


Contents

PIETACE «..ooeoeeeeee ettt cesss e ess st 13
1 Introduction 19
1.1  Aligning on Nomenclature 19
1.2 Learning to Google (or Prompt) 21
121 What Can You Find With GOOGIE? ........occeieenineeirecinecerseciecrirecrisennes 21
122 PrOMPLING oot siecisssse s sssesssesssssssesssesisessaesssessnesssssssnssens 25
1.3  Predictions for Generative Al’'s Impact on Machine Learning ..............c....... 26
14 Summary 26
2  Getting Started 27
2.1 GitHub 27
211 Creating an ACCOUNT ...t ssse e sssesases s sssesees 28
212 GitHUD iN THiS BOOK ...oouiieeeccieimcriiecceiiecceeiiecseiiesseesscssssseesesssseesessseseesssessesens 30
2.2 Anaconda 30
221 Creating an ACCOUNT ... snssees 31
2.2.2  Creating Projects and Uploading Data ........cccenecrnecenneerneceeneceenne 34
2.23  Anaconda in This Book 37
2.3  Summary 38
3 Introduction to Our Use Cases 39
3.1 Importance of Understanding the Business Problem 39
3.1 1 BUSINESS REVIEWS ...t ssss s snssssssssonas 40
3.1.2  Definition Of SUCCESS .....cocrvuurreeeceeiiereeiseceiieeccesieeseeassecssasesessssessssssescessseesesens 40
3.2 Use Case 1: The Retail Tyrant 41
3.21  Details of the Request 41
3.2.2  History of the Request 42
3.2.3  Relationship with the Stakeholder 42




Contents

324  UsE CaSe QUESTIONS ...ccuuureurriceinceinerireniecieeeseseeniesssesssssseseseessesssesssessnessnessses 43
3.2.5  USE CASE ANSWELS ..coueireeeiceetieieeeresee e iesesessesasessesssessesss e sasesesasssessssnesnee 44
3.3  Use Case 2: Customer Retention . 47
3.3.1  Details of the Request 47
3.3.2  History of the REQUEST ... siseesens 47
3.3.3  Relationship with the Stakeholder .... 48
334  Use Case QUESTIONS ... sssssssssesnes 48
335 USE CASE ANSWELS ..ot cessase e es s es s sasann 49
3.4 Use Case 3: Crime Predictions .............. 50
3.41  Details of the Request 51
3.4.2  History of the REQUEST ... siasessens 51
3.4.3  Relationship with the Stakeholder ..., 51
344 UsE CaSe QUESTIONS ...ccuuureunriceinceirerieeiecieeeseseserienssesssssseseeessesssesenessnessnessses 52
345 USE CASE ANSWELS ...ouiireecicertieieeesessesaessesesesse e sssessesssessesasessessssssessssnesnee 52
3.5 Summary 53
4 Starting with the Data 55
4.1 Types of Data Sources 55
B 1L MANUAD ettt bbb 56
412 AUTOMATEA .ottt 59
413  Data Sources for Our Use CASES ........rcmneesmesismasssssssesessssessoneas 60
4.2 Data Exploration 66
421 DAt@ TYPES oot 66
422 Data VisUBHZATION ..ttt ssssessseesiesssseees 77
423  Descriptive Statistics 105
424 Correlation ANAIYSIS ....cceeecieceesiseseaecrisesseessaseessssessesessesessssees 114
4.3 Data Cleaning (For Now) ................. 120
431  Whylsn't Data Already Clean? .....eceneiecieceisesineessseesseesssneees 121
43.2  Overview of Cleaning for Regression Models ..........cccmoncceonnecconnecns 122
4.3.3  INACCUIate Data ... 123
434 MISSING DAL vt sra s nene 123
435  DUMMY COAINE corerrrrrieriernieerinesisseessessssssesssesssnesssssssssesssesssssessssessssesssssessenees 131
43.6  Dimensionality Reduction l6l
4.4 Summary 178




Contents

5 Picking Your Model 181
5.1 The Simpler the Model, the Better 181
5.2  Model Decision Framework 183
521  How Important Is Interpretability? ... 184
5.2.2  How Many Rows and COlUMNS? ........cc.comrincreeesieisecsesseseessssesessesenes 184
52.3  What Is BEING Predicted? .......cnceecnecneceisesseecsisesseecseseesens 185
5.3  Train-Test Split ...... 187
5.4 Regression Models ... 189
541  What Are Regression Models? 189
542  MURICOIN@ATILY oottt s essessses e ssase s ssssesses 192
5.4.3  Linear Regression 192
544  LogistiC REGression .......eecnerneenees 211
5.5 Machine Learning Models 221
551  Decision Tree 222
552 RANAOM FOIESE ... osss s 252
5.5.3  Gradient Boosting MacChine ..........ccncenecrnecenececeneceissessecseseesasnessen 271
5.6 Clustering 291
561  What IS CIUSTEINE? ...t sssesees 292
5.6.2  Picking the Number of Clusters 294
5.6.3  Behind the Scenes of Clustering 296
5.7 Summary ... 297
6 Evaluating the Model and Iterating 299
6.1 Importance of Picking Validation Metrics 299
6.2 Validation Metrics 301
6.2.1  ACCUTACY oot 302
6.2.2  CONFUSION MATFIX woooriiiiirieiecceeierceeiecemieceeeseceessecesesesesssee s esssesenseessenes 302
6.2.3  PrECISION ..o 305
6.2.4  Recall ... 305
6.2.5  F1SCOre .. 305
6.2.6  Area Under the CUIVE ... ecreccemseeseesecesesesesssseesessessesseesenens 306
6.2.7  R-SQUATEA ..oovereeeeeeieceeceiesiseceirecsieeiseesssecsinee 307
6.2.8  Mean Squared Error 309
6.2.9  Mean ADSOIULE ETOr ...t sssssescssses s 309
6.2.10  MELIIC SUMIMATY oooeiiieiereecirecieieseereessessssssesssessesssesssssssesssesssesssessassesesees 309



Contents

6.3 K-Fold Cross-Validation 311
6.4 Business Validations 311
6.41  Legal CoNSIdErations ......rcrereesiesmseeseeesissessssessesesesnns 312
6.4.2  Ethical Considerations 313
6.5 Machine Learning Interpretability ........................ 314
6.51  ReGression MOAEIS ... sesseesesesessesessesesessaes 314
6.5.2  Tree-Based MOdels ... essesesssesseens 316
6.6 Iterating on the Model .. 321
6.6.1  FEature ENGINEEIING ...t sssesssesssesssesssessssssesees 322
6.6.2  REMOVE VATIADIES ..ottt st ssesessessanes 324
6.6.3 A NEW DAt ..ottt stsesisee b sssessse s s sssessseses 325
6.7 Application to Use Cases ... 328
6.7.1  USECASE L .o 328
6.7.2  USE CASE 2 ..ttt 348
6.7.3  USE CASE 3 ottt sttt 362
6.8 Summary 374
7 Implementing, Monitoring, and Measuring
the Model 375
7.1 Implementing Your Model for Predictions .. 375
7.11  Don’tTrain the Model Each TIiMe ...c..cvernecennecinecineceieecineceesesseseonee 376
7.1.2  Predictions for OUr USE Cases ......eeneeeunecrsneessneessssessssesssssesens 376
7.1.3  SaviNg YOUr PrediCtions ... rcicriceeeecrineeseesseesssseessessesessssessanes 392
7.1.4  Practical Approaches t0 CONSIAET ......cenecrrernecrneceiecenecereseasessanes 393
7.2 Model Monitoring ... 394
721 Importance of Model MONILOIING ..c.ceeeerrecrireieceineceeeeenesesesesseseenes 394
7.2.2  WHhHat tO MONTTOL oottt asesen 395
7.23  Considerations for Model Monitoring 399
724 Retraining the MOdel ... siseesesesseseseinns 400
7.3  Measuring the Impact of Your Model 401
7.3 1 BUSINESS SNIff TEST oottt 401
732 EXPEIMENTS ..ot ese e sssnse s sssesassssenes 403
7.4 Summary .. 426

10



Contents

8 Closing Thoughts 427
8.1 Learning How to Learn with Generative Al 427
8.2 Learning How to Learn with Use Cases 428
8.3 Explore and Visualize Your Data 428
8.4 Cleaning Your Data and Dummy Coding 429
8.5 Machine Learning Models 430
8.6 Hyperparameters and Grid Search 430
8.7 Variable Lagging 431
8.8 TheEnd 431
8.9 Acknowledgments 431

433

435

11



Chapter 5
Picking Your Model

At long last, you’ve gotten through much of the hard work required to
build an effective machine learning model. Take a pause and give your-
self some credit! In this chapter, we’ll dive into the foundational algo-
rithms of machine learning.

We’ll now shift our focus to the models themselves and explore strategies you can use
to pick them. This chapter focuses on select algorithms and models and is not intended
to be comprehensive. Instead, we focus on the most commonly used algorithms to help
you understand how they build upon each other. Although knowing all these algo-
rithms is useful, it can be unnecessary noise when you're just getting started. Speaking
from experience, we discussed upwards of 20 different algorithms during my master’s
program, and I've only used a small subset of these in practice.

This chapter begins with a discussion on the model selection approach and a framework
you can use for it. We'll then discuss a selection of algorithms, starting with regression
models and moving into the traditional tree-based models typically associated with
machine learning. We'll also talk about clustering, the misfit of the machine learning
world.

A word of warning: Don’t skip Section 5.5.1 on decision trees! The decision tree algo-
rithm is the foundation of random forest and Gradient Boosting Machine (GBM) mod-
els. The chapter is deliberately structured to introduce these important topics using
simple decision trees before you progress to more complex models. While you're
unlikely to use the decision tree algorithm in practice, understanding it is critical to
learn the random forest and GBM algorithms that are more common on the job.

5.1 The Simpler the Model, the Better

The longer you work in the technical space, the more you’ll come to understand that
the simpler solution is usually the better solution. If you need to add an additional
1,000 lines of code to make your model 1% better, is it actually worth it? If you work on
incredibly high-stakes use cases where 1% represents millions or billions of dollars, then
maybe it is. However, in most enterprise analytics scenarios, the risk and time associ-
ated with the additional 1,000 lines of code isn’t worth the 1% gain.

181



5 Picking Your Model

When Complicated Becomes a Problem

I had just started a new role, and one of my responsibilities was to take over an existing
set of models. The underlying tech stack was not ideal and the complexity of the models
created several challenges for me. | spent many hours digging through the code only to
realize that the stakeholders weren’t actually using the model.

As | worked with the previous owner of the models, it became clear how complex the
modeling process was from the various data sources and how they were brought into
the process to the actual model itself. This resulted in a situation where my team wasn’t
adding the right value for the organization. It also impacted the former owner of the
model because he received a number of additional questions he otherwise wouldn’t
have. If nothing else, heed this warning for your own self-interest!

That said, I've haven’t always created simple processes in my own work. When transi-
tioning out of one of my roles, | had a number of technical processes to hand over to
another member of the team. While the nature of the work was complicated, it was my
own code, so | found it easy to understand. This meant | had minimal documentation
and hadn’t gone back to see where | could have simplified the code and the process.

The takeaway here should be to simplify your approach as much as possible. It’ll help
you and others support your stakeholders now and in the future.

Think about this from the stakeholder perspective as well. A simpler approach is easier
for others to explain, but it’s also easier to explain yourself. When you're in the depths
of building out your process, you'll be at the height of your understanding of the code
and all its small nuances. Once you've deployed your model into production, time will
pass, and you'll become less familiar with those nuances. You may revisit your code
after a few months in a panic thinking you missed something or you're doing some-
thing in error.

You'll also experience this when conducting a knowledge share or cross-training ses-
sion for others who are new on your team or need to understand the model. A simple
process and a simple model make the knowledge share easier on yourself and other
members of your team. Part of maturing in your machine learning journey is under-
standing that scalability and longevity are important, so you'll sometimes need to sac-
rifice incremental increases in your model’s performance to ensure its longevity.

It’s helpful to think about this from a business perspective. If the incremental increase
in accuracy is 0.25%, does the added complexity of a change justify this increase?
Depending on your business case, sometimes that answer is yes, and sometimes it’s no.
However, in a situation where the change is a connection to two additional data sources,
complicated functions, and an overall increase in your code base, it’s unlikely to be a
favorable tradeoff.

182



5 Picking Your Model

There’s also a courtesy component to this as well. It's unlikely you'll be the one who cre-
ates a model and owns it for its entire life, so thinking ahead is important! The ease of
taking over a model varies significantly depending on how it was structured.

From a purely technical perspective, the more complex your model, the longer it takes
totrain and execute. Say you can train a simpler model in five minutes, but a more com-
plex model trains in twenty minutes. This extra time slows down your ability to iterate
on the model and add new features with additional value.

In practice, you'll likely need to be iterative about which data you bring into your model
at which stage. Preparing your data for a model is the most time-consuming part of the
modeling process, so you shouldn’t attempt to bring in all the possible data at once. It’s
better to focus on a smaller subset of your data to improve your development speed.

Finally, consider how likely it is that your stakeholders will introduce additional com-
plexity. If your data is generated by a human-dependent process, you'll probably have
to account for nuances that make your model more complex.

5.2 Model Decision Framework

There are a number of resources available online that show you the full suite of options
in the modeling space. You can find examples in the scikit-learn (sklearn) documenta-
tion at https://scikit-learn.org/stable/machine_learning_map.html.

Figure 5.1 shows the framework we’ll use for this chapter, which consists of the general
order of algorithms to consider as well as their associated complexity.

Machine Learning Model Complexity

Gradient Boosting
[ ]

Fany
'5 Random Forest
- [
g Decision Tree
© )
Logistic
Regression
Linear Regression ®

Order of Consideration

Figure 5.1 Model Complexity

183



5 Picking Your Model

You'll see that regression should usually be considered first, and it has relatively low
complexity (more on this in Section 5.4). Then, we get into the tree-based models, which
have an increasing level of complexity.

The trends and themes in this framework won’t always hold true in every situation. The
goal is to give you a general framework you can use to think about model selection,
since it can be a confusing and intimidating task when you're getting started.

5.2.1 How Important Is Interpretability?

Interpretability is the ability to understand why your model is making the decisions it’s
making. We’ll discuss this concept in more detail in Chapter 6, but for the purposes of
picking our model, we need to take a moment to think about it. We’ve just established
that regression is lower in complexity, but let’s throw another curve ball into the mix.
Ifinterpretability isn’t high on your priority list, you can skip regression. This is primar-
ily due to the additional data cleaning and considerations required for regression,
which are discussed in Section 5.4. The tradeoff in time it takes to train a regression
model versus a decision tree is relatively minimal. Any minimal increase in time to
train a decision tree offsets the added effort required to ensure your data is set up prop-
erly for a regression model.

The biggest drawback you’ll see with tree-based models is that they're black boxes that
are hard to interpret. However, you can use the techniques we’ll discuss in Section 5.5
to interpret tree-based models, so this is by no means a binary decision where you're
either getting a better model or a model with interpretability. However, if your stake-
holder is hyperfocused on understanding the why behind the prediction, or the model
is being used in a day-to-day operational setting, understanding how a model makes its
predictions yields significant value. The coefficients generated by regression models
provide a high degree of specificity in interpretation that is hard to replicate with a
machine learning model.

Let’s summarize our decision-making process:

m Ifinterpretability is very important
Stick with regression as the default and move to the next question.

m Ifinterpretability is not important
Skip the next question and adjust to tree-based models.

5.2.2 How Many Rows and Columns?

If you've identified that interpretability is important, the next step is identifying
whether your data can support a regression use case. You should think about rows and
columns together because of the limitations in how the backend math of regression
works.

184



5 Picking Your Model

Here’s a mental model for considering this is: The more rows you have, the more col-
umns you can use. As the size of your data and number of records grows, it allows the
math behind the model to look across more columns and find relationships between
them. A dataset with only 100 rows and 30 columns won'’t work for regression.

As arule of thumb, it’s best to keep your number of columns at 30 or fewer if you have
fewer than 100,000 rows of data to train your model on. If you have hundreds of thou-
sands of rows, then 50 columns or fewer is generally acceptable. For larger datasets, the
number of rows per column should be around 3,000-5,000 rows per column.

These guidelines allow the math behind the regression to operate correctly. They also
ensure you're not breaking any of the assumptions in regression.

Keep Multicollinearity in Mind

As we'll discuss more in the next section, multicollinearity occurs when you have two
columns that are highly correlated with each other. Regression assumes there is no mul-
ticollinearity in the dataset. As your column count grows, this becomes a more challeng-
ing dynamic to manage.

To summarize our rules:

® If you have an appropriate column-to-row ratio
Stick with regression and move to the next question.

® If you do not have an appropriate column-to-row ratio
Adjust to a tree-based model and move to the next question.

5.2.3 What Is Being Predicted?

At this point, you've identified the category of model you'll be using: either a regression
approach or tree-based approach. Now, you'll need to understand what you're predict-
ing and the associated next step based on the type of model you selected. The two cat-
egories of what we're predicting are called regression (if you're confused, keep reading)
and classification.

Regression

Regression in this context translates to predicting a number. If you're predicting the
number of sales, this is a regression or regressor prediction. Regression models natu-
rally do this, and linear regression does this explicitly. When most people think about
predictive models, they’re likely thinking about a model that predicts a specific num-
ber.

185



5 Picking Your Model

Sometimes Regression Is Regression... Sometimes It’s Not

I’'m not entirely sure who thought it was a good idea to name the overall approach to
predicting a number “regression” when this terminology is already reserved for linear
and logistic regression, butitis what itis. This has confused me on a few occasions when
onboarding onto a new project or team, so it’s never a bad idea to clarify what someone
means when they say “regression.”

Classification

Classification is well-named. The objective of the classification model is to classify your
data. In practice, it’s still technically predicting a number. For example, if you're build-
ing a model to predict whether an employee will leave the company, your model will
classify them either as someone who will stay or as someone who will leave. Someone
who will leave is often coded in the data as a1l and someone who will stay is coded as a O.

Probabilities are at the core of classification. While it can depend on the use case, how
valuable is it to provide a binary prediction? Psychologically, it creates a perception of
confidence. However, using the employee turnover model example, what if your model
predicts an employee will leave in the next six months, but they're still employed at the
company on month seven?

Thinking probabilistically is often more valuable for stakeholders, but it also keeps your
model from taking unnecessary heat for being wrong. All models are wrong—the good
ones are just less wrong. As an alternative, what if your model predicted the probability
someone would leave in the next six months? For a specific employee, the same binary
prediction that they may leave could actually only be a 25% probability. Most decision-
makers will interpret a 25% probability of an event occurring differently than just being
told the event will occur.

So why the lecture about probabilistic thinking? Because all classification models start
with probability and are converted into binary terms that minimize the frequency of
false positives and false negatives. The difference in the code is relatively trivial, as the
model is outputting both, so as always it goes back to the use case.

There is also a spectrum to consider as well. Going back to the employee turnover exam-
ple, what if a probability of 15% is considered high in this business context? In scenarios
where your target variable is considered imbalanced (one outcome you're predicting is
more likely than another), it can be challenging for your stakeholders to understand the
full context. For employee turnover, most companies will retain the majority of their
employees in a six-month span rather than see them leave (I hope). This can lead to your
model output recommending that the optimal binary cutoff point for turnover should
be 15%. While the math may be optimal, a stakeholder is likely to question the value of
your model’s outputs. In this scenario, you can consider grouping your data together
into logical categories. One approach could be to group anyone with a probability of

186



5 Picking Your Model

50% or greater as high risk, 15% to 49% as medium risk, and anything below that as low
risk. While you've introduced subjectivity into the model’s output, you've also met the
stakeholder where they need to be to effectively consume your model’s output.

Translating to Model Selection

Linear regression and logistic regression models have distinct use cases. If you're trying
to predict a number, you'd use linear regression (should we call it “regression regres-
sion”?). If you're trying to classify data, you'd use logistic regression.

For tree-based models, the regression versus classification distinction is almost com-
pletely abstracted from our perspective. Each model has a regressor and classifier
function that can be loaded in, and the inputs required are more or less the same (e.g.,
DecisionTreeClassifier and DecisionTreeRegressor). In practice, this is quite nice. It’s
easier to switch between approaches when you can just change the name of the func-
tion without having to change all your hyperparameters. However, it can muddy the
waters from a learning perspective, because there isn't much of a distinction when
you're applying it.

Aswe work through the use cases, we’ll apply the various models to each one so you can
see what we discussed in practice.

5.3 Train-Test Split

Regardless of what model you're using, you need to split your data into a test set and a
train set. The training data is what you build your model with. The test data is withheld
to understand the quality of your model. When we split the data, we're splitting the rows
of the data, not the columns. This means our training and test data will have the same
columns, but different rows.

You may have heard of the term overfitting in the context of modeling. If your model
performs very well on your training data but not on your test data, it may be overfit
(that is to say, your model isn’t generalizable). Having a test dataset helps you combat
this. The goal of building a machine learning model is to help predict the future. By defi-
nition, we don’t know the future, so we need to make sure our model is generalizable
with the data we already know about. Withholding some amount of data to test the
model on is necessary to do this.

Conceptually, it's most helpful to think about this in the context of a time series dataset.
Even though this book doesn’t formally cover time series predictive modeling, the
same underlying context applies. Say you have five years’ worth of data for your com-
pany sales, and you need to predict sales for year six, which hasn’t started yet. The rec-
ommended approach would be to build your model as if year five had yet to start. You'd
build your model on data from the first four years and then test its performance on year
five. The goal of time series is to predict future dates, which is why it’s best practice to

187



5 Picking Your Model

use a specific date cutoff instead of randomly splitting the data into the training and
test sets.

This same concept applies to the general train test splitfunctionavailablein sklearn,
as shown in Listing 5.1. If our data isn’t specific to time series data (our second and third
use cases are examples of this), we use the train test split function. In creating a
training and testing dataset in this way, we're randomly holding out X% of the data
rather than identifying a logical point in time to split the data. The purpose of this func-
tion is to split the rows from x and y into their respective train and test objects.

from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(
X,

Ys
test size=0.2,
random_state=42

)
Listing 5.1 Train-Test Split Code

There are a few components to understand here, the first being the objects you're cre-
ating. The output of train test split() is four different objects:

1. Your input variables that are used to create the model.

2. Your input variables for the testing of your model.

3. What you're trying to predict so your model has the “answer” to train itself.

4. The “answer” to compare against the model’s predictions for your testing data.

The inputs to the train test split() function are:

> X
All the columns used to create the prediction.
>y
The column you're trying to predict.
> test size
What percentage of the data should be held out for testing.
» random state

Any number that will enable you to create reproducible results as you iterate on your
model.

The test size parameter may require some explanation. What is the right amount of
data to leave out for testing? In general, you'll likely select a number between 20% and
30%. The smaller and/or more nuanced your dataset, the more data you want to reserve
for testing. This selection of your test size ties back to the concept of overfitting and

188



5 Picking Your Model

how to reduce the risk of overfitting going undetected. In general, the larger your test
size, the lower the risk of you not detecting the overfitting in your modeling process.

The random state parameter enables your results to be more reproducible—but how?
The specific number you provide does not matter; it’s the consistency in which you
apply that number. If you use 17 and you run the train test split() function multiple
times, you'll always get the same rows going into your train and test datasets. Especially
when you're iterating on your model, this ensures your model performance results are
driven by intentional changes, rather than the difference in how the function split your
data into a training set and test set.

As we go through each model, you'll find that the process remains consistent. Applying
the same X and y allows you to test multiple models and evaluate their performance.
This increases your speed of iteration significantly!

5.4 Regression Models

Regression models are the backbone of analytics, and the underlying math is integral
to how value is derived from data. At their core, regression models are a fancier version
of correlations. As promised at the beginning of the book, this section won'’t include a
complicated math lesson, but we’ll revisit high school algebra class for a quick refresher
of the underlying concepts. We'll then walk through linear and logistic regression in
detail and apply them to our three use cases.

5.41 What Are Regression Models?

Regression models are based on the y = mx + b equation. High school math may have
been many years ago for some of you, so as a refresher, y is the value we're trying to pre-
dict, m is the slope of the line, x is the data point we know, and b is the y intercept. The
biggest difference is that as you add additional variables, you create more variables like
mx.

The regression model looks to optimize this equation to identify the line of best fit,
which essentially means it’s trying to create the version of the y = mx + b equation that
best matches the data by reducing the distance between the line the equation would
make and the actual data. To further explain this, we’ll walk through the simplified
example shown in Figure 5.2.

You'll notice that we're only using two variables (student intelligence and exam scores),
which is intentional for visualization purposes. It’s easy for us to consume a two-dimen-
sional line graph, but in practice you're not building a model with only one column to
predict another column. When you have many columns in your data, the same concept
is applied—you’re just adding another variable to your equation. For example, if your

189



5 Picking Your Model

data has three columns being used to predict a fourth column, y = mx + b will become
y =mlx + m2x + m3x + b. As you add new columns, the regression model adds another
mx for each of them.

Figure 5.2 Near-Perfect Regression Line

For this example, the equation of this line is y = 1.8256x + 1.7258 (Excel has an option to
show you any line graph line’s linear equation). Since this is an equation, the predictive
nature of regression involves inputting x when its value is still unknown. If you haven’t
already started making this connection, this is why regression is so much more inter-
pretable than other machine learning algorithms! You have an equation where you can
set all other variables to O, which gives you the overall relationship to the column you're
trying to predict. Regression models will output this for you as coefficients. In our exam-
ple, the coefficient for is 1.8256, or the m in our linear equation.

Chapter 6 will cover evaluating your model, but the most common evaluation metric
in regression is R% This metric evaluates the amount of variance your regression equa-
tion is account for, with 1 meaning it’s a perfect match and O meaning it’s capturing
none of the variance. For this equation, the R? is 0.9995 (almost as if it was planned to
be nearly perfect).

Now what happens when we take the same example, but the data is messier? Let’s look
at Figure 5.3.

With this messier data, we still see a distinct linear pattern. The R? for this line is still
very high at 0.9553, meaning the model can pick up 96% of the variance in this dataset.

What happens when we take this same data and give it a trend where students at the
upper end of the intelligence distribution score higher on their exams (see Figure 5.4)?

190



5 Picking Your Model

Figure 5.3 Messier Example of Data

Figure 5.4 Higher Intelligence Students Score Higher on Exam

By making this change, the line is more than twice as steep, and the R? has dropped
down to 0.8125! It's important to understand why this is and where there are limitations
in linear regression. Linear regression is only able to map a straight line through the
data. As you add additional variables, if those variables don’t explain the trend of stu-
dents with higher intelligence, the model has no way of knowing the top 25% of stu-
dents have a different trend of exam scores. This also creates a dangerous dynamic
where your model is better at predicting one group versus another. If you want to sound
smart at a dinner party, this is called Simpson’s paradox.

191



5 Picking Your Model

5.4.2 Multicollinearity

The math that regression is based on can be quite picky. A regression model has many
assumptions. The most important assumption to consider when you’re preparing your
data is to make sure none of your columns are highly correlated with each other. This
is called multicollinearity.

In general, you should address any correlation above 0.7 between two of the columns
you're using to build a model. You can find the correlation of any two columns using
the pandas function corr. When you provide the function with your columns, it outputs
a correlation matrix.

There are varying approaches for addressing the high correlation between columns:

® The simplest approach is to remove one of the two correlated variables. One com-
mon cause for multicollinearity is bringing together different datasets where two of
the columns have essentially the same data, just from a different source. In a case like
this, it makes sense to just remove one of those columns. In other cases where it isn’t
as clear-cut, use your knowledge of the data and business process. If one column is
more reliable than another, use the more reliable one!

® The other approach is dimensionality reduction, which we covered in Chapter 4, Sec-
tion 4.3.6. The goal of dimensionality reduction is to reduce the number of columns
while maintaining as much of the information as possible. Regardless of the tech-
nique, two highly correlated columns will be consolidated based on how that tech-
nique operates.

You may still be wondering why this actually matters. What harm can multicollinearity
cause? The biggest issue is that your coefficients won’t be calculated properly. One of
the benefits of regression is that it isolates a variable’s impact on what you're trying to
predict. When you have two columns with the same impact, the underlying math can-
not isolate properly. This results in small changes in your data leading to significantly
different predictions.

5.4.3 Linear Regression

The demonstration shown in Section 5.4.1 was linear regression. In its simplest form,
your model is a formula that generates a straight line through your data. One of the
major challenges with linear regression is that straight line component. If there are dif-
ferent trends for different groups, the best approach is often to create two models
instead of one. For example, if you're predicting the sales of two brands, their underly-
ing sales drivers may be different, so a linear regression model may get confused by the
independent trends of these distinct brands. The output is a bad model that compro-
mises between both groups, and that isn’t useful for anyone.

192



5 Picking Your Model

In practice, this creates three major limitations:

® Finding trends across your data can be time-consuming and difficult. Trends also
change over time, so the effort required to identify the trends that will drive how you
separate your data can lead to a time-intensive retraining process.

® As you split your data, each additional split reduces your sample size. Combine this
with your required test train split, and you can run into sample size issues. You
should have hundreds of rows at an absolute minimum to consider linear regression
in this predictive modeling capacity.

® Creating separate models increases the effort and time required to maintain the
models, because each one requires testing and validation.

The use case for linear regression is to predict a number, meaning it works best for
numeric predictions, such as the score of a test, a sales number, or someone’s IQ.

The code for creating a linear regression is quite straightforward. There aren’t any
hyperparameters to tune like there are with the machine learning models (which we’ll
cover in Section 5.5). As you can see in Listing 5.2, after you've created your training and
testing data, it only takes five lines of code to build the model and identify its accuracy
onthetesting data. First, we usethe train _test splitfunctionto generate the four nec-
essary components to train and test our model. Then, we instantiate our model (a fancy
word for creating it) and fit it using the fit function. Finally, we generate our predic-
tions using the predict function and generate the accuracy with the accuracy score
function.

from sklearn.linear model import LinearRegression
from sklearn.metrics import accuracy score

X _train, X test, y train, y test = train test split(
X,
Y
test size=0.2,
random_state=42

)

model = LinearRegression()
model.fit(X train, y train)
y_pred = model.predict(X test)

accuracy = accuracy score(y test, y pred)
print(f"Accuracy: {accuracy}")

Listing 5.2 Linear Regression Code

193



5 Picking Your Model

Now that we’ve gone through the basics of linear regression, let’s discuss it in the con-
text of our use cases. You'll see that this is where many of the nuances and complexities
of these particular use cases become reality.

Use Case 1: Linear Regression

Can we satisfy Chris with linear regression? Let’s find out! As a reminder, Chris wants to
know how many sales he can expect in the next 3 months.

We'll leverage some of our existing data prep, which we saved to a.csv file. This will be
used as the data source. As a reminder, we're working with the columns listed in Table
5.1

Column Name Column Type
Invoice Integer
StockCode Object
Description Object
Quantity Float
InvoiceDate Object
Price Float
Customer ID Float
Country Object
New invoicedate Object
Invoicedate Object
Description Grouped Object
Customers Grouped Float

Table 5.1 Column Names and Types

You may notice a handful of things. First, we're not bringing in our dummy column
data, which is intentional for the purposes of linear regression—we’re seeing how the
model will perform without it. As a starting point, we’ll see if we can build a model with-
out this data. Listing 5.3 shows us loading in the data using the pd.read csv function.

firead libraries
import pandas as pd
import numpy as np

194



5 Picking Your Model

ficreate in cleaned data from previous chapter
df cleaned = pd.read csv("df cleaned.csv")

Listing 5.3 Loading In Data

It's important to think in the context of the model being used to actually predict the
future. There is an entire category of predictive modeling specific to time series data.
Time series models are designed to identify time patterns in the data, such as seasonal-
ity and other recurring trends. Our use case has elements of time series data, so we
could consider leveraging a traditional time series model. While this isn’t a book about
time series models, this distinction can help you understand why it makes more sense
to use a regression or machine learning model in the real world.

Time series models have many benefits and limitations. The challenge with these mod-
els is you're predicting an end result. For example, in this use case, we’'d be predicting
sales with no other variables as inputs. This means the prediction relies solely on the
historical trends of sales data to predict the future. Feature-based models are the oppo-
site; they’re able to account for other information that may be influencing the number
you're trying to predict, but they don’t naturally identify the time-based trends in the
data. That’s why feature engineering is important—it enables a feature-based model to
see trends in the data. Ultimately, it’s best to use an ensemble approach, where you
build both a time series model and a more feature-based model (such as regression or
machine learning). Given that the scope of this book is specific to machine learning
models, we won’t go into building a time series model.

Lagging variables is one approach to creating a feature-based model. You perform lag-
ging by joining your data onto itself after shifting it back n number of hours, days,
weeks, or months. This is what enables a forward-looking prediction once you've
trained your feature-based model for a time-based use case. For example, in this use
case, we're predicting sales. If we only have features that are the last n number of
months ago in our data, we can use it to predict future sales.

Before we start playing with this data, let’s take a step back to make sure you understand
how to set it up. Our data is currently a log of all transactions, but that isn’t the data
structure that will get us what we need. When building a model—especially a regression
model—you need to summarize your data to an appropriate level for the model. How
this looks goes back to your use case.

Chris wants to predict the next 3 months of sales. To do this, we’ll aggregate our data up
tothe daylevel. From there, we're able to add the results up to monthly data. This strikes
a balance between keeping enough data to build a model (which is why we don’t aggre-
gate up to a monthly level) and giving too much detail (like keeping it at the product
level). We'll use the pandas groupby () function for this, as shown in Listing 5.4. This sum-
marizes our data up to the daily level. The rationale for taking a distinct count of
Description, Customer ID, and Country is that we're trying to capture the potential rela-
tionship of how products, customers, and countries may be impacting sales.

195



5 Picking Your Model

#icreate an aggregated version of the data
df data grouped = df cleaned.groupby(
"invoicedate’
)-agg({
'Description’: 'nunique’,
'Customer ID': 'nunique’,
'Country': 'nunique’,
"Quantity': 'sum',
'Price':'sum'
}).reset _index()

Listing 5.4 Grouping Data by Day

To facilitate this variable lagging, we’'ll use the datetime library. We'll start by lagging our
data by 3 months, as shown in Listing 5.5. This adds a new invoicedate column to our
summarized dataset, which will then be used to join the data for the purposes of lagging
our data.

#load in data specific libraries
from datetime import datetime
from dateutil.relativedelta import relativedelta

#icreate date from the invoice timestamp

df data grouped['invoicedate'] = pd.to_datetime(
df data grouped['invoicedate']
).dt.date

#add 3 months to the date
df data grouped['invoicedate minus 3'] =
df data_grouped['invoicedate'] + relativedelta(months=3)

Listing 5.5 Lagging by 3 Months

Next, we set up our data for the join. Lagging variables can get confusing; it’s easiest to
find a date to ground yourself on to be the focus of predicting future values. The follow-
ing code contains the main date (invoicedate) and the target variable we’ll use to create
the model (Price):

#iselect only the date and price
df for model = df data grouped[['invoicedate', 'Price']]

To set ourselves up for success, we'll only select our desired columns. It’s helpful to
reduce the columns before joining data, which can be done using double brackets ([ [)
to name each column you’d like to keep (see Listing 5.6). This is cleaner and reduces the
risk of confusing you (or others) about which columns belong to the original dataset
and which are lagged.

196



5 Picking Your Model

#iselect only needed columns for the model
df minus 3 = df data grouped[[

"invoicedate minus 3",

'Description’,

"Customer ID',

"Country’,

"Quantity’,

"Price’

1]
Listing 5.6 Cleaning Up Data Before Join

We'll also want to do some feature engineering. As shown in Listing 5.7, feature engi-
neering gives the model context about time. The first step is identifying in which
month an activity occurred, with the goal of giving the model context about yearly
trends by identifying the month within the year. We use the dt.month function to
extract the month from the date. The second step gives the model context about the
overall timeline. We're calculating how many days have passed since sales were tracked.
We do this by subtracting the two dates and then converting the difference into the
number of days using the dt.days function.

ficreate the month from the date

df minus 3["'month'] = pd.to datetime(
df minus 3['invoicedate minus 3']
).dt.month

#icalculate number of days between the date and the first sale
df minus 3['since first sale'] =
pd.to datetime(df minus 3['invoicedate minus 3']) - min(pd.to_datetime(df for
model[ 'invoicedate']))

#iconvert calculation to a numeric value
df minus 3['since first sale'] = df minus 3['since first sale'].dt.days

Listing 5.7 Time-Based Feature Engineering

Now we can bring the data together by using the pd.merge function, joining the date col-
umn from each DataFrame. The tradeoff with lagging your variables is that your oldest
day now has to be reduced by your largest time gap. In this example, we’ll lose out on
the first 3 months of our dataset because those data elements don’t have any data to
reference 3 months prior. This blank data is filtered out in the last line of Listing 5.8.

#imerge lagged data back onto main dataset
df for model = pd.merge(
df for model,

197



5 Picking Your Model

df minus 3,

how = 'left',

left on = 'invoicedate',
right on = 'invoicedate minus 3',
("',"' 3months")

suffixes

)

firemove records where lagged data is blank
df for model = df for model[pd.notna(df for model['invoicedate minus 3'])]

Listing 5.8 Joining and Removing Blank Data That Can’t Be Lagged

Our data is now ready for the actual modeling process! In most cases, we want to ran-
domly split our data; however, this doesn’t make sense when we're dealing with time-
based data. If the goal is to predict the next 3 months of sales, it’s better to first see if you
can predict the most recent 3 months of sales. This replaces the train test split()
you’d normally do to randomly split the dataset. You can also use shape to get a sense
of how many rows are in the training set and test set.

Asshown in Listing 5.9, we use the relativedelta function to calculate the date at which
to split the data into training and test setsz. This date is then used to split our data into
the training and test sets using the traditional Python subsetting approach.

#calculate the maximum data date
max_data date = max(df _data grouped['invoicedate']) - relativedelta(months=3)

#split into training and test data
training data = df for model[df for model['invoicedate'] <= max_data date]
test data = df _for model[df for model['invoicedate'] >= max_data date]

#print number of rows and columns for each training and test datasets
print(training data.shape)
print(test data.shape)

Listing 5.9 Creating Training and Test Datasets

In this split, there are 372 rows in the training set and 67 in the test set. Only 15% is left
for the test set, which is lower than ideal, but it’s okay for our time-based use case. The
goal of a larger test set is to ensure generalizability. In a time series example like this
one, ifthe model can generalize for the next 3 months of test data, we can feel more con-
fident that it will create reliable future predictions. We'll make sure only the numeric
columns are included by removing our date columns, as shown in Listing 5.10.

#select only numeric columns for the training data
training data = training data[[
'Description’,

198



5 Picking Your Model

"Customer ID',
"Country’,

'month’,

'since first sale',
'Price 3months',
"Price’

1]

#iselect only numeric columns for the test data
test data = test data[[

'Description’,

"Customer ID',

"Country’,

‘month"',

'since first sale',

"Price 3months',

"Price’

1]

Listing 5.10 Selecting Only the Necessary Columns

Since we're not using train test split() to split the day, we now need to split both the
training and test datasets into the x and y datasets using the iloc function, which uses
the position of a row or column to select data. In this code, we’re selecting all columns,
noted by the colon (:) before the comma. We then use :-1 to select all but the last col-
umn for the X datasets and -1 to select only the last column for the y datasets, as shown
in Listing 5.11.

#icreate the predictors for the model's training and test data
X _train = training data.iloc[:, :-1]
X test = test data.iloc[:, :-1]

#icreate the target for the training and test data
y _train = training data.iloc[:, -1]
y test = test data.iloc[:, -1]

Listing 5.11 Split into Required x and y Columns for Model
Now we can train the model! Since we’re predicting a number, we need to select a dif-

ferent metric to evaluate the model. A good one to start with is the mean absolute error
(MEA) function, mean_absolute error().

199



5 Picking Your Model

Mean Absolute Error

Chapter 6 discusses the various metrics in more depth, but MAE may be the easiest to
explain to stakeholders since it shows the average of the error. For example, by taking
the absolute value, errors of +5 and -5 don’t cancel out to O.

In Listing 5.12, we've used the same model workflow where we instantiate the model, fit,
predict, and then measure the accuracy on the test dataset.

#iread in the linear regression and mae libraries
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean absolute error

#create model
model = LinearRegression()

#fit the model to the data
model.fit(X train, y train)

f#icreate the predictions for the test data
y _pred = model.predict(X test)

#use MAE to measure the accuracy
accuracy = mean_absolute error(y test, y pred)

#iprint the accuracy results
print(f"Accuracy: {accuracy}")

Listing 5.12 Building Linear Regression Model with 3-Month Lag

The MAE result is 2,052, meaning for each day the model is off by roughly $2,000 (on an
absolute basis). Is this a lot? Yes, given that that’s a notable amount of each day’s overall
sales. Another way to look at this is by summing your predictions and the test data, as
follows:

#print the sum of both the actual target for the test data and the model's pre-
dictions

print(sum(y test))

print(sum(y pred))

The result is $423,620 for the test data and $301,129 for the predictions, which means our
prediction is only 71% of the actual sales for the period we're predicting. This is a pretty
good indication that our model is underpredicting. If you recall what we found in our
data exploration in Chapter 4, Section 4.2, sales increase around September through the
end of the year due to the holiday season. Our model doesn’t seem to have this context,

200



5 Picking Your Model

sowhat can we do to get it into the model? The simplest way is to add a dummy variable
that will identify this trend in the data. In the following code, we've created the same
new column on both the X trainand X_test datasets, identifying any month after Sep-
tember as a holiday month using the np.where function, which behaves like an if-then
statement:

#icreate new holiday season feature on both the training and test data
X _train['holiday season'] = np.where(X train['month'] >= 9, 1, 0)
X test['holiday season'] = np.where(X test['month'] >= 9, 1, 0)

After making this update, we can now rerun the model using the same code we used to
run the model in Listing 5.12. The results are a notable improvement! Our MAE is down
to 1,676. Our model now predicts 83% of our actual sales data, so we've gotten much
closer just by adding this new variable.

Let’s see if we can improve it even further. We'll plot our predictions of sales compared
to the test data over time to see if we can glean any insights using the code from Listing
5.13. First, we use the plot function, passing it our date and y_test data. Next, we pass
the same date but with the y pred data. This allows us to add multiple lines onto the
same graph. Figure 5.5 displays the resulting graph.

Figure 5.5 Plot of Actuals Versus Predictions

firead in plotting library
import matplotlib.pyplot as plt

#iplot the actual data
plt.plot(test data['since first sale'], y test, label = "actual")

#iplot the predictions
plt.plot(test data['since first sale'], y pred, label = "prediction")

201



5 Picking Your Model

#show the legend
plt.legend()

Listing 5.13 Plotting Actuals Versus Prediction

When we plot the data this way, it’s clear there are spikes in sales on specific days that
aren’t being accounted for. There appears to be some type of trend. Let’s see if the day
of the week has any impact on sales. This presents a new question: What's the right way
to bring in this data? Do we want to bring it in as a numeric variable (0-6), or should we
bring it in as a categorical variable and dummy code? Let’s try both!

To start, we’ll go back and recreate our dataset, as shown in Listing 5.14.

#iselect only the date and price
df for model = df data grouped[['invoicedate', 'Price']]

#iselect only specific fields
df minus 3 = df data grouped[[
"invoicedate minus 3",
'Description’,
"Customer ID',
"Country’,
"Quantity’,
"Price']]

#icreate month feature

df minus 3['month'] = pd.to datetime(
df minus 3["invoicedate minus 3']
).dt.month

f#icreate days since first sale feature
df minus 3['since first sale'] =
pd.to datetime(df minus 3['invoicedate minus 3']) - min(pd.to datetime(df for
model['invoicedate']))

#convert days since first sale to numeric value
df minus 3['since first sale'] = df minus 3['since first sale'].dt.days

#join onto original data
df for model = pd.merge(
df for model,
df minus_3,
how = 'left’',
left on = 'invoicedate',

202



5 Picking Your Model

right on = 'invoicedate minus 3°,
suffixes = (''," 3months"'))

Listing 5.14 Recreate the Data

Now we add in the new weekday data and recreate our training and test datasets, as

shown in Listing 5.15.

#add day of the week feature
df for model['day of week'] = pd.to datetime(
df for model['invoicedate']).dt.weekday

#iremove values that the lagged data isn't populated for
df for model = df for model[pd.notna(df for model['invoicedate minus 3'])]

#icalculate the max data date for splitting our model into train and test
max_data date = max(df_data grouped['invoicedate']) - relativedelta(months=3)

#split into training and test data
training data = df for model[df for model['invoicedate'] <= max data date]
test data = df for model[df for model['invoicedate'] >= max data date]

#iselect training data fields
training data = training data[[
'Description’,
"Customer ID',
"Country’,
'month’,
'since first sale',
'Price 3months',
"day of week',
"Price’

1]

#iselect test data fields
test data = test data[[
'‘Description’,
"Customer ID',
"Country’,
'month"',
'since_first sale',
"Price 3months',
"day_of week',
"Price’

1]

203



5 Picking Your Model

#split into X training and X test
X _train = training data.iloc[:, :-1]
X test = test data.iloc[:, :-1]

#split into y training and y test
y _train = training data.iloc[:, -1]
y _test = test data.iloc[:, -1]

ficreate the holiday season feature on both the training and test data
X_train["holiday season'] = np.where(X train['month'] »>= 9, 1, 0)
X _test['holiday season'] = np.where(X test['month'] >= 9, 1, 0)

Listing 5.15 Recreate Our Training and Test Datasets

Then, we rerun our model and the code for the graph, as shown in Listing 5.16.

#load in linear regression and MAE libraries
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean absolute error

#icreate linear regression model
model = LinearRegression()

#fit model to the data
model.fit(X train, y train)

ficreate prediction on the test data
y _pred = model.predict(X test)

#icalculate and print the MAE of the test data results
accuracy = mean_absolute error(y test, y pred)
print(f"Accuracy: {accuracy}")

#load in plotting library
import matplotlib.pyplot as plt

#iplot both the actual and prediction data on the graph

plt.plot(test data['since first sale'], y test, label = "actual")
plt.plot(test data['since first sale'], y pred, label = "prediction")
plt.legend()

Listing 5.16 Rerun Data with the Weekday Numeric Variable

204



5 Picking Your Model

The outcome is essentially unchanged, meaning we didn’t get any value in adding the
weekday data as a number. The graph in Figure 5.6 shows how our model still doesn’t
account for the spikes in sales.

Figure 5.6 Model with Numeric Weekday

When happens when we bring in the data as categorical variables? We can do this using
the get dummies function we used in Chapter 4, as shown in Listing 5.17. We provide the
function with the data of the week column. It then converts it into 7 columns, and we use
the pd.concat function to add this back to the X_train DataFrame. We repeat these steps
forthe X test datatoensure both DataFrames have the same transformations executed
on them. If we don’t do this, the model will not operate as intended.

#dummy code the day of the week on the training data
train weekday dummies = pd.get dummies(

X _train['day of week'],

prefix="weekday'

)

#add dummy coded day of the week to the training data
X _train = pd.concat(

[X train, train weekday dummies],

axis =1

)

#dummy code the day fo the week on the test data
test weekday dummies = pd.get dummies(

X _test['day_of week'],

prefix="weekday'

)

205



5 Picking Your Model

#add dummy coded day of the week to the test data
X _test = pd.concat(

[X test, test weekday dummies],

axis =1

)

Listing 5.177 Dummy Code the Weekday Variable

Now we can rerun the model with the same code we’ve been using. Our error gets lower:
It’s now 1,560, about 100 lower than our last iteration. What's interesting now is that if
you sum the predictions and the actual prices for the testing day, you'll find the gap has
grown to about 82%. So, what’s happening? The model is predicting a lower value than
the last iteration, but if you look at Figure 5.7, you can see it’s starting to account for
some of the spikes in price—just not to the degree it needs to.

—— actual
14000 prediction

12000 4
10000 4

8000 -

we| | [ i
oo JV\J v\l" \l ./\ Y

2000 A

T T T T T
660 680 700 720 740

Figure 5.7 Weekday as Categorical Variables

Where do we go from here? This is a good example of a situation where you would likely
want to evaluate other models that are better at identifying the trends in the data. This
example was written without the benefit of hindsight, and we can hypothesize that the
interaction of month and day of week from a tree-based model is more likely to yield
the results we're looking for to better account for the spikes. This is covered in Section
5.5.1, where you'll see that a primary benefit to the tree-based models is their ability to
find these nonlinear interactions within the data.

Something to remember—especially when Chris is your stakeholder—is that the past
can't always predict the future. This is a common aspect to consider when educating
your stakeholders. If they don’t have an analytics background, they may think you can
build a model for anything. Sometimes that just isn’t the case!

206



5 Picking Your Model

Use Case 2: Linear Regression

The objective for our second use case is to predict the chances that someone will repeat
an order within the next 7 days. Any time you hear any word related to the probability
of an outcome (chance, probability, etc.), this is the sure sign that linear regression
won’t be the model you're going to use. Instead, you'll use logistic regression, which
we’ll discuss in Section 5.4.4.

Use Case 3: Linear Regression

This use case is about predicting the probability of an area having crime on a given day.
You might be thinking that linear regression isn’t the best approach here because the
stakeholder is requesting a probability, not a number. However, think about how the
data has presented itself. When we summarized it by area and day, almost every single
area had crime on that given day. So why would we try to predict a probability? The
model will ultimately be used to inform stakeholders on where to allocate resources,
and it can achieve this by knowing which area on a given day will have more or less
crime.

We'll explore how linear regression can achieve this. As always, the first step is to read
our data, as shown in Listing 5.18. We’'ll use the summarized dataset we created in Chap-
ter 4, Section 4.3.6.

#iread in pandas
import pandas as pd

firead in data from previous chapter
df = pd.read csv("df summarized")

Listing 5.18 Import Summarized Dataset

We'll run a simple model right away to find our starting point with the final model. For
now, we'll intentionally exclude the area name as a feature in the model to see what the
results look like without it. We'll also drop the DATE column, which can’t be included
because it’s not a numeric column, as well as the crime_count column, which is our tar-
get variable. (We're already pushing the limit of linear regression with the nearly 50 col-
umns we're attempting to use as predictors.) Listing 5.19 shows the code for this. We fol-
low the same modeling workflow as other use cases, which entails splitting our data into
train and test sets, creating the model, fitting it, and then evaluating it. Our evaluation
metric in this case is a combination of MAE on its own as well as MAE divided by the
mean of y test. We do this to normalize the MAE metric to the context of the dataset.

#iread in sklearn libraries for the modeling process
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
from sklearn.metrics import mean absolute error

207



5 Picking Your Model

#split data into what will be used to predict and what is being predicted
X = df.drop(columns=['DATE', 'AREA NAME', 'crime count'])
y = df['crime_count']

#iperform standard train test split
X _train, X test, y train, y test = train test split(
X, y, test size=0.2, random state=42)

ficreate and fit the regression model
model = LinearRegression()
model.fit(X train, y train)

#ipredict with the modeling using the test data
y _pred = model.predict(X test)

#calculate the mean absolute error
mae = mean_absolute error(y test, y pred)

#icalculate the mean absolute error divided by average of the target
mae by avg target = mae / y test.mean()

#iprint both results
print(mae)
print(mae by avg target)

Listing 5.19 Create Linear Regression Model

The result is relatively promising, given the context. The MAE comes back at 6.5, which
is roughly 25% of the average target value (for those familiar, this is a similar calculation
to mean absolute percentage error [MAPE]). The MAE number is harder to interpret on
its own, but the result of 25% can loosely be used as an accuracy percent: The model has
an error rate of 25%. Not bad for an initial model where we’ve done nothing to account
for the trends in the data with date specific features!

Given this good starting point, let’s take a look at the coefficients to discover what the
model finds valuable. In Listing 5.20, we've used the coef function to pull out the coef-
ficients from the model into a DataFrame. The results are shown in Figure 5.8.

#extract the coefficents from the model
coefficients = model.coef

#iget the feature names from the model
feature_names = model.feature names in

208



5 Picking Your Model

#add the these into a series to display the coefficients alongside their feature
names
pd.Series(data=coefficients, index=feature names)

Listing 5.20 View Coefficients of the Model

Figure 5.8 Coefficient Results
The values in Figure 5.8 suggest that the coefficient shows how much the predicted

value changes when the variable increases by one unit. If the coefficient is negative, the
result goes down, if the coefficient is positive, the result goes up. Think of this as a

209



5 Picking Your Model

correlation between the variable and the result you're trying to predict. We see a number
of high and low values, which tells us there may be specific columns that will become
important as we continue to build out our model.

Given how many columns we already have, we’ll explore this further as we progress
into tree-based models in Section 5.5.1.

In Chapter 4, Section 4.3.6, we promised to revisit principal component analysis (PCA) —
and now is the time to do so. We ultimately won’t use it for the final model, because as
you’ll see when we get to the tree-based models, our lower number of columns doesn'’t
require us to apply PCA. However, for learning purposes, we’ll apply PCA to the dataset
and run through the linear regression model to give you an example of how you can
apply PCA in practice to reduce your columns.

Training Principal Component Analysis

You should always train a PCA model on the training dataset, not your test dataset. This
ensures that you’re not at risk of leaking the answer to your model via the PCA process.
Think about your model in practice. After you've built it and start using it to predict
future events, you won'’t be able to run PCA on data that hasn’t happened yet.

As shown in Listing 5.21, we're creating the PCA model with five components, fitting it
to our data, using the transform function to actually apply the PCA to our training and
test sets, and then printing out the explained variance of the PCA model.

from sklearn.decomposition import PCA

f#icreate the pca object using 5 components
pca = PCA(n_components=5)

#fit the pca model to the training data
pca.fit(X train)

#apply the pca model to the X train data
X train = pca.transform(X train)

#apply the pca model to the X test data
X test = pca.transform(X_test)

#check the explained variance ratio
print("Overall Explained Variance: ",sum(pca.explained variance ratio ))
print("Explained Variance Ratio: ", pca.explained variance ratio )

Listing 5.21 Apply PCA to the Data

210



5 Picking Your Model

The explained variance looks good—it’s essentially 100% with only five components.
Let’s see how it performs when we run it through the model in Listing 5.22.

#icreate and fit the regression model
model = LinearRegression()
model.fit(X train, y train)

#ipredict with the modeling using the test data
y _pred = model.predict(X test)

#calculate the mean absolute error
mae = mean_absolute error(y test, y pred)

#icalculate the mean absolute error divided by average of the target
mae_by avg target = mae / y test.mean()

#iprint both results
print(mae)
print(mae by avg target)

Listing 5.22 Run Linear Regression on Data That Has Gone Through PCA

The resulting MAE is 6.9, which is 26% of the average target value. This tells us that the
PCA process worked extremely efficiently, with only a slight reduction in model perfor-
mance while reducing our number of columns from almost 50 down to 5.

We'll end up skipping logistic regression for this use case since we're predicting a
numeric value. We’ll pick it back up in Section 5.5.1.

5.4.4 Logistic Regression

Logistic regression is used for classification. As discussed in Section 5.2.3, classification
models predict probabilities, which then are translated to a binary outcome. Logistic
regression is no exception to this. Just like linear regression, logistic regression models
are formulas. The logistic regression formula is more complicated than linear regres-
sion, so we won't dive into the details. However, the overall concept is the same. The
underlying math is what differs.

The use cases for logistic regression usually revolve around binary outcomes. Examples
include:

®m Customer retention
® Employee turnover

® Customer conversion

211



5 Picking Your Model

As you familiarize yourself with the various models at your disposal, you may start to
see a trend. The vast majority of machine learning problems could be adjusted to be
classification. For example, instead of predicting a sales number, what if you build a
model that predicts the probability of reaching a sales goal? This type of approach can
be more valuable for stakeholders. For example, if the stakeholder is expected to reach
$10 million in sales for the next quarter, predicting a 75% probability of reaching that
goal could have more value than predicting that sales over that period of time will reach
$9 million.

The code for logistic regression should look very similar to linear regression. As you can

see in Listing 5.23, the only change is that we’re using LogisticRegression() instead of
LinearRegression(). All the other code remains the same!

from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score

X _train, X test, y train, y test = train test split(
X,

Ys
test size=0.2,
random_state=42

)

model = LogisticRegression()
model.fit(X train, y train)
y_pred = model.predict(X test)

accuracy = accuracy score(y test, y pred)
print(f"Accuracy: {accuracy}")

Listing 5.23 Logistic Regression Code

Let’s dive into logistic regression for our use cases.

Use Case 1: Logistic Regression

Logistic regression isn’t the right tool for this use case. Each row we're predicting is by
day, so what would the probability or classification be? While we could try to predict a
sales number by each day to identify whether a specific target could be met, we’'d be
using logistic regression for the sake of using logistic regression. Our next use case will
be a better demonstration of the value of logistic regression.

212



5 Picking Your Model

Use Case 2: Logistic Regression

Our second use case is an ideal example of logistic regression. Our goal is to identify the
probability that a customer will order again in the next 7 days. Logistic regression out-
puts a value from O to 1identify the probability an event will occur. Logistic regression
is the right model to start with for this use case.

Since this is our first model for this use case, we’ll start with our data. What is the target
variable for this use case? We've already stated the objective is identifying if someone
will order within the next 7 days, but how does that translate to our data? Which column
should we be using? Take a few moments to think about this before moving to the next
paragraph.

This can be a tricky concept to consider when you're getting started with predictive
models. The presence of another row indicates there is another order and therefore
indicates our target variable. However, our algorithms can’t magically pull from multi-
ple rows; all the data required to train the model for each observation must be on the
same row. Table 5.2 shows an abbreviated sample of data to illustrate this point.

Customer ID Order Date Ordered Again in 7 Days?
12345 1/1 Yes
98765 1/3 No
56789 1/8 Yes

Table 5.2 Example of How Target Variable Needs to Be Set Up

This example illustrates that we're adding future values to historical values. This is
important! Think about it this way: If we're using the model to predict the future, we
need to set up our data to look forward into the future, not backwards. In order to build
the model, we need to provide it with snapshots in time that translate to what we ulti-
mately want to predict.

For the model’s purpose, the yes and no values become a 1 and O, respectively. This is
how the model can then predict the probability of the outcomes, since it’s identifying
the value between O and 1.

So how do we do this? Let’s get started!

The first step is the easiest. We’ll load in the data that we previously saved from our data
cleaning and dummy coding in Chapter 4, Section 4.3. We'll then create a new Data-
Frame with only a handful of columns that we’ll need (who ordered and when) using
double brackets ([[) to select the columns. Listing 5.24 shows this code and Figure 5.9
shows a preview of the new DataFrame.

213



5 Picking Your Model

#iread in pandas
import pandas as pd

firead in data from previous chapter
df = pd.read csv("use case 2 cleaned.csv")

ficreate dataset for lagging
df lagging = df[['Customer ID', 'order date']]

fipreview data
df lagging.head()

Listing 5.24 Creating Target Variable=Specific DataFrame

Figure 5.9 Preview of Target Variable DataFrame

There’s nothing fancy going on here; we're just creating a log of each order. This Data-
Frame can now be joined onto our main DataFrame to get the future dates onto our
data. This will be a simple task for anyone who’s used SQL before, because SQL allows
you to use conditional logic to join date (e.g., date column x is greater than or equal to
date column y). Unfortunately, this is a bit harder with Python. The merge function in
pandas doesn'’t support joins on values like “less than or equal to” or “greater than or
equal to.” You can only join values with an equal comparison between two columns.

Regardless, the first step is to create the start (or floor) of the time window to which the
future hours should be allowed to join (see Listing 5.25 and Figure 5.10). We're adjusting
by 8 days using the timedelta function, so we don’t need to be inclusive of the bottom
range, which will help us when we join the data.

firead in date specific libraries

from datetime import datetime, timedelta

ficreate new date with difference of 8 days
df lagging['order minus 8'] = pd.to datetime(
df lagging['order date']) - timedelta(days=8)

214



5 Picking Your Model

fipreview the data
df lagging.head()

Listing 5.25 Create Floor Date for Which a Future Order Can Be Associated with a Previous
Order

Figure 5.10 Preview of Customer Order with Date Window

Now that we have our date window, we need to bring the data together. There reallyisn’t
a great way to execute this in pandas, so we’ll leverage a cross-join scenario where we
join each customer ID transaction first and then we filter the dataset using our date win-
dow.

Listing 5.26 shows how we clean up the new DataFrame by using the drop function to
remove the original order date column and then merge the data. We're using an inner
join in this case because we only want to return rows where there is a match between
each dataset. If there isn’t a match, it’s too early in the dataset to create the lag. Since
this is specific to the lagging, we're only selecting Customer ID and order date from df.
This will simplify future steps—when lagging, we only need the unique columns
required for joining and the lagged variable, because we'll ultimately join this data back
to the original dataset. This join will result in too many duplicate rows, since we're only
joining on the Customer ID column.

#identify create new column called max date
df lagging['max_date'] = df lagging['order date']

#drop the order date column
df lagging = df lagging.drop(columns=['order date'])

#join lagged data onto the original data
df lag 7 = pd.merge(

df[['Customer ID', 'order date']],

df lagging,

how = 'inner',

on = 'Customer ID'

)

215



5 Picking Your Model

#print number of columns and rows for both df and df lag 7
print(df.shape)
print(df lag 7.shape)

Listing 5.26 Join All Customer Orders Together

The resulting DataFrame now has duplicates that we’ll need to carefully address. We
started with over 21,000 rows and are now up to almost 87,000 rows. When filtering by
date, we also need to keep in mind that some orders won't have any other orders that
fall within our date window. This is why we didn’t overwrite our original DataFrame.
Ultimately, we'll join all this data back onto that DataFrame to get the proper target vari-
able column. As you may be realizing, the complexity and nuance of properly lagging
this data can be quite tedious.

Next, we'll filter the dates by selecting rows where the order date is greater than that of
the last 8 days and less than the max date column we’ve created, as shown in Listing
5.27. This reduces the data to give each row a single lag value since our initial join could
only be done using Customer ID.

#filter the data to ensure only the necessary rows are matched
df lag 7 = df lag 7]

(df lag 7['order date'] > df lag 7['order minus 8']) &
(df lag 7['order date'] < df lag 7['max _date'])
]

#show the number of columns and rows in the data
df lag 7.shape

Listing 5.27 Filter the Cross-Joined Dataset to Be Within the Date Window

The results show we're back down to 4,524 rows. This indicates we're seeing 4,524
instances of customers ordering again within 7 days.

We can now bring this dataset back together with the main dataset, as shown in Listing
5.28. Asyou'll see, we do some additional cleaning to the target dataset to make the join
easier. This includes adding a column of 1s to represent our target variables of 1 and O.
Since not all rows will have a match, and we need to ensure all rows have eitheralorO,
we're filling in any values with a O using the fillna function.

Dropping duplicates is extremely important! As we only care if the customer orders at
least one time in the next week, we want to ensure we don’t create duplicate records for
the instances where someone orders more than once in that given week.

#iselect only the customer id and order date fields
df lag 7 = df lag 7[['Customer ID', 'order date']]

216



5 Picking Your Model

#drop duplicates
df lag 7 = df lag 7.drop duplicates()

#icreate dummy column of all 1 values
df lag 7['target 7'] = 1

#join the data to the original dataset after correction to the lagged dataset
df = pd.merge(

df,

df lag 7,

how = 'left',

on = ['Customer ID', 'order date']
)

#fill in any blanks with 0
df['target 7'] = df['target 7'].fillna(0)

Listing 5.28 Merge Target Variable Data Back onto Main Dataset

Before we actually build the model, we should take a step back and think about our use
case. Our stakeholder wants to view the last 7 days; however, now is the easiest time to
add another interval. Given the number of customer orders, it’s worth adding a 2-week
or 14-day interval as well. Even if the stakeholder doesn’t end up using it, it could be a
natural next question. Having this already ready to review, shows you're well prepared
and goes over favorably with stakeholders. It also presents an opportunity for you to
identify additional insights between these different approaches that can bring value to
your stakeholder.

The code for this is shown in Listing 5.29, where we've executed all the same steps we
did for the 1-week lag but this time for 2 weeks. If you apply this same methodology
more than twice, you should convert the code into a function that you can input the
date interval. This will prevent the need to copy and paste the same code over and over
again!

#iselect only the customer id and order date fields

df lagging = df[['Customer ID', 'order date']]

ficreate lag for 2 weeks column
df lagging['order minus 15'] = pd.to datetime(
df lagging['order date']) - timedelta(days=15)

#icreate max_date column from order date
df lagging['max date'] = df lagging['order date']

217



5 Picking Your Model

#drop the originally named order date column
df lagging = df lagging.drop(columns=["order date'])

#join the 14 day lag with the lagged dataset
df lag 14 = pd.merge(

df[['Customer ID', 'order date']],

df lagging,

how = 'inner',

on = 'Customer ID'

)

#iselect only rows that fit the desired criteria
df lag 14 = df lag 14[

(df lag 14['order date'] > df lag 14['order minus 15']) &
(df lag 14['order date'] < df lag 14['max_date'])
]

#iselect only the customer ID and order date
df lag 14 = df lag 14[['Customer ID', 'order date']]

#drop the duplicates
df lag 14 = df lag 14.drop duplicates()

#icreate dummy column of all 1's
df lag 14['target 14'] =1

#join onto original dataset
df = pd.merge(

df,

df lag 14,

how = 'left’',

on = ['Customer ID', 'order date']
)

#fill the target field with 0's
df['target 14'] = df['target 14'].fillna(0)

Listing 5.29 Create 14-Day Target Variable

We're now ready to build the model! We'll build it in stages, since a full 40 columns

going into a logistic regression model isn’t the best idea. As a starting point, we’ll want

to evaluate the columns we think will have the most value. In Listing 5.30, we're adding
the columns that are likely to be the most valuable using double brackets ([[) and

assigning them to X. Then we're noting our target variable and assigning it to y.

218



5 Picking Your Model

#iselect only desired columns

X = df[[

'Total', 'KPT duration (minutes)', 'Rider wait time (minutes)',
'DistanceNumeric', 'Restaurant name Masala Junction',

'Restaurant name Swaad',

'Restaurant name_Tandoori Junction',

'Restaurant name_The Chicken Junction', 'Subzone Chittaranjan Park',
'Subzone DLF Phase 1', 'Subzone Greater Kailash 2 (GK2)',
'Subzone_Sector 135', 'Subzone Sector 4', 'Subzone Shahdara',
'Subzone_Sikandarpur', 'Subzone Vasant Kunj',

"Cancellation / Rejection
"Cancellation / Rejection
"Cancellation / Rejection
"Cancellation / Rejection
"Cancellation / Rejection

1]

reason Cancelled by Customer',
reason Cancelled by Zomato',
reason_Items out of stock',
reason Kitchen is full',
reason Merchant device issue’

#iselect target 7 as the target variable

y = df['target 7']

Listing 5.30 Select the Columns Most Likely to Be Predictive

Now that we’ve assigned these columns to X and y, we can move them into a standard

model, as shown in Listing 5.31. One difference you’ll see is that there are now parameter

options when instantiating our model (solver and random_state). Other than that, it’s
the same process we've seen before, just using the LogisticRegression function.

#iread in necessary libraries for the modeling process
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split

from sklearn.metrics import
from sklearn.metrics import

accuracy_score
roc_auc_score

#split the data into train and test

X train, X test, y train, y_

X,

Ys
test size=0.3,
random_state=42

)

#icreate logistic regression

test = train test split(

model

model = LogisticRegression(solver='liblinear', random state=42)

219



5 Picking Your Model

#fit the model to the data
model.fit(X train, y train)

Listing 5.31 Split Data into Test and Train Sets, Then Create the Model

Now that we have a model, we’ll create the predictions on the testing data and then eval-
uate how the model performs. In Listing 5.32, we're calculating two different approaches
to measuring the model’s value. The first is the accuracy score using the accuracy score
function. The second is the receiver operating characteristic (ROC) area under the curve
(AUC)—say that 10 times fast!—using the roc_auc_score function.

#fuse the model to predict on the test data
y _pred = model.predict(X test)

#icalculate and print the accuracy score
accuracy = accuracy score(y test, y pred)
print(f"Accuracy: {accuracy}")

#icalculate and print out the ROC AUC score
y_pred proba = model.predict proba(X test)[:, 1]
auc_score = roc_auc_score(y test, y pred proba)
print(f"ROC AUC Score: {auc_score:.4f}")

Listing 5.32 Create and Test Initial Logistic Regression Model

The results from each metric are different. We’ll discuss metrics in more detail in Chap-
ter 6, but here, accuracy represents how many times the model guesses either 1 or O cor-
rectly. The ROC AUC is more complex (and we’ll get there in Chapter 6, Section 6.2.6),
but anything below 0.7 is not a great model. The accuracy score we get when running
the model is 85%, while the ROC AUC score is 0.6. This may seem confusing initially, but
think about the data. Most people don’t order again within a week, meaning a model
that simply says that no one will order again in the next week would return what
appears to be a good accuracy score. That’s why the ROC AUC score is a better metric to
leverage, given its ability to handle how our data is distributed.

Since we also calculated the target for repeat orders within 14 days, let’s see what the
model looks like when we use that for the target variable in Listing 5.33.

#iselect y as the 2 week target
y = df["target 14']

#lexecute the train test split

X _train, X test, y train, y test = train test split(
X,
Y,
test size=0.3,

220



5 Picking Your Model

random state=42)

ficreate logistic regression model
model = LogisticRegression(solver='liblinear', random state=42)

#fit the model to the data
model.fit(X train, y train)

#luse the model to predict on the test data
y _pred = model.predict(X test)

#calculate and print the accuracy metric
accuracy = accuracy score(y test, y pred)
print(f"Accuracy: {accuracy}")

#icalculate and print the roc auc metric
y_pred proba = model.predict proba(X test)[:, 1]
auc_score = roc_auc_score(y test, y pred proba)
print(f"ROC AUC Score: {auc score:.4f}")

Listing 5.33 Rerun Using the 14-Day Target Variable Column

The results are even worse. The accuracy is 76%, and the ROC AUC score is 0.58. Neither
of these models are likely to be valuable in practice. You may have noticed how quickly
the model runs, which can be a significant benefit. However, it appears that the data
may be more complicated than a logistic regression model can handle. Instead, we'll try
out tree-based machine learning models to see how those algorithms handle this data-
set.

Use Case 3: Logistic Regression

Since this use case calls for predicting a number of crimes rather than a probability,
logistic regression isn’t the proper model.

5.5 Machine Learning Models

This section covers what is more traditionally considered machine learning. We’ll cover
tree-based models in increasing complexity. We'll start with the simpler decision tree
algorithm and then move to the random forest algorithm, which is a collection of deci-
sion trees. Lastly, we’ll discuss GBM, a more complex algorithm in which decision trees
learn from each other.

221



Jason Hodson
Applied Machine
Learning

Using Machine Learning to
Solve Business Problems

= Your practical introduction to
applied machine learning

= Select and implement machine
learning models to solve business
problems

= Evaluate model results and monitor
your models long term

@ www.sap-press.com/6170

The Author

Jason Hodson has worked in data-centric roles for nearly a decade, including
HR analytics, forecasting, and more. He is an experienced developer of large
data models and technical translator for stakeholders, peers, and team
members.

ISBN 978-1-4932-2758-7 » 440 pages * 02/2026

E-book: $54.99 « Print book: $59.95 - Bundle: $69.99 s Rheinwerk
Publishing



http://www.sap-press.com/6170
http://www.sap-press.com/6170

