nally on the part of behavior implementation and by external consumers via EML.
Changing the alias name can therefore lead to syntax errors on the consumer side.
Therefore, you should assign the alias name wisely and change it only with caution.

By the way, this fact affects not only the alias name but also all other declarations of the
behavior definition that belong to the externally visible part of the RAP business object.

With the addition external '<external name>', you can assign another meaningful
name for the CDS entity whose length isn’t limited to 30 characters. This external name
isn’t visible in ABAP programs, but it can be found in the metadata of the OData service
in which the CDS entity was exposed.

2752-2.book Seite 145 Freitag, 13. Juni 2025 11:24 11

145

3 Behavior Definition

3 Behavior Definition

146

3.6 Defining a Behavior Pool

Depending on the implementation type and declared behavior, you need a separate
implementation for this (e.g., a separate numbering assignment, action, determina-
tion, etc.). You can do this in the behavior pool, a special ABAP class of its own. You can
declare one or more behavior pools at different levels of the behavior definition:

▪ RAP business object
Level of the behavior definition.

▪ CDS entity
Head of the entity behavior definition.

▪ CDS entity
Body of the entity behavior definition.

Thus, it’s also possible to distribute the implementation to several behavior pools for a
RAP business object and to combine the specified levels according to certain rules. This
allows for parallel work on a RAP business object and also leads to better comprehensi-
bility if there’s a direct mapping of the CDS entity to the behavior pool.

3.6.1 Behavior Pool for Behavior Definition

You can declare a behavior pool in the head of the behavior definition. This way, you
can implement all the necessary behavior for all CDS entities of the RAP business object
in one place. You make the declaration with implementation in class, followed by the
name of the implementation class, and end it with unique (see Listing 3.7).

managed implementation in class /DMO/BP_TRAVEL_M unique;
strict (2);

define behavior for /DMO/I_Travel_M alias Travel

...

Listing 3.7 Declaring a Behavior Pool in the Head of the Behavior Definition

The addition unique is mandatory and ensures that implemented behavior is imple-
mented without overlap.

Specifying a behavior pool at the behavior definition level is optional. However, if you
need to implement the save sequence yourself because the keywords unmanaged, with
additional save, or with unmanaged save are specified, you absolutely need a behavior
pool at the behavior definition level for this. This also applies when the save option is
defined at the CDS entity level, as shown earlier in Listing 3.3.

2752-2.book Seite 146 Freitag, 13. Juni 2025 11:24 11

146

3 Behavior Definition

147

3.6 Defining a Behavior Pool

3

3.6.2 Behavior Pool for the CDS Entity

You can declare a behavior pool for each CDS entity within the behavior definition and
implement the associated behavior there (except for a save option defined there; see
Listing 3.8).

define behavior for /DMO/R_Travel_D alias Travel
implementation in class /dmo/bp_travel_d unique
...

define behavior for /DMO/R_Booking_D alias Booking
implementation in class /dmo/bp_booking_d unique
...

Listing 3.8 Behavior Pool at the CDS Entities Level

You can also combine the specification of a behavior pool at the behavior definition
level with the specification at the CDS entity level. In this case, you must implement the
save sequence in the behavior pool of the behavior definition and specific behavior of
the CDS entities in the associated behavior pools (see Listing 3.9).

managed with additional save implementation in class zbp_i_salesorder_save unique;
strict (2);

define behavior for ZI_SalesOrder alias SalesOrder
implementation in class zbp_i_salesorder unique
...
define behavior for ZI_SalesOrderItem alias Item
implementation in class zbp_i_salesorderitem unique
...

Listing 3.9 Behavior Pools for the Behavior Definition and the CDS Entities

Specifying a behavior pool at the CDS entity level is optional. If no behavior pool is
specified here, you make the implementation of the CDS entity’s behavior in the
behavior pool of the behavior definition.

3.6.3 Behavior Pool for the Implementation Group

Implementation groups enable you to distribute implementation-relevant behavior of
a CDS entity to separate behavior pools. If you use implementation groups for a CDS
entity, you mustn’t declare a behavior pool for the CDS entity. The global specification
at the behavior definition level, however, is still permitted. For this reason, if you use
implementation groups, each implementation-relevant behavior must be associated
with an implementation group.

2752-2.book Seite 147 Freitag, 13. Juni 2025 11:24 11

147

3 Behavior Definition

3 Behavior Definition

148

You use the keyword group followed by the name of the implementation group (here,
it’s grpCancelation) and the specification of the responsible behavior pool to declare an
implementation group. The behavior you want to implement in the specified behavior
pool must be enclosed in parentheses. In Listing 3.10, for example, the action cancel is
supposed to be implemented.

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 create;
 update;
 delete;

 group grpCancelation implementation in class zbp_i_salesorder_cancel unique
 {
 action cancel result [1] $self;
 }
 group ...
 { ... }
}

Listing 3.10 Defining an Implementation Group for an Action

Tip: Meaningful Use of Implementation Groups
You should use implementation groups only if you want to distribute behavior across
more than one implementation group. This is necessary if you want to enable parallel
working within a CDS entity and thus have to use different behavior pools. For exam-
ple, you can group technically related behavior into an implementation group.

The name of the implementation group must be different from the name of the respec-
tive behavior. For example, there mustn’t be a cancel action if there’s an implementa-
tion group with the same name, and vice versa. Implementation groups act only
business object internally, so you can change the name and structure of implementa-
tion groups without violating the interface contract with consumers.

3.7 Numbering Assignment

The type of numbering assignment is a central aspect of an application that plays an
important role already in the data modeling phase. In the following sections, we’ll
describe the basic principles of numbering assignment in the ABAP RESTful application
programming model and show you the options provided for this by the programming
model in the behavior definition.

2752-2.book Seite 148 Freitag, 13. Juni 2025 11:24 11

148

3 Behavior Definition

149

3.7 Numbering Assignment

3

Using the numbering assignment, you specify in the behavior definition for the respec-
tive CDS entity how its key fields are supplied with values when an instance of the CDS
entity gets created. The numbering is thus relevant for the standard operations create
and create via association. They are applied in the interaction phase as well as in the
save sequence.

It’s useful to distinguish between temporary and permanent key values:

▪ A temporary key value uniquely identifies a newly created instance only in the trans-
actional buffer. This is necessary, for example, to access the instances or to establish
associations between instances of different CDS entities of the business object com-
position tree in the transactional buffer.

▪ A permanent key value is the final key value with which the instance is persistently
stored and permanently identifiable.

Using the RAP numbering assignment, you can define the way in which a permanent
key value is assigned. The time of the numbering and the origin of the permanent key
value are important in this context:

▪ Time
The time determines when the numbering assignment takes place. Here, we distin-
guish between early or late numbering assignment. The early numbering assignment
takes place within the interaction phase, and the late one takes place within the save
sequence.

▪ Origin
The origin defines whether the key value is set business object externally or business
object internally. For external numbering assignment, the key value needs to be spec-
ified by the consumer (e.g., an end user via the UI or an EML consumer). Internal num-
bering assignment means that the key value is assigned business object internally.

In the following sections, we’ll take a closer look at the possible combinations of time
and origin and show how you can specify them in the behavior definition. The possible
combinations are as follows:

▪ Early, external numbering assignment

▪ Early, internal numbering assignment

▪ Late, and thus internal, numbering assignment

In the context of numbering assignment, it’s also important to check and report (e.g.,
to the user) as early as possible whether the selected key value is unique or not. This is
called the uniqueness check in the ABAP RESTful application programming model. Its
implementation depends on the type of numbering assignment:

▪ Implementation for internal numbering assignment
In the case of internal (early or late) numbering, the implementation of the check
(e.g., via a number range) must ensure the uniqueness of the assigned key value. For
UUID key values, a check for uniqueness isn’t necessary.

2752-2.book Seite 149 Freitag, 13. Juni 2025 11:24 11

149

3 Behavior Definition

3 Behavior Definition

150

▪ Implementation for external numbering assignment
For external numbering assignment, the check can be performed by the RAP frame-
work in the managed scenario without draft handling and for active instances with
draft handling. Otherwise, you must provide for the implementation of the unique-
ness check via a precheck (Section 3.17.2) or, for draft instances, via the resume action
(Section 3.15.3).

3.7.1 Early, External Numbering Assignment

Early external numbering is the default numbering behavior for the CDS entity. You
don’t need to explicitly specify anything in the behavior definition for this. Consumers
set the permanent key value during the interaction phase. This type of numbering is
useful for meaningful key values or if you want to explicitly allow the consumer to
assign external numbers, for example, in interface scenarios.

Example: Assignment of Material Numbers
The CDS root entity Material with a key field Material number can provide for early
external numbering. In this way, a user can assign a material number according to
company-specific rules.

3.7.2 Early, Internal Numbering

You can use the early numbering keyword to declare early numbering for a CDS entity
(see Listing 3.11).

define behavior for ZI_SalesOrder alias SalesOrder
early numbering
...
{
 ...

Listing 3.11 Declaring Early, Internal Numbering Assignment

You can use early, internal numbering in the managed and in the unmanaged scenario
with draft handling and implement numbering yourself.

Note: Method in Behavior Implementation
Using the early numbering keyword requires an implementation of the FOR NUMBERING
method in the handler class (see Chapter 5, Section 5.4.11).

A variant of early, internal numbering is the use of UUIDs to identify the created
instances. The RAP framework provides this feature by default, so this is a form of man-
aged numbering.

2752-2.book Seite 150 Freitag, 13. Juni 2025 11:24 11

150

3 Behavior Definition

151

3.7 Numbering Assignment

3

To declare early, internal numbering, you must use the field statement with the field
property numbering : managed and specify the corresponding key field (here, it’s SalesOr-
derUuid; see Listing 3.12).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 field (numbering : managed) SalesOrderUuid;
 ...
}

Listing 3.12 Early, Internal Numbering with UUIDs

For more details on setting field properties with the field statement (e.g., to protect key
fields against business object–external write access), see Section 3.8.

Tip: Using UUID Numbering

In Chapter 10, you can find a real-life example of how to use UUID numbering.

3.7.3 Late Numbering

Late numbering occurs as part of the save sequence, just before the instances are saved
to the database. This can be used, for example, to ensure that instances are numbered
without gaps.

You usually use number range intervals to implement a late numbering, for example,
for an invoice or purchase order number. Another use case could be the assignment of
a meaningful key according to a certain system. A new material number, for example,
could be derived from certain values of the instance to be saved, such as the material
type, the business field and the version status. These values aren’t known at the create
time, but only at the time of saving.

You can use the late numbering keyword in the head of each entity behavior definition
to declare late numbering for a CDS entity (see Listing 3.13).

define behavior for ZI_SalesOrder alias SalesOrder
late numbering
...
{
 // Set key field to "read only"
 field (readonly) SalesOrderId;
 ...
}

Listing 3.13 Declaring Late Numbering

2752-2.book Seite 151 Freitag, 13. Juni 2025 11:24 11

151

3 Behavior Definition

3 Behavior Definition

152

For the SalesOrder entity, late numbering is declared here. The SalesOrderId key field
can be provided with a value within the save sequence via a number range, for exam-
ple.

Note: Method in Behavior Implementation
When you specify late numbering, you must implement the ADJUST_NUMBERS method of
the save handler in the behavior implementation (see Chapter 5, Section 5.5.3).

Late numbering is available in both the managed and unmanaged scenario. This is true
irrespective of whether or not you use draft handling for the RAP business object. How-
ever, late numbering in the managed scenario is only available with SAP BTP ABAP
environment 2111 and with SAP S/4HANA 2021 FPS01.

Note: Composite Keys of CDS Child Entities
If a CDS child entity has a composite key and thus includes the key of the CDS parent
entity, late numbering must also be used for the CDS child entity.

3.8 Field Properties

When you add behavior to a CDS data model, all fields of the entity are usable for the
standard operations create, create-by-association, and update. That’s not always what
you want. Usually, you want to define precisely which fields should be accessible in the
context of these operations. This way, you can define the interface of the respective
operation. These field properties are declared using the BDL keyword field.

Note: Checks for External Consumers Only
Note that restrictions you’ve made for certain fields apply only to external consumers
of the RAP business object. Within the behavior implementation itself, corresponding
checks, such as those specified by field(mandatory:create), aren’t performed.

Managed numbering assignment via UUIDs is also specified via a field property. For
details, see Section 3.7.2.

3.8.1 Mandatory Fields

With field(mandatory) f1, ..., fn;, you can define one or more fields as mandatory
fields for write operations. This concerns the operations create, create-by-association,
and update. The respective field will then be marked as mandatory in the UI. However,
you must initiate the check to determine whether it has actually been maintained (e.g.,
in the form of a validation; see Section 3.13.2).

2752-2.book Seite 152 Freitag, 13. Juni 2025 11:24 11

152

3 Behavior Definition

153

3.8 Field Properties

3

With field(mandatory:create) f1, ..., fn;, you specify whether the fields are manda-
tory fields in the context of the operations create and create-by-association (see Listing
3.14).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 field (numbering : managed) SalesOrderUuid;
 // Set key to read only
 field (readonly) SalesOrderUuid;
 field (mandatory : create) SalesOrderType;
 ...

Listing 3.14 Mandatory Fields for the Create Operation

For the fields provided with the mandatory:create field property, the RAP framework
checks whether they have been filled. If that’s not the case, a runtime error (BEHAVIOR_
MANDATORY_FIELD) will be thrown. Thus, no testing takes place within the behavior
implementation.

You can generally use this field property for fields that must be provided with values by the
consumer in the creation process, for example, a key value for external numbering assign-
ment. It also makes sense to assign this field property to fields that must be provided with
data as part of a creation operation so that the business object instance can be run in a
meaningful way, for example, a document type SalesOrderType of a SalesOrder entity.

3.8.2 Protection Against Write Access

With field(readonly) f1, ..., fn;, you protect the specified fields from external write
access; that is, their values can’t be set by the operations create, create-by-association,
or update. If an external consumer tries to change a read-only field, a runtime error will
be triggered.

In Listing 3.15, you see the example of a Person entity that has a PersonUuid key field, and
administrative fields CreatedAt and CreatedBy. The key fields or administrative fields
are only open for read access.

define behavior for ZRAP_I_Person_M alias Person
...
{
 field (numbering : managed) PersonUuid;
 field (readonly) PersonUuid;
 field (readonly) CreatedAt, CreatedBy,
 LastChangedAt, LastChangedBy;
 ...

Listing 3.15 Setting Key Fields or Administrative Fields to “readonly”

2752-2.book Seite 153 Freitag, 13. Juni 2025 11:24 11

153

3 Behavior Definition

3 Behavior Definition

154

In Listing 3.16, you can see an example of a foreign key field (here, it’s PersonUuid, to
which the Address entity belongs) that is protected against write access via readonly.

define behavior for ZRAP_I_Address_M alias Address
...
{
 field (numbering : managed) AddressUuid;
 field (readonly) PersonUuid, AddressUuid;
 ...

Listing 3.16 Setting Foreign Key Fields to “readonly”

Read-only fields are used in the following cases, for example:

▪ Key fields for internal numbering

▪ Fields for creating (composition) associations (foreign key fields)

▪ Administrative fields, such as the creation or modification time stamp

▪ Other calculated fields, such as a status or an amount calculated via a determination

With field (readonly:update) f1, ..., fn;, you specify that the specified fields are pro-
tected against write access only during update operations. The field is thus open during
the create and create-by-association operations.

3.8.3 Combination: Mandatory Field for Creation and Write Protection for
Updates

With field (mandatory:create, readonly:update) f1, ..., fn;, you can combine a field
both as a mandatory field in the create case and as a read-only field in the update case
(see Listing 3.17).

define behavior for ZRAP_I_Person_K_U alias Person
...
{
 field(mandatory : create, readonly : update) PersonId;
 ...

Listing 3.17 Mandatory Field Combined with Write Protection for Updates

A frequent use case for this combination is controlling fields (e.g., for a document type)
that have to be maintained at the time of creation and can’t be updated later. Key fields
in the context of external numbering also play an important role.

Note: Setting Field Properties Dynamically

You can also use the ABAP RESTful application programming model to determine the
field properties at runtime. To learn how to do this, see Section 3.17.1.

2752-2.book Seite 154 Freitag, 13. Juni 2025 11:24 11

154

3 Behavior Definition

155

3.9 Field Mappings

3

3.9 Field Mappings

With field mappings, you can map the fields of a CDS entity to fields of a structured data
type (a database table or structure) from the ABAP Dictionary. The following use cases
exist for this:

▪ Field mapping between database table and CDS entity

▪ Field mapping between structure and CDS entity

▪ Field mapping between control structure and CDS entity

▪ Field mapping between structure and input parameter of an action

In the managed scenario, you can use persistent table to specify the database table
where instances of the respective CDS entity are stored (Section 3.3.1). We recommend
that you assign meaningful field names in the CDS entity, so that the names are differ-
ent from the names of the respective columns in the database table. For this reason,
you must use mapping for to declare a field mapping for the CDS entity between the CDS
entity and the database table, which has been declared via persistent table in the
behavior definition (see Listing 3.18).

define behavior for ZRAP_I_Person_M alias Person
persistent table zrap_a_ph
...
{
 mapping for zrap_a_ph corresponding
 {
 PersonUuid = person_uuid;
 Surname = surname;
 GivenName = given_name;
 DateOfBirth = date_of_birth;
 CreatedAt = created_at;
 CreatedBy = created_by;
 LastChangedAt = last_changed_at;
 LastChangedBy = last_changed_by;
 }
 ...
}

Listing 3.18 Field Mapping Between the Database Table and CDS Entity

With the addition corresponding, you can ensure that fields with the same name are
mapped, even if they aren’t explicitly listed.

A field mapping is also useful if you call existing ABAP modularization units, such as
function modules, in the behavior implementation, and the structures used in the
interface are different from the fields of the corresponding CDS entity. This may be the

2752-2.book Seite 155 Freitag, 13. Juni 2025 11:24 11

155

3 Behavior Definition

3 Behavior Definition

156

case, for example, if you want to integrate the API of an existing application into the
ABAP RESTful application programming model.

Let’s suppose you want to use a Business Application Programming Interface (BAPI)
within a behavior implementation to create orders. You can define a field mapping
between the BAPI interface data types (here, it’s bapimepoheader) and the CDS entity (see
Listing 3.19).

...
 mapping for bapimepoheader corresponding
 {
 PurchaseOrder = po_number;
 PurchasingOrganization = purch_org;
 PurchasingGroup = pur_group;
 Supplier = vendor;
 }
...

Listing 3.19 Field Mapping for the “bapimepoheader” Structure

This central definition in the behavior definition allows you to use field mapping both
in behavior implementation and in value assignments between the structured data
type and the corresponding CDS entity. This is possible in both directions. We’ll first
show you an assignment with the CDS entity as the source:

DATA ls_po TYPE bapimepoheader.
ls_po = CORRESPONDING #(po_entity MAPPING FROM ENTITY).

In this next example, you can see the reverse case, namely the assignment of the
mapped structured data type bapimepoheader with the CDS entity as the target:

DATA ls_po TYPE bapimepoheader.
DATA ls_po_entity TYPE zi_rap_purchaseorder_m.
ls_po_entity = CORRESPONDING #(ls_po MAPPING TO ENTITY).

BAPIs often provide parameters consumers can use to define which fields are to be
changed when the BAPI is called (called checkbox structures). A RAP business object pro-
vides these types of structures by default in the interface of standard operations (%CON-
TROL structure; see Chapter 4, Section 4.1.1), which can be consumed via the EML and
evaluated within the behavior implementation. For this reason, you can add the data
type of the control structure to a field mapping using the control addition (see Listing
3.20).

...
 mapping for bapimepoheader control bapimepoheaderx corresponding
 {
 PurchaseOrder = po_number;

2752-2.book Seite 156 Freitag, 13. Juni 2025 11:24 11

156

3 Behavior Definition

157

3.10 Standard Operations for a CDS Entity

3

 PurchasingOrganization = purch_org;
 PurchasingGroup = pur_group;
 Supplier = vendor;
 }
...

Listing 3.20 Field Mapping for Control Structures

We usually assume that the fields of the actual structure and the associated control
structure have the same name. However, if there are name differences, you can define
the different field name from the control structure within the mapping using the con-
trol addition at field level (see Listing 3.21).

...
 mapping for zsales_order control zsales_order_x corresponding
 {
 SalesOrder = sales_order_id;
 Customer = customer_id;
 DeliveryDate = delivery_date control delivery_date_x;
 }
...

Listing 3.21 Field Mapping for Different Field Names in Control Structures

3.10 Standard Operations for a CDS Entity

The standard operations for the CDS entities of a business object include the CRUD
operations (create, read, update, and delete). We distinguish between standard opera-
tions that are executed directly on the CDS entity and those that are executed via asso-
ciations.

Note: Business Object–Internal and Business Object–External Consumers

Operations can be consumed both business object internally and business object exter-
nally if they haven’t been explicitly declared as internal (Section 3.17.3). When we refer
to consumers in the following sections, we always mean both business object–internal
consumers (the behavior implementation) and business object–external consumers.

3.10.1 Create, Read, Update, and Delete

Standard write operations on a CDS entity include the creation (create), update
(update), and deletion (delete) of business object instances. These operations perform
changes to the data of a business object and can basically be specified optionally. The
read operation is always implicitly available and doesn’t need to be explicitly declared.

2752-2.book Seite 157 Freitag, 13. Juni 2025 11:24 11

157

3 Behavior Definition

3 Behavior Definition

158

Accordingly, the keywords create, update, and delete allow you to specify which of the
standard write operations the CDS entity supports, that is, which operations must be
implemented depending on the implementation type (see Listing 3.22).

define behavior for /DMO/I_Travel_M alias Travel ...
...
{
 // Standard operations for the travel entity
 create;
 update;
 delete;
 ...
}

Listing 3.22 Example of Declaring Standard Operations

You can use create to specify that the CDS entity supports the create operation. Thus,
consumers can create new instances of the CDS entity. The CDS entity is used to declare
one or more key fields that must be populated during the creation operation. Number-
ing to uniquely identify the created instances across a RAP transaction plays an essen-
tial role (Section 3.7). The non-key fields of the CDS entity are populated as part of the
creation operation. You can use field properties to specify which fields are mandatory
or open for write access (Section 3.8).

Note: “Create” Operation Only for CDS Root Entity

The create operation can be declared only for CDS root entities. CDS child entities are
created using the create-by-association operation (Section 3.10.2).

With update, you define that instances of the respective CDS entity can be updated. The
operation passes corresponding non-key fields to the CDS entity for modification. The
instance to be changed is identified by the values of the key fields. These values are set
as part of the create operation and by their very nature can’t be changed.

You can use delete to specify that instances of the respective CDS entity can be deleted.
The instance to be deleted is identified in each case by the values of the key fields.
During the interaction phase, the instances to be deleted are flagged in the transactional
buffer; during the save sequence, the instance is persistently deleted from the database.

3.10.2 Create and Read Operations by Association

Composition associations (composition of) and to-parent associations (association to
parent) link CDS entities to each other and form the composition tree of a RAP business
object. In the behavior definition, you can define these associations using the create-

2752-2.book Seite 158 Freitag, 13. Juni 2025 11:24 11

158

3 Behavior Definition

159

3.10 Standard Operations for a CDS Entity

3

by-association and read-by-association standard operations. The update and delete
operations are declared directly for the respective CDS child entity.

Tip: Explicitly Specifying Associations

If you don’t explicitly specify the create-by-association and read-by-association opera-
tions in the behavior definition, they will still be implicitly available for composition
and to-parent associations. However, we always recommend declaring the operations
explicitly in the behavior definition.

Read-by-Association

With the read-by-association operation, you grant consumers read access to the
instances of CDS entities of the association target. You can read instances of the subor-
dinate CDS child entities and the instance of the CDS parent entity.

You do this using the association keyword followed by the association name and
empty curly brackets (see Listing 3.23). This example defines the reading of instances of
the CDS child entity (i.e., in the direction of the composition association from the CDS
data model).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 association _Item { }
}

Listing 3.23 Read-by-Association in the Direction of the Composition

Let’s suppose there is a SalesOrder entity (sales order) that consists of Item instances
(items). The Item instances for the respective SalesOrder instance can then be read via
the linked _Item association.

Note: Read-by-Association Operation as a Prerequisite

You need the read-by-association operation as a prerequisite for declaring authoriza-
tion checks (Section 3.14) or locking behavior (Section 3.12). The RAP framework uses
these operations to read the respective master instance.

If you want to support reading the respective parent instance, you should define the
already mentioned association operation in the CDS child entity (see Listing 3.24). This
example defines reading the instance of the CDS parent entity (i.e., in the direction of
the to parent association from the CDS data model).

2752-2.book Seite 159 Freitag, 13. Juni 2025 11:24 11

159

3 Behavior Definition

3 Behavior Definition

160

define behavior for ZI_SalesOrderItem alias Item
...
{
 association _SalesOrder { }
}

Listing 3.24 Read-by-Association Operation in the Direction of a “to parent” Association

With this declaration, it’s possible to read the corresponding SalesOrder instance start-
ing from an Item instance.

Create-by-Association

With the create-by-association operation, you allow consumers to create one or more
instances of a CDS child entity from its parent. This assumes an existing instance of the
CDS parent entity. The operation can be performed only in the direction of the CDS
child entity.

You can use the association keyword to declare the operation, followed by the associa-
tion name and supplemented by the create operation (see Listing 3.25).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 association _Item { create; }
}

Listing 3.25 Declaration of Create-by-Association and Read-by-Association Operations

This allows you to create one or more Item instances based on a SalesOrder instance,
which are associated with each other. It means that a foreign key relationship is estab-
lished. The declaration of the read-by-association operation is thus supplemented by
the create operation. The create-by-association operation can only be declared
together with the read-by-association operation.

3.11 Specific Operations for a CDS Entity

Beyond the standard operations, additional specific operations can be declared for a
CDS entity in the ABAP RESTful application programming model. These operations
must then be implemented in the behavior pool. The following specific operations are
possible:

▪ Actions

▪ Functions

The use of actions and functions is optional.

2752-2.book Seite 160 Freitag, 13. Juni 2025 11:24 11

160

3 Behavior Definition

161

3.11 Specific Operations for a CDS Entity

3

3.11.1 Actions

An action is a specific operation of a CDS entity that can perform business object–
internal or –external change operations. An action is therefore always a write access.
You can use it to implement your own business logic in the behavior pool. An action
is declared in the BDL with the keyword action, followed by the name of the action. It’s
always assigned to a concrete CDS entity of the business object composition tree.

By default, an action is instance-based—it applies to concrete instances of the respec-
tive entity. For example, a SalesOrder entity that provides an instance-based cancel
action (to cancel the SalesOrder instance) is conceivable here. When this action gets
executed, it performs all the technically defined changes that make up the cancellation
of a sales order, such as a change in status. Listing 3.26 shows this by using the instances
of the SalesOrder entity as an example.

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 action cancel;
}

Listing 3.26 Declaration of an Instance-Based Action

In addition to instance-based actions, there are also static actions. A static action isn’t
performed on concrete instances of the entity, but applies to the entire entity. It maps
cross-instance logic and is introduced with the keyword static. For example, an
Address entity could have a markDuplicates action that identifies duplicates among all
Address instances and marks them as such (see Listing 3.27).

define behavior for ZI_Address alias Address
...
{
 ...
 static action markDuplicates;
}

Listing 3.27 Declaration of a Static Action

Static actions are often factory actions. We’ll describe this particular type of action in
the upcoming “Factory Actions” subsection.

Input Parameter

You can define exactly one input parameter for actions and thus parameterize the
behavior of the action. This applies to both instance-based and static actions.

2752-2.book Seite 161 Freitag, 13. Juni 2025 11:24 11

161

3 Behavior Definition

3 Behavior Definition

162

You can use the parameter keyword followed by the appropriate data type to provide
the action with an input parameter. The input parameter can have one of the following
structured data types:

▪ Structured data type from the ABAP Dictionary

▪ Abstract CDS entity

▪ CDS entity for which the action was defined

The last option is relevant only for static actions because actions are instance-based by
default.

Note: Advantages of Structured Parameters

You may wonder why RAP actions (and functions) support only one input or return
parameter and why you can’t declare a set of parameters in the way you’re used to,
from classical modularization units such as function blocks or methods. The parameter
data types are structured data types (e.g., from the ABAP Dictionary or abstract CDS
entities) in which you can include a set of fields. This way, you can map multiple
parameters. If new fields are added, you only have to maintain them in one place,
namely in the data type. Wherever the data type in question is used (e.g., in other
methods within the behavior implementation), the new field is then also present,
without you having to adapt the method signature(s) and calls, and add additional
parameters. This facilitates the adaptation of existing coding.

For example, an action to cancel a sales order might receive a parameter of type zrap_
s_cancellation_opts (see Listing 3.28). In addition, the consumer is able to pass the can-
cellation options to be applied (e.g., the type of remittance or whether the cancellation
should skip certain checks).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 action cancel parameter zrap_s_cancellation_opts;
}

Listing 3.28 Input Parameter Typed with Structure

You can also use an abstract CDS entity to type the input parameter of an action. The
definition of the abstract CDS entity can be found in Listing 3.29. Nonabstract CDS enti-
ties can’t be used for typing.

@EndUserText.label: 'Cancellation options'

define abstract entity ZRAP_A_CancellationOpts
{

2752-2.book Seite 162 Freitag, 13. Juni 2025 11:24 11

162

3 Behavior Definition

163

3.11 Specific Operations for a CDS Entity

3

 payment_return_type : abap.char(3);

 force_cancellation : abap_boolean;
}

Listing 3.29 Abstract CDS Entity for Typing the Input Parameter of an Action

In Listing 3.30, the abstract CDS entity ZRAP_A_CancellationOpts is used to type the
input parameter.

define behavior for ZI_SalesOrder alias SalesOrder
...

{
 ...
 action cancel parameter ZRAP_A_CancellationOpts;
}

Listing 3.30 Input Parameter Typed with Abstract CDS Entity

Warning: “$self” as Input Parameter

In strict behavior definitions (Section 3.4), explicitly specifying $self as an input
parameter for instance-based actions isn’t supported and results in a syntax error. In
nonstrict behavior definitions, the definition doesn’t result in an error until runtime.
However, $self can be used as a data type for an input parameter in static actions.

Return Parameter

Not only can actions be provided with an input parameter, but they also can be pro-
vided with exactly one output parameter (or return parameter). This specification is
optional. You can use the following data types for this purpose:

▪ CDS entity for which the action was defined

▪ Nonabstract CDS entity with behavior definition

▪ Abstract CDS entity

▪ Structured data type from the ABAP Dictionary

You can use the result keyword, followed by the cardinality and data type to define the
return parameter of an action. You specify the cardinality in square brackets [], declar-
ing how many instances of the return parameter are returned by the action. For
instance-based actions, the cardinality specifies how many return values are returned
per instance passed to the action (via keys in the implementation) (see Table 3.10).

2752-2.book Seite 163 Freitag, 13. Juni 2025 11:24 11

163

3 Behavior Definition

3 Behavior Definition

164

Let’s suppose there is a Customer entity associated with an Address entity via a composi-
tion relationship. A Customer instance can consist of multiple Address instances. The
Address entity provides a setAsDefault action via the behavior definition (see Listing
3.31).

define behavior for ZI_Address alias Address
...
{
 ...
 action setAsDefault result [1] $self;
}

Listing 3.31 Custom CDS Entity as Type of the Return Parameter

If the action is executed on the respective passed Address instances, the corresponding
instances are set as default addresses for the respective Customer instance, whereby the
implementation ensures that there’s only one default address per Customer instance.
You can use $self to type the return parameter with the CDS entity for which the action
is defined, that is, with ZI_Address. The cardinality of [1] indicates that there’s exactly
one return value for each instance passed to the action, which means that one Address
instance will be returned. The action returns the data of the Address instance that was
set as the default address.

Note: Cardinalities for Static Actions

Because static actions are executed without reference to one or more instances of the
respective CDS entity, the cardinality for static actions declares how many instances
will be returned when the action is called.

The entity keyword allows you to use a nonabstract CDS entity that has a behavior defi-
nition as the data type for the return parameter. Let’s assume that there’s a SalesOrder
entity on the basis of which an Invoice entity can be created. The Invoice entity is a

Cardinality Meaning

[0..1] The action returns, at most, one return value per passed instance.

[1] The action returns exactly one return value per passed instance.

[0..*] The action returns any number of return values per passed instance.

[1..*] The action returns any number of return values per passed instance, but at
least one for each instance.

Table 3.10 Cardinalities for Return Parameters

2752-2.book Seite 164 Freitag, 13. Juni 2025 11:24 11

164

3 Behavior Definition

165

3.11 Specific Operations for a CDS Entity

3

standalone RAP business object. In this case, you can map the creation of the invoice as
a createInvoice action, which returns the data for the created Invoice instance as a
return parameter. The return parameter is typed with the corresponding CDS entity (in
the example, ZI_Invoice) (see Listing 3.32).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 action createInvoice result [0..1] entity ZI_Invoice;
}

Listing 3.32 CDS Entity for Typing the Return Parameter

If you omit the entity keyword, you can only use a structured data type from the ABAP
Dictionary or an abstract CDS entity as the data type of the return parameter, as
opposed to a concrete entity from a RAP business object. Let’s suppose you have a
SalesOrder entity (sales order) that provides a createInvoice action, as in the previous
example. The action creates an invoice based on the respective SalesOrder instance,
now via an existing legacy API, rather than another RAP business object. In this case,
the action could be provided with a data type for the invoice header data of the existing
API as a return parameter (see Listing 3.33).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 action createInvoice result [0..1] zrap_legacy_invoice_head;
}

Listing 3.33 ABAP Dictionary Structure for Typing the Return Parameter

Note: Using the Selective Keyword

You can also equip the return parameter of an action with the selective keyword to
allow the consumer to provide a choice of fields of the return parameter. Details about
this keyword can be found in Section 3.11.2.

If you provide an action (or function) with an entity parameter, you must also include
this entity in the respective service definition (see Chapter 6). The entity is exposed to
OData as EntityType (in contrast to the structured data type), which is exposed as Com-
plexType. You can trace this in the metadata document for the OData service (via
$metadata).

2752-2.book Seite 165 Freitag, 13. Juni 2025 11:24 11

165

3 Behavior Definition

3 Behavior Definition

166

Factory Actions
A factory action is initiated with the factory keyword and creates new instances of the
CDS entity to which it’s assigned. A factory action can be instance-based or static. The
data type of the return parameter is always implicitly $self and doesn’t need to be
specified explicitly. However, you must specify the cardinality explicitly with [1].

You can use an instance-based factory action to enable the copying of a business object.
For example, you can offer a specific instance of a SalesOrder entity to use as a copy
template to create a new instance from. For this purpose, you can define a factory
action named copy (see Listing 3.34).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 factory action copy [1];
}

Listing 3.34 Declaration of a Factory Action

You can also provide factory actions with an input parameter. This could, for example,
control the copy process and determine which child CDS entities should and should
not be copied. For example, a SalesOrder entity whose composition tree consists of
Partner and Item entities could provide a factory action, deepCopy, whose input param-
eters allow the consumer to control whether the subordinate Partner or Item instances
should be copied as well (see Listing 3.35).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 factory action deepCopy parameter zrap_s_so_copy_ops [1];
}

Listing 3.35 Factory Action with Input Parameter

You can see the definition of the zrap_s_so_copy_ops data type of the input parameter
in Listing 3.36. The factory action implementation can evaluate the copy_partner or
copy_items flags.

@EndUserText.label : 'SalesOrder, Copy Options'
@AbapCatalog.enhancement.category : #NOT_EXTENSIBLE
define structure zrap_s_so_copy_ops {
 copy_partner : abap_boolean;
 copy_items : abap_boolean;
}

Listing 3.36 ABAP Dictionary Structure for Typing an Input Parameter

2752-2.book Seite 166 Freitag, 13. Juni 2025 11:24 11

166

3 Behavior Definition

167

3.11 Specific Operations for a CDS Entity

3

Factory actions can also be defined as static. In this case, they are applied at the CDS
root entity level. For example, you can use a factory action to create and return
instances with default values. Let’s suppose you want to implement user management
with a User entity. This entity has certain attributes, such as the user name or a flag indi-
cating whether or not the User instance is locked. You could now declare a static factory
action createDefaultUser that creates a new User instance (see Listing 3.37). In the
implementation, the lock flag of the new instance is set by default.

define behavior for ZI_User alias User
...
{
 ...
 static factory action createDefaultUser [1];
}

Listing 3.37 Declaration of a Static Factory Action

Note: Static Factory Actions for CDS Child Entities
CDS child entities, by definition, require an existing CDS parent entity (Section 3.10.2).
For this reason, you typically use instance-based factory actions at this level, even if
static factory actions would be allowed.

Repeatable Actions
You can mark instance-based actions or functions (Section 3.11.2) as repeatable by using
the addition repeatable. Such an action can be called multiple times within an EML call
(or an OData change set) on an instance (with potentially different parameter values).
The action interface provides the content ID %CID as a field with the repeatable addition
so that the consumer and provider can differentiate between the individual action calls
and their results (see Listing 3.38).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 repeatable action setDiscount parameter ZRAP_A_SetDiscount result [1] $self;
}

Listing 3.38 Declaration of a Repeatable Action

Save Actions

Save actions can be defined using the save addition and can be executed by external
consumers or in the save sequence at the specified time. Save actions can be declared
at two different times:

2752-2.book Seite 167 Freitag, 13. Juni 2025 11:24 11

167

3 Behavior Definition

3 Behavior Definition

168

▪ As part of the finalization in the early memory sequence, that is, in the implementa-
tion of a determination (determination on save) or the FINALIZE method

▪ In the context of late numbering (Section 3.7.3), that is, in the ADJUST_NUMBERS method

To declare a save action for calling during finalization, you must use save(finalize).
During late numbering, you can declare a save action by using save(adjustnumbers).
You can also specify both times for an action in combination with save(finalize,
adjustnumbers) (see Listing 3.39).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 save(finalize) action actionOnFinalize;
 save(adjustnumbers) action actionOnAdjustNumbers;
 save(finalize, adjustnumbers) action actionOnFinalizeAdjustNumbers;
}

Listing 3.39 Declaration of Save Actions

3.11.2 Functions

A function is a specific operation of a CDS entity with which you can implement calcu-
lations or complex selections. Unlike an action, a function is a read access and free of
side effects for the business object. Thus, no lock is set when a function is processed.
Functions allow you to implement your own business logic in the behavior pool. A
function is declared in the BDL with the function keyword followed by the name of the
function. It’s always assigned to a CDS entity of the business object composition tree.

Like actions, functions can be instance based or static, and also have an input and a
return parameter (Section 3.11.1). Note that in this context, unlike actions, the return
parameter is a mandatory part of a function. This section includes some examples and
different use cases of functions.

Let’s suppose you’ve defined an Address entity and want to find duplicates among the
address instances based on various criteria. You can implement this requirement using
a static function that returns corresponding Address instances. The action could be
named findDuplicates, for example. The return parameter of this function would be
typed with the current CDS entity via $self, and thus with the CDS entity for which the
function is declared (see Listing 3.40).

define behavior for ZI_Address alias Address
...
{
 ...
 static function findDuplicates result [0..*] $self;
}

Listing 3.40 Static Function with a Return Parameter Typed with “$self”

2752-2.book Seite 168 Freitag, 13. Juni 2025 11:24 11

168

3 Behavior Definition

169

3.11 Specific Operations for a CDS Entity

3

You can also type the return parameter with a CDS entity of the business object compo-
sition tree. Let’s suppose there’s a Project entity defined in the context of a project
management. This entity has a composition of tasks (Task entity). Task instances can
have a “plan duration” attribute and predecessor-successor relationships among them.
So, for example, a Task instance can’t start until another Task instance has been com-
pleted. You now want to realize which Task instances are on the critical path of the proj-
ect based on their plan duration and dependency relationship. You can implement this
complex calculation using an instance-based function of the Project entity, which then
internally calculates corresponding Task instances that lie on the critical path of the
project and returns them as a result (see Listing 3.41).

define behavior for ZI_Project alias Project
...
{
 ...
 function calcCriticalPath result [0..*] entity ZI_Task;
}

define behavior for ZI_Task alias Task
...

Listing 3.41 Function with a Return Parameter Typed with a CDS Entity of the Business Object
Composition Tree

You can also use an abstract CDS entity to type the return parameter. Let’s suppose
there’s a SalesOrder entity with a composition of Item entities. Starting from a Sales-
Order instance, you want to calculate the total of all discounts given based on associ-
ated Item instances. To do this, you can declare an instance-based function,
sumDiscounts, that internally sums up the discounts and returns the result via a return
parameter typed as an abstract CDS entity (see Listing 3.42).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 function sumDiscounts result [1] ZRAP_A_SalesOrderDiscount;
}

Listing 3.42 Function with Abstract CDS Entity for Typing the Return Parameter

In Listing 3.43, you can see the definition of the abstract CDS entity.

@EndUserText.label: 'SalesOrder, Discounts'
define abstract entity ZRAP_A_SalesOrderDiscount
{
 @Semantics.amount.currencyCode : 'Currency'

2752-2.book Seite 169 Freitag, 13. Juni 2025 11:24 11

169

3 Behavior Definition

3 Behavior Definition

170

 DiscountSum : abap.dec(11,2);
 Currency : abap.cuky(5);
}

Listing 3.43 Declaration of an Abstract CDS Entity as Output Data Type of a Function

Using the selective keyword, you allow the consumer of the function to request only a
certain selection of fields of the return parameter. The function can be implemented in
a performance-optimized manner, taking into account the consumer’s field selection.
For example, you could add the selective keyword to the calcCriticalPath function
mentioned earlier to read and return only specific fields of the Task instance requested
by the consumer (see Listing 3.44). The selective keyword can also be used for actions.

define behavior for ZI_Project alias Project
...
{
 ...
 function calcCriticalPath result selective
 [0..*] entity ZI_Task;
}

Listing 3.44 Using the Selective Keyword in a Function

3.11.3 Functions for Defaulting

You can calculate default values in the behavior implementation for certain operations
using a function for field prefilling (defaulting). Such a function is only executed auto-
matically from a UI based on SAP Fiori elements, not if you call the relevant operation
directly via EML. Before an operation is performed, the function for defaulting is exe-
cuted and the result is evaluated accordingly. For example, the input fields in the action
popup are prefilled with the respective default values of the function. Functions for
defaulting can also be called separately via EML, just like normal functions.

Defaulting is supported for the following operations:

▪ Create and create-by-association
When creating a business object instance, fillable fields can be prefilled.

▪ Action and function
The respective action or function must have an input parameter. The values of the
input parameter can be stored with default values. The action or function can be
static or instance based. Factory actions are also supported.

Note that the field preallocation function is a UI-relevant aspect in the behavior defini-
tion and is called automatically by UIs based on SAP Fiori elements. If, for example, you
want to provide newly created instances in the transactional buffer with default values,

2752-2.book Seite 170 Freitag, 13. Juni 2025 11:24 11

170

3 Behavior Definition

171

3.11 Specific Operations for a CDS Entity

3

you should use a determination with the standard operation create as the trigger con-
dition (Section 3.13.1). This would be pure business logic, completely independent of UI
aspects.

You can use the default function keyword as an addition to the operation for which
you want to calculate default values. Such a function is therefore not declared sepa-
rately in the behavior definition, but for the operation that is to be defaulted. The name
of the function must start with GetDefaultsFor or GetDfltsFor.

Let’s suppose you want to preset the currency with a default value in the creation
dialog on the UI when creating a SalesOrder instance to make it easier for users to enter
it. To do this, add default function to the create operation of the CDS root entity, and
implement the function accordingly (see Listing 3.45).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 create { default function; }
}

Listing 3.45 Function for Prefilling a Field for a Create Operation

The specification of a function name can be omitted here. However, when you specify
a function name, this must be GetDefaultsForCreate for the create operation (see Lis-
ting 3.46).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 create { default function GetDefaultsForCreate; }
}

Listing 3.46 Explicit Specification of Function Name for Defaulting

If you want to prefill values during the creation of a CDS child entity, you must add a
function for defaulting to the create operation within the association using default
function (see Listing 3.47).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 association _Item { }
{ create { default function GetDefaultsForItem; } }
}

Listing 3.47 Function for Defaulting for Create-by-Association

2752-2.book Seite 171 Freitag, 13. Juni 2025 11:24 11

171

3 Behavior Definition

3 Behavior Definition

172

If an action has declared an input parameter, you can prefill the values of the input
parameter using a function. Let’s suppose you want to use a setReplacementMaterial
action for the CDS entity Item to calculate and set a suitable replacement material for
the material available in the Item instance. The action has an input parameter to pass
the number of the replacement material to the action. In this case, you need to add the
default function keyword to the action and add the function name to the GetDefaults-
ForReplacement field prefilling (see Listing 3.48).

define behavior for ZI_SalesOrderItem alias Item
...
{
 action setReplacementMaterial parameter ZRAP_A_ReplacementMaterial
 result [1] $self { default function GetDefaultsForReplacement; }
}

Listing 3.48 Action with Function for Defaulting

Another use case would be if you wanted to prefill the input parameter of the deepCopy
factory action. The factory action copies a SalesOrder instance, and the consumer uses
the input parameter to control which CDS entities of the SalesOrder instance are to be
copied and which ones aren’t (refer to Listing 3.35 and Listing 3.36, respectively). For this
purpose, you must add the default function keyword to the factory action, specifying
the function name GetDefaultsForDeepCopy (see Listing 3.49).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 factory action deepCopy parameter zrap_s_so_copy_ops [1]
 { default function GetDefaultsForDeepCopy; }
}

Listing 3.49 Factory Action with Function for Defaulting

The prefilling of fields is also possible for the input parameter of a function (see Listing
3.50).

define behavior for ZI_SalesOrder alias SalesOrder
...
{
 ...
 function sumDiscounts parameter ZRAP_A_SalesOrderDiscountInput

2752-2.book Seite 172 Freitag, 13. Juni 2025 11:24 11

172

3 Behavior Definition

173

3.12 Concurrency and Locking Behavior

3

 result [1] ZRAP_A_SalesOrderDiscount
 { default function GetDefaultsForSumDiscounts; }
}

Listing 3.50 Function with Function for Defaulting

Using the optional addition external '<external name>', you can define the externally
used name of the function, which in this way becomes part of the OData model (refer
to Section 3.5).

2752-2.book Seite 173 Freitag, 13. Juni 2025 11:24 11

173

3 Behavior Definition

Lutz Baumbusch, Matthias Jäger, and Michael Lensch are SAP developers with
decades of combined experience with ABAP, SAP S/4HANA, cloud develop-
ment, and more. Their current focus is ABAP application development using
the latest programming model.

We hope you have enjoyed this reading sample. You may
recommend or pass it on to others, but only in its entirety,
including all pages. This reading sample and all its parts
are protected by copyright law. All usage and exploitation
rights are reserved by the author and the publisher.

ISBN 978-1-4932-2752-5 • 576 pages • 07/2025

E-book: $84.99 • Print book: $89.95 • Bundle: $99.99

Baumbusch, Jäger, Lensch

ABAP RESTful Application
Programming Model

 ■ Develop ABAP applications for
SAP S/4HANA and SAP BTP

 ■ Use key tools and technologies,
including core data services and
SAP Fiori

 ■ Get step-by-step guidance for mod-
eling data, implementing behaviors,
developing user interfaces, and more

www.sap-press.com/6161

http://www.sap-press.com/6161
http://www.sap-press.com/6161

