


Kapitel 3

Unser erstes PyTorch-Modell

»Jede hinreichend fortschrittliche Technologie ist von Magie nicht zu 

unterscheiden.«
– Arthur C. Clarke, Autor und Physiker

Für mich fühlte sich das erste Deep-Learning-Modell, das ich trainiert habe, genauso 

an – wie Magie. Möglicherweise wird es Ihnen ähnlich gehen.

In diesem Kapitel legen wir die Grundlage für alle weiteren Kapitel. Sie werden lernen, 

wie PyTorch-Modelle trainiert werden.

Zunächst werden wir ein Modell von Grund auf trainieren und hierbei nahezu jeden 

Schritt »von Hand« implementieren. Das wird Ihnen helfen, ein besseres Verständnis 

für die Arbeitsweise von PyTorch zu erlangen.

Danach werden wir sukzessiv mehr Features von PyTorch nutzen, um unsere Skripte 

so modular wie möglich zu definieren. Im Idealfall soll unser Skript am Ende so modu-

lar sein, dass ein anderer Datensatz verwendet werden kann und das Modell trainiert 

wird, ohne dass an diversen Stellen im Code Anpassungen notwendig sind.

Auf dem Weg werden wir uns in Abschnitt 3.1 zunächst mit dem Datensatz vertraut 

machen und diesen vorbereiten. In Abschnitt 3.2 trainieren wir unser Modell, das wir 

im Anschluss verbessern.

Im Anschluss werden Sie in Abschnitt 3.3 lernen, wie eine Modellklasse definiert wird. 

Das Konzept der Batches wird in Abschnitt 3.4 eingeführt. Der Datensatz wird mittels 

Dataset- und DataLoader-Klasse abstrahiert. Dieser Thematik widmen wir uns in 

Abschnitt 3.5.

Da wir nicht immer wieder das Modell neu trainieren wollen, erkläre ich in Abschnitt 

3.6, wie Modelle und deren Modellgewichte gespeichert und geladen werden können.

Zum Abschluss dieses Kapitels widmen wir uns in Abschnitt 3.7 dem Data Sampling. 

Hierbei geht es letztlich darum, sicherzustellen, dass das Modell zu generalisieren 

lernt, damit es nicht nur die Trainingsdaten gut vorhersagen kann, sondern im besten 

Fall jegliche Daten, die es noch nie zuvor gesehen hat.
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3 Unser erstes PyTorch-Modell
Ganz allgemein kann gesagt werden, dass es in diesem Kapitel weniger um Regression 

geht, sondern um das gesamte »Drumherum« des Modelltrainings.

Aber bevor wir in unser erstes Modelltraining einsteigen, müssen wir uns zunächst 

mit dem Datensatz vertraut machen, für den das Modell trainiert werden soll.

3.1    Datenvorbereitung

Wir arbeiten mit einem Datensatz von Kaggle (www.kaggle.com). Kaggle ist eine 

Online-Community mit speziellem Fokus auf Datenanalysten und Data Scientists. 

Mit dieser Plattform ist es möglich, Datensätze zu erforschen, Analysen durchzufüh-

ren und von anderen zu lernen, die bereits mit den Daten gearbeitet haben. Es ist eine 

sehr wertvolle Quelle von Wissen.

Im Speziellen werden wir mit dem Social-Anxiety-Datensatz (https://www.kaggle.com/

datasets/natezhang123/social-anxiety-dataset) arbeiten. Er enthält mehr als 10.000 

Stichproben von Personen, die unterschiedlich starke soziale Ängste aufweisen. Das 

Angst-Level folgt einer Punkteskala von 1 bis 10. Das ist die Zielgröße (oder auch 

abhängige Größe genannt), die vom Modell letztlich vorhergesagt werden soll.

Abbildung 3.1 zeigt einen Ausschnitt des Datensatzes.

Abbildung 3.1  Ein Ausschnitt des Social-Anxiety-Datensatzes 

3.1.1    Feature-Typen 

Erklärt werden kann die Zielgröße von verschiedenen unabhängigen Variablen. Hier-

zu gehören demografische Merkmale wie Alter, Geschlecht oder Beruf. Weitere Merk-

male sind den Bereichen »allgemeine Gesundheit«, »mentale Indikatoren« sowie 

»mentale Gesundheit« zuzuordnen.

 

Unabhängige und abhängige Features

Die Begriffe unabhängige und abhängige Features beziehen sich auf die Rollen, die 

Variablen (Spalten) in einem Datensatz spielen. Das Konzept kommt vor allem beim 

überwachten (supervised) Lernen zum Einsatz.
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3.1 Datenvorbereitung
▸ Unabhängige Features (engl. Independent Features) werden auch Eingabevariab-

len, Prädiktoren oder Merkmale genannt. Das sind die Eingaben für ML-Modelle. 

Man geht davon aus, dass diese Features die Ursachen oder beeinflussende Fak-

toren für die abhängige Variable sind.

▸ Abhängige Features (engl. Dependent Features) werden in der Statistik auch Ziel-

variablen, Ausgabevariablen oder Label genannt. Das ist der Ausgabewert, der 

letztlich vom Modell vorhergesagt wird.

Das ML-Modell lernt somit den Zusammenhang bzw. die Muster, die zwischen den 

unabhängigen und der abhängigen Variable bestehen. Auf der Basis können, nach-

dem das Modell trainiert wurde, zukünftige Werte der abhängigen Variable basierend 

auf neuen Werten der unabhängigen Features vorhergesagt werden.

Am Beginn jedes Skripts laden wir alle benötigten Pakete und Klassen. Der Datensatz 

kommt wie zuvor erwähnt von Kaggle und wird direkt mittels des hauseigenen 

Pakets kagglehub importiert. Die Daten werden als pandas-Dataframe importiert. Das 

Paket numpy benötigen wir, um später die Daten von einem Dataframe in ein numpy-

Array umzuwandeln.

Auf das Thema Skalierung der Daten gehe ich später noch ein. An dieser Stelle laden 

wir den StandardScaler aus dem Paket sklearn. Das Paket os nutzen wir immer, wenn 

wir mit Funktionen des Betriebssystems interagieren wollen.

Zur Visualisierung der Daten und Ergebnisse verwenden wir seaborn und matplotlib:

#%% packages
import numpy as np
import pandas as pd
import kagglehub
import os
from sklearn.preprocessing import StandardScaler
import seaborn as sns
import matplotlib.pyplot as plt 

Listing 3.1  Datenvorbereitung – Paketimport

Kaggle bietet uns einen einfachen Weg, um die Daten mithilfe des Pakets kagglehub

in Python zu importieren. Wir müssen nur den Datensatz über dessen ID laden. Wäh-

rend des Ladens wird der Datensatz auf die Festplatte kopiert und der Ordner zurück-

geliefert. In dem Ordner ist die Datei gespeichert und kann nun direkt über die Funk-

tion pd.read_csv() geladen werden. Nun haben wir die Daten erfolgreich geladen und 

den Dataframe anxiety erstellt:
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3 Unser erstes PyTorch-Modell
#%% Download latest version
path = kagglehub.dataset_download("natezhang123/social-anxiety-dataset")
print("Path to dataset files:", path)
#%% data import
anxiety_file = os.path.join(path, 'enhanced_anxiety_dataset.csv')
anxiety = pd.read_csv(anxiety_file) 

Path to dataset files: C:\Users\BertGollnick\.cache\kagglehub\datasets\
natezhang123\social-anxiety-dataset\versions\2 

Listing 3.2  Datenvorbereitung – Paket- und Datenimport (Quelle: 030_FirstModel_Regres-

sion\DataPrep.py)

Schauen wir uns nun an, welche Spalten der Datensatz aufweist und wie viele Zeilen 

und Spalten er hat:

#%% check data
print(f"anxiety.columns: {anxiety.columns}")
print(f"anxiety.shape: {anxiety.shape}") 
anxiety.columns: Index(['Age', 'Gender', 'Occupation', 'Sleep Hours',
       'Physical Activity (hrs/week)', 'Caffeine Intake (mg/day)',
       'Alcohol Consumption (drinks/week)', 'Smoking',
       'Family History of Anxiety', 'Stress Level (1-10)', 
       'Heart Rate (bpm)', 'Breathing Rate (breaths/min)', 
       'Sweating Level (1-5)', 'Dizziness', 'Medication', 
       'Therapy Sessions (per month)', 'Recent Major Life Event',
       'Diet Quality (1-10)', 'Anxiety Level (1-10)'],
      dtype='object')
anxiety.shape: (11000, 19) 

Insgesamt umfasst der Datensatz 11.000 Stichproben und 19 Features. Einige davon 

beinhalten keine numerischen Informationen, sondern Texte.

Das ist zum Beispiel bei dem Feature Smoking der Fall, das die zwei Zustände Yes und 

No aufweist.

3.1.2    Datentypen

Vergegenwärtigen wir uns an dieser Stelle, welche Typen von Daten es gibt.

 

Typen von Daten

Es werden im Allgemeinen zwei Haupttypen bei Daten unterschieden: numerische 

Daten und kategorische Daten:
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3.1 Datenvorbereitung
▸ Numerische Daten werden auch quantitative Daten oder metrische Daten ge-

nannt. Diese Daten bestehen aus Zahlen, die gemessen werden können.

▸ Kategorische Daten werden auch qualitative oder nominale Daten genannt. Sie 

beschreiben Qualitäten oder Kategorien. Sie können nicht im herkömmlichen 

Sinne gemessen oder gezählt werden. Typische Beispiele sind das Geschlecht oder 

der Beruf. Man kann hier noch weiter unterteilen in nominale Daten, die ungeord-

net sind (z. B. Lieblingsfarben) und ordinale Daten. Letztere sind Kategorien mit 

einer natürlichen Reihenfolge. Ein ganz übliches Beispiel sind Bildungsabschlüsse.

Da PyTorch nur numerische Daten verarbeiten kann, müssen alle Features, die kate-

gorische Informationen enthalten, in numerische Informationen umgewandelt wer-

den. Das wird mittels One-Hot Encoding erreicht.

3.1.3    One-Hot Encoding

One-Hot Encoding ist eine spezielle Technik, die im Machine Learning (ML) eingesetzt 

wird, um kategorische Daten in ein numerisches Format umzuwandeln. Nur so kön-

nen die Daten von Algorithmen verarbeitet werden.

Wie funktioniert One-Hot Encoding?

Das zugrunde liegende Konzept können wir uns anhand eines Beispiels verdeutli-

chen. Stellen Sie sich vor, dass in einem Datensatz über Personen die Spalte Lieblings-

farbe erfasst wurde:

Beim One-Hot Encoding werden alle erfassten eindeutigen Werte als einzelne Spalte 

dargestellt. Nach der Anwendung von One-Hot Encoding wird die Spalte Lieblingsfar-

be in so viele Spalten umgewandelt, wie es eindeutige Ausprägungen gibt. In unserem 

Beispiel gibt es drei eindeutige Ausprägungen [Gelb, Grün, Rot]. Aus diesen entstehen 

die Spalten Lieblingsfarbe_gelb, Lieblingsfarbe_grün und Lieblingsfarbe_rot.

Diese Spalten enthalten nur binäre Informationen – also 1, wenn es der Lieblingsfarbe 

entspricht, und 0, falls nicht. Für jede Person wird dann eine 1 in die Spalte eingetra-

gen, die der Lieblingsfarbe entspricht.

Person Lieblingsfarbe

Bob Gelb

Stuart Grün

Kevin Rot

Gru Grün
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3 Unser erstes PyTorch-Modell
Die oben dargestellte Tabelle sieht nach dem One-Hot Encoding dann wie folgt aus:

Man kann sogar eine Spalte weglassen, ohne Informationen zu verlieren, weil sich 

diese Spalte dann implizit aus den anderen Spalten ergibt. Konkret funktioniert das, 

wenn es nur die Farben Gelb, Grün und Rot gibt und jede Person genau eine Lieblings-

farbe besitzt.

Vorteile von One-Hot Encoding

In dieser Form sind die Informationen nun numerisch dargestellt und eignen sich 

daher für die meisten ML-Algorithmen. Ein weiterer Vorteil ist, dass es keine implizite 

Ordnung gibt. Stellen Sie sich vor, die ursprünglichen Farben wären numerisch 

kodiert gewesen, zum Beispiel Gelb = 1, Grün = 2, Rot = 3. Dann hätte die ursprüngliche 

Form bereits formell die Anforderungen von ML-Algorithmen erfüllt, da die Informa-

tion numerisch kodiert worden wäre. Aber der Algorithmus hätte implizit eine Ord-

nung der Farben »angenommen«, und zwar in der Form, dass Grün doppelt so viel 

zählt wie Gelb und Rot dreimal so viel wie Gelb, was keinen Sinn macht. Solche Pro-

bleme können mit One-Hot Encoding umgangen werden.

Nachteile von One-Hot Encoding

Ein eindeutiger Nachteil ist, dass die Anzahl der Dimensionen zunimmt. Gerade 

wenn es viele verschiedene Ausprägungen gibt, schlägt sich das in einer großen 

Anzahl neuer Features nieder.

Damit verbunden ist eine erhöhte Trainingszeit des Modells sowie der sogenannte 

Fluch der Dimensionalität1. Damit sind Probleme gemeint, die auftreten, wenn die 

Anzahl der Features im Vergleich zur Anzahl der Datenpunkte groß ist.

Wenden wir nun diese neu erlernte Technik auf unsere Daten an. Dankenswerterwei-

se haben die Entwickler des pandas-Pakets uns die Arbeit hier sehr leicht gemacht, 

sodass wir die One-Hot-Kodierung mit der Methode pd.get_dummies erstellen können.

Listing 3.3 verdeutlicht, wie das One-Hot Encoding implementiert wird. Neben dem 

Datensatz anxiety werden einige weitere Parameter übergeben. Der Parameter drop_

Person Lieblingsfarbe_gelb Lieblingsfarbe_grün Lieblingsfarbe_rot

Bob 1 0 0

Stuart 0 1 0

Kevin 0 1 0

Gru 0 1 0

1 Der Begriff »Fluch der Dimensionaliät« wurde vom Mathematiker Richard E. Bellman geprägt. Er 
verwendete den Begriff erstmals in den 1950er-Jahren.
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3.1 Datenvorbereitung
first sorgt dafür, dass die erste kodierte Spalte weggelassen wird und man Dummy-

Variablen erhält:

anxiety_dummies = pd.get_dummies(anxiety, drop_first=True, dtype=int)
anxiety_dummies.head()
#%% df shape
anxiety_dummies.shape 

(11000, 31) 

Listing 3.3  Datenvorbereitung – One-Hot Encoding (Quelle: 030_FirstModel_Regression\

DataPrep.py)

Durch die Anwendung dieser Technik hat sich die Anzahl der Spalten von 19 auf 31 

erhöht. Nun können wir zum besseren Verständnis einen Blick auf einen Zusammen-

hang der Daten werfen.

3.1.4    Explorative Datenanalyse

Insbesondere schauen wir uns an, wie sich das Schlafverhalten auf die Angststörung 

auswirkt.

Der entsprechende Code ist in Listing 3.4 dargestellt:

sns.regplot(x='Sleep Hours', y='Anxiety Level (1-10)', data=anxiety_
dummies, color='blue', line_kws={'color': 'red'})
# add a title
plt.title('Sleep Hours vs Anxiety Level')
# add x title
plt.xlabel('Sleep Hours')
# add y title
plt.ylabel('Anxiety Level') 

Listing 3.4  Datenvorbereitung – Datenvisualisierung (Quelle: 030_FirstModel_Regression\

DataPrep.py)

Es ergibt sich das in Abbildung 3.2 gezeigte Bild für den Zusammenhang. Die Daten-

punkte werden als Punktdiagramm dargestellt. Zusätzlich ist die lineare Korrelation 

zwischen den beiden Größen als Linie verdeutlicht.

Der Zusammenhang ist ziemlich eindeutig: Mit schlechterem Schlaf (geringe Schlaf-

dauer) steigt das Angst-Level.

Das ist nur ein möglicher Zusammenhang. Wir haben insgesamt 30 unabhängige Fea-

tures, die wir uns ansehen könnten.
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3 Unser erstes PyTorch-Modell
Abbildung 3.2  Zusammenhang zwischen Schlaf und Angststörung

Um schnell einen Überblick zu erhalten, kann man die Korrelation zwischen den 

unabhängigen Features und der Zielgröße ermitteln und in einer Korrelationsmatrix

als Heatmap darstellen. Eine Heatmap ist eine Diagrammform, bei der die kategori-

schen Informationen als Farbwerte codiert werden. Hierbei wird die lineare Korrela-

tion zwischen allen Größen ermittelt und kann anschließend als Farbwert visualisiert 

werden.

Listing 3.5 verdeutlicht, wie die Korrelationen ermittelt werden. Der besseren Über-

sichtlichkeit halber werden nur numerische Features analysiert. Der gefilterte 

Pandas-Dataframe numerical_features besitzt die Methode corr(). Mit ihr kann die 

lineare Korrelation zwischen allen Features ermittelt werden. Bei N Spalten ergibt 

sich hieraus eine Korrelationsmatrix corr mit den Dimensionen NxN.

#%% check correlation
# Select only numerical features for correlation analysis
numerical_features = anxiety.select_dtypes(include=['int64', 'float64'])
corr = numerical_features.corr() 

Listing 3.5  Datenvorbereitung – Ermittlung der Korrelation

Listing 3.6 zeigt, wie diese Korrelationen nun mit sns.heatmap visualisiert werden 

können. Da die Matrix symmetrisch ist, reicht es aus, das obere oder untere Dreieck 

zu betrachten. Das können Sie über eine Maskierung mask implementieren, die dann 
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3.1 Datenvorbereitung
als Parameter der Heatmap übergeben wird. Diese Maske besteht aus NxN Boolean-

Werten und gibt an, welche Werte somit dargestellt werden sollen:

# Create mask for upper triangle
mask = np.triu(np.ones_like(corr, dtype=bool))
 
# Plot correlation heatmap
sns.heatmap(corr, annot=False, cmap='coolwarm', vmin=-1, vmax=1, mask=mask)
plt.title('Correlation Heatmap (Numerical Features Only)', fontsize=10)
plt.xticks(rotation=45, ha='right', fontsize=8)
plt.yticks(rotation=0, ha='right', fontsize=8)
plt.tight_layout()
plt.show() 

Listing 3.6  Datenvorbereitung – Visualisierung der Korrelationen

Unsere Visualisierung der numerischen Features sehen Sie in Abbildung 3.3. Hierbei 

reicht die Farbcodierung von –1 über 0 bis zu +1.

Abbildung 3.3  Korrelation der numerischen Features

Ein Korrelationskoeffizient von +1 stellt den maximal positiven Zusammenhang dar. 

Das kann man so interpretieren, dass ein steigender Wert des einen Features mit 

einem steigenden Wert des anderen Features einhergeht. Man kann hier nicht sagen, 
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3 Unser erstes PyTorch-Modell
dass der steigende Werte des einen Features den steigenden Wert des anderen Fea-

tures bedingt oder zur Folge hat. Das würde heißen, dass eine Kausalität zwischen den 

beiden Größen herrscht. Es heißt erst mal nur, dass es einen Zusammenhang gibt. Ob 

dieser Zusammenhang kausal ist, kann auf dieser Basis jedoch nicht gesagt werden.

Umgekehrt gilt, dass ein Korrelationskoeffizient von –1 einen perfekt negativen 

Zusammenhang darstellt. Das heißt, dass ein steigender Wert des einen Features mit 

einem fallenden Wert des anderen Features einhergeht.

Wir sind vor allem an den Korrelationen zwischen unserer Zielgröße Anxiety Level (1-
10) und den beschreibenden Features interessiert. Diese sind in der letzten Zeile von 

Abbildung 3.3 dargestellt. An der Stelle wird deutlich, dass das Anxiety Level stark mit 

Sleep Hours und Stress Level korreliert ist.

Bis zu diesem Punkt haben wir die Daten in einem pandas-Dataframe gespeichert.

Wir müssen nun zwei Dinge bearbeiten: Erstens müssen wir die Daten in unabhängi-

ge und abhängige Features trennen, und zweitens müssen wir die Daten in numpy-

Arrays umwandeln, also in reine Zahlenmatrizen.

Beide Schritte werden im folgenden Listing 3.7 vereint. Die unabhängigen Features 

werden im Objekt X und die abhängigen im Objekt y gespeichert. Diese Begrifflichkeit 

stammt aus der Mathematik. Das steht im Widerspruch zu Namenskonventionen in 

Python – vor allem das große X, aber da die Begriffe so verbreitet sind, folge ich an 

dieser Stelle der statistischen Konvention.

Die unabhängigen Features entsprechen allen Features des anxiety_dummies-Daten-

satzes, außer der Spalte mit der Zielgröße. Im Gegensatz dazu steht das unabhängige 

Feature y, in dem nur die Zielgröße gespeichert wird.

Letztlich überprüfen wir die Ausgabe, indem wir uns die Größen der Objekte veran-

schaulichen:

#%% convert data to numpy array
X = np.array(anxiety_dummies.drop(
    columns=['Anxiety Level (1-10)']), 
    dtype=np.float32)
y = np.array(anxiety_dummies[['Anxiety Level (1-10)']], 
    dtype=np.float32)
print(f"X shape: {X.shape}, y shape: {y.shape}") 

X shape: (11000, 30), y shape: (11000, 1) 

Listing 3.7  Datenvorbereitung – Umwandlung der Daten in numpy-Arrays 
(Quelle: 030_FirstModel_Regression\DataPrep.py)

Von den 31 ursprünglichen Spalten sind nun 30 im Objekt X und eine im Objekt y über-

nommen worden.
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3.1 Datenvorbereitung
3.1.5    Skalierung

Im nächsten Schritt geht es um die Skalierung der Daten. Hier schauen wir uns 

zunächst an, warum dieser Schritt überhaupt notwendig ist.

 

Daten-Skalierung

Die Skalierung der Daten spielt beim Training vieler Modelle eine entscheidende Rolle. 

Warum ist das so? Rohdaten, die in ihren Werten sehr stark variieren, können beim 

Training zu Problemen führen. Große Werte können dazu führen, dass Gradienten 

während des Backpropagation-Prozesses »explodieren«. Dadurch würde das Training 

instabil werden und sogar ganz scheitern.

Umgekehrt könnten sehr kleine Werte zu verschwindenden Gradienten (siehe Ab-

schnitt 2.7.2) führen, wodurch das Lernen ebenso instabil werden könnte.

Die Skalierung der Daten wird mit dem Ziel durchgeführt, die Werte der Eingabefea-

tures in einen ähnlichen Wertebereich zu transformieren. Hierfür gibt es verschiede-

ne Arten:

▸ Eine geläufige Art ist die Min-Max-Skalierung. Dabei werden die Daten üblicher-

weise in den Wertebereich 0 bis 1 skaliert.

▸ Ein anderer Ansatz ist die Standardisierung. Dabei werden die Daten so transfor-

miert, dass sie um einen Mittelwert von 0 schwanken und eine Standardabwei-

chung von 1 aufweisen. Wichtig ist hierbei auch, dass die Skalierung konsistent ist, 

um vergleichbare Ergebnisse zu erzielen.

Die Parameter der Skalierung (Mittelwerte und Standardabweichungen) sollten aus-

schließlich auf den Trainingsdaten berechnet werden und erst dann auf den Validie-

rungs- und Testdatensatz angewandt werden. So kann Data Leakage vermieden wer-

den. Auf diese Aspekte zum Thema Datenaufteilung komme ich in Abschnitt 3.7, 

»Data Sampling«, zu sprechen.

Die Skalierung, in unserem Falle die Standardisierung, kann mithilfe der Klasse Stan-

dardScaler durchgeführt werden. Zunächst wird eine Instanz der Klasse erstellt, und 

im Anschluss werden die Daten der Methode fit_transform übergeben, die die Para-

meter ermittelt und die Standardisierung durchgeführt wird. Das finale Objekt X

beinhaltet die standardisierten Daten.

#%% normalize data
scaler = StandardScaler()
X = scaler.fit_transform(X) 

Damit haben wir unsere Daten hinreichend vorbereitet und sind in der Lage, unser 

erstes Modell zu trainieren.
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3 Unser erstes PyTorch-Modell
3.2    Modell-Erstellung

In unserem ersten Modell werden wir noch viele Details selbst implementieren, da 

Ihnen das beim Verstehen des Modells helfen wird. So werden wir zum Beispiel die 

Vorhersagen des Modells mittels Matrixmultiplikation ermitteln, die Modellparame-

ter selbst implementieren und die Anpassung der Modellparameter eigenständig 

vornehmen.

Die hierbei trainierten Modellparameter, Slopes und Offsets, bezeichnen die zwei 

wichtigsten lernbaren Parameter innerhalb eines Neurons oder einer linearen Trans-

formation.

Später werden wir diese Aufgaben mehr und mehr dem Framework PyTorch überge-

ben. Würden wir das aber von vornherein machen, blieben viele Aspekte des Modell-

trainings Blackboxes, die Sie nicht ganz verstehen würden.

Letztlich trainieren wir ein Modell, um y (das Angstlevel) auf Basis einer Vielzahl von 

unabhängigen Features vorherzusagen:

y = w1 ∙ X1 + w2 ∙ X2 + … + w30 ∙ X30 + b

3.2.1    Datenimport

Wir beginnen wie gehabt mit dem Import der Pakete. Da wir direkt auf der Datenvor-

bereitung des vorherigen Abschnittes aufbauen, importieren wir die unabhängigen 

Features X und das abhängige Feature y direkt aus dem Skript Dataprep. Wir laden auch 

numpy und torch für die Erstellung von Tensoren. Für die Visualisierung werden sea-
born und matplotlib geladen. Letztlich nutzen wir den R2-Wert zur Evaluierung des 

Modells und laden daher die Funktion r2_score von sklearn:

#%% packages
from DataPrep import X, y
import torch
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score 

Listing 3.8  Unser erstes Modell – Paketimport (Quelle: 030_FirstModel_Regression\00_

LinRegFromScratch.py)

PyTorch arbeitet nur mit Tensoren, sodass wir zunächst die numpy-Arrays mit 

torch.from_numpy in Tensoren umwandeln:

#%% convert to tensor
X_tensor = torch.from_numpy(X.astype(np.float32))
y_tensor = torch.from_numpy(y.astype(np.float32))  # Ensure y is float32 
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3.2.2    Modelltraining

Jetzt haben wir die Daten so weit in Form gebracht, dass wir loslegen können. Unser 

Regressionsmodell wird letztlich durch einen Bias-Parameter sowie einen Steigungs-

parameter (Slope oder Weight) beschrieben. Für jedes Feature gibt es einen Slope-

Parameter und insgesamt einen Bias-Parameter.

Diese Terme w (für weight) und b (bias) werden zunächst initialisiert. Das können wir 

mit torch.zeros implementieren. Wichtig ist hierbei, dass der Parameter requires_
grad auf True gesetzt werden. Nur so kann das automatische Rückwärtsrechnen (Back-

propagation) und das Trainieren des Modells ermöglicht werden.

#%% training
# Initialize weights with smaller values to prevent exploding gradients
w = torch.zeros(X.shape[1], 1, requires_grad=True, dtype=torch.float32)
b = torch.zeros(1, requires_grad=True, dtype=torch.float32)
print(f"w shape: {w.shape}, b shape: {b.shape}") 
w shape: torch.Size([30, 1]), b shape: torch.Size([1]) 

Der Trainingsprozess wird über einige Parameter beeinflusst. Die wichtigsten sind die 

Anzahl der Epochen sowie die Learning Rate.

Bevor wir das Training starten, schauen wir uns diese beiden wichtigen Parameter 

noch einmal genauer an. Beginnen wir mit den Epochen.

 

Epoche

Unser Trainingsdatensatz hat 11.000 Samples. Diese werden üblicherweise in kleine-

ren Häppchen dem Modell übergeben. Diese Häppchen nennt man Batches, und zu 

dem Konzept kommen wir noch. Nachdem alle Samples einmal verwendet wurden, 

um die Gewichte des Modells anzupassen, ist die Epoche abgeschlossen.

Der Prozess wiederholt sich, sodass das Modell dieselben Daten viele Male »sieht«, 

um aus ihnen zu lernen.

Typischerweise trainiert man ein Modell über mehrere Epochen, wobei mit jeder Epo-

che die Muster in den Daten immer besser erfasst werden.

Nachdem Sie nun das Konzept der Epochen kennen, erkläre ich noch, was es mit der 

Learning Rate auf sich hat.

 

Learning Rate

Stellen Sie sich das Modelltraining wie die Suche nach dem tiefsten Punkt in einem 

unbekannten Tal vor. Einem Wanderer, der vom Berg herabsteigt, wurden die Augen 

verbunden und er muss sich langsam vorantasten. Er kann nun entscheiden, ob seine 

Schritte eher groß oder klein sein sollen. Die Schrittlänge entspricht der Learning Rate.
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Bei großen Schrittlängen (hohen Learning Rates) deckt unser Wanderer schnell ein 

großes Gebiet ab. Er könnte aber auch schnell am tiefsten Punkt vorbeigehen und 

schon wieder den gegenüberliegenden Berg hinaufsteigen.

Umgekehrt könnte er sehr kleine Schritte (geringe Learning Rates) wählen, um sich 

sehr vorsichtig fortzubewegen. In diesem Fall ist die Wahrscheinlichkeit hoch, dass er 

genau den tiefsten Punkt findet, aber es könnte bis dahin relativ lange dauern. Es 

könnte aber auch sein, dass er in einem lokalen Minimum stecken bleibt.

Die Learning Rate definiert somit, wie zügig oder vorsichtig der tastende Wanderer 

das Tal des Fehlers erkundet, um den optimalen Punkt zu finden.

Jetzt kann es aber wirklich losgehen! Wir definieren diese beiden Parameter.

EPOCHS = 100
LEARNING_RATE = 0.01 

Nun kommen wir zum eigentlichen Kern des Modelltrainings: zu der Trainingsschlei-

fe, die in Listing 3.9 implementiert wird.

Die Daten werden dem Modell 100-mal gezeigt. Das wird mit einer for-Schleife über 

die EPOCHS implementiert. Wie gut das Modell lernt, können Sie begutachten, indem 

Sie die Verluste studieren. Diese werden in jeder Epoche extrahiert und der Liste loss_

list hinzugefügt.

Innerhalb der Schleife werden die immer gleichen Schritte durchlaufen:

1. Im Forward-Pass werden die Vorhersagen erstellt. Hierbei werden die unabhängi-

gen Features mit den Modellgewichten multipliziert sowie die Aktivierungsfunk-

tionen angewandt.

2. Diese Vorhersagen werden mit den richtigen Ergebnissen verglichen, und dabei 

wird der Verlust berechnet. Hierfür gibt es verschiedene Verlustfunktionen, wie Sie 

in Kapitel 2 gelernt haben. Für Regressionsmodelle ist der Mean Squared Error-Ver-

lust (MSE-Loss) eine gute Wahl.

3. Nun können die Gradienten berechnet werden. Hierfür führen wir loss.back-

ward() aus, und sämtliche Gradienten werden ermittelt.

4. Diese Gradienten werden jetzt genutzt, um die Modellgewichte zu aktualisieren. 

Dabei wird die Lernrate mit den Gradienten multipliziert und diese Korrektur vom 

bisherigen Modellgewicht abgezogen.

5. Bevor die nächste Epoche startet, müssen die Gradienten auf 0 zurückgesetzt wer-

den, da sie sich sonst aufsummieren würden und das Ergebnis verfälscht werden 

würde.

6. Der Verlustwert der aktuellen Epoche wird der Gesamtliste aller Verluste hinzuge-

fügt.
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7. Zum Überprüfen des Modelltrainings wird jeweils die aktuelle Epoche sowie der 

aktuelle Verlust ausgegeben.

loss_list = []
for epoch in range(EPOCHS):
    # 1. Forward pass
    y_predict = torch.matmul(X_tensor, w) + b
    
    # 2. Calculate loss (MSE)
    loss = torch.nn.functional.mse_loss(y_predict, y_tensor)
    
    # 3. Backward pass
    loss.backward()
    
    # 4. Update weights and biases
    with torch.no_grad():
        w -= LEARNING_RATE * w.grad
        b -= LEARNING_RATE * b.grad
        # 5. Zero gradients after using them
        w.grad.zero_()
        b.grad.zero_()
    
    # 6. Store loss for plotting
    loss_list.append(loss.item())
    
    # 7. Print loss for this epoch
    print(f"Epoch {epoch}, Loss: {loss.item():.4f}") 

Epoch 0, Loss: 19.9446
Epoch 1, Loss: 19.0938
...
Epoch 98, Loss: 1.5858
Epoch 99, Loss: 1.5732 

Listing 3.9  Unser erstes Modell – Trainingsschleife (Quelle: 030_FirstModel_Regression\

00_LinRegFromScratch.py)

Wir können hier bereits in der Ausgabe beobachten, wie das Training voranschreitet 

und die Verluste immer geringer werden.

3.2.3    Modell-Evaluierung

Das können wir jetzt aber auch noch einmal in einer Grafik visualisieren (siehe Abbil-

dung 3.4). Der dazugehörige Code ist in Listing 3.10 dargestellt. Die Verluste, die in der 
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Liste loss_list gespeichert sind, werden über der Anzahl der Epochen EPOCHS als Lini-

endiagramm gezeigt. Hierfür nutzen wir seaborn mit der Funktion sns.lineplot:

#%% plot loss
sns.lineplot(x=range(EPOCHS), y=loss_list)
plt.title('Loss over Epochs')
plt.xlabel('Epoch [-]')
plt.ylabel('Loss [-]') 

Listing 3.10  Unser erstes Modell – Visualisierung der Verluste (Quelle: 030_FirstModel_

Regression\00_LinRegFromScratch.py)

Abbildung 3.4 zeigt das Ergebnis des Modelltrainings.

Abbildung 3.4  Unser erstes Modell – Verluste und Epochen

Der Verlust sinkt kontinuierlich mit jeder weiteren Epoche. Man kann hier aber auch 

schon erkennen, dass das Modell zwar immer weniger Verluste aufweist, dass sich die 

Verluste aber asymptotisch einer Grenze annähern. Der Frage nach der optimalen 

Trainingsdauer werden wir uns an späterer Stelle noch einmal zuwenden.

Selten sieht das Bild so »sauber« aus wie hier. Üblicherweise gibt es mehr Fluktuation, 

also auch Epochen, in denen die Verluste kurzzeitig wieder leicht steigen, bevor sie 

dem längerfristigen Trend der fallenden Verluste folgen.

Schauen wir uns als Nächstes die Modellgewichte (die Steigungswerte w und den Off-

setwert b) näher an:

#%% check results
print(f"Weights: {w.detach().numpy().flatten()}, Bias: {b.item()}") 
70



3.2 Modell-Erstellung
Weights: [-0.09916524 -0.5292779  -0.16298231  0.34272027  0.06862636  
...
Bias: 3.408252716064453 

3.2.4    Modell-Inferenz

Letztlich könnten wir in diesem einfachen Fall diese Werte nutzen und die Berech-

nung auf Basis der Formel zur Berechnung der Regression durchführen.

Wir erreichen das, indem wir die unabhängigen Features mit den Modellgewichten 

multiplizieren. Wichtig ist hierbei, dass die Berechnung innerhalb des Scopes von 

torch.no_grad() durchgeführt wird. Damit wird verhindert, dass Gradienten berech-

net werden. Wir befinden uns hier in der Modell-Inferenz, also beim Testen des 

Modells – im Gegensatz zum Modelltraining. Während der Modell-Inferenz möchten 

wir keine Operationen ausführen, die das Netzwerk beeinflussen könnten, aber nicht 

Teil des Trainingsprozesses sein sollen. Ein positiver Nebeneffekt ist, dass hiermit 

auch Ressourcen wie Speicher und Rechenzeit geschont werden können. Es wird 

sichergestellt, dass bestimmte Operationen nicht fälschlicherweise in die Gradien-

tenberechnung einfließen.

# %%
with torch.no_grad():
    y_pred = (torch.matmul(X_tensor, w) + b).detach().numpy().flatten() 

Die Vorhersage y_pred haben wir berechnet und sie zusammen mit den tatsächlichen 

Werten y dargestellt. Listing 3.11 zeigt den entsprechenden Code. Wir nutzen die Funk-

tion sns.regplot(), um ein Streuungsdiagramm mit überlagerter Regressionsgerade 

zu erstellen. Die Datenpunkte sind blau dargestellt mit einem Transparenzwert von 

0.1. Letzterer sorgt dafür, dass in Bereichen, in denen viele Werte übereinanderliegen, 

die Punkte in einem intensiveren Blau dargestellt sind, und dass in Bereichen mit 

sehr wenigen Punkten die Punkte eher in einem schwachen Blau zu sehen sind. 

Zusätzlich ist die Regressionsgerade als rote Linie zu sehen.

# %% visualise correlation
sns.regplot(x=y_pred, y=y, color='red', 
            scatter_kws={'s': 10, 
                         'color': 'blue', 
                         'alpha': 0.1})
plt.title('Predicted Anxiety Level vs Actual Anxiety Level')
plt.xlabel('Predicted Anxiety Level [-]')
plt.ylabel('Actual Anxiety Level [-]') 

Listing 3.11  Unser erstes Modell – Visualisierung der Korrelationen (Quelle: 030_FirstMo-

del_Regression\00_LinRegFromScratch.py)
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Das Ergebnis ist ein Korrelationsdiagramm, das Sie in Abbildung 3.5 sehen. Hierbei ist 

das tatsächliche Angst-Level über dem vorhergesagten Angst-Level geplottet.

Die Korrelation ist positiv und im Mittel wird ein Angst-Level von 5 auch als 5 vorher-

gesagt. Aber natürlich gibt es Streuung in den Daten, sodass in manchen Fällen dann 

auch Werte zwischen 1 und 7 vorhergesagt werden.

Mit dieser Darstellung können Sie sich einen guten Überblick darüber verschaffen, in 

welchen Bereichen das Modell gut funktioniert und in welchen vielleicht noch Ver-

besserungen notwendig wären.

Abbildung 3.5  Unser erstes Modell – vorhergesagtes und tatsächliches Angst-Level

Häufig will man aber verschiedene Modelle miteinander vergleichen. Das geht einfa-

cher, wenn man die Modellgüte auf einen einzigen Zahlenwert verdichtet.

Im Bereich der Regressionsmodelle ist der R2-Wert ein häufig genutztes Maß.

 

Der R2-Wert

Der R2-Wert wird auch Bestimmheitsmaß oder Determinationskoeffizient genannt. Er 

ist eine statistische Kennzahl, die angibt, wie gut die unabhängigen Features in einem 

Regressionsmodell die Varianz der abhängigen Variablen erklären.

Der Wertebereich liegt in der Regel immer zwischen 0 und 1 bzw. zwischen 0 % und 

100 %. Die Extremwerte sind dabei wie folgt zu verstehen:

▸ R2=0: Das trainierte Modell kann die abhängige Variable überhaupt nicht erklären. 

Es gibt keinen linearen Zusammenhang zwischen den unabhängigen Variablen 
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und der abhängigen Variable. Wichtig ist hierbei das Wort linearer Zusammen-

hang. Es kann durchaus sein, dass ein Zusammenhang zwischen den Daten be-

steht, dieser aber einfach nicht-linear ist.

▸ R2=1: Das Modell ist perfekt in der Lage, die gesamte Variabilität der abhängigen 

Variable zu erklären. Das ist in der Praxis so gut wie nie der Fall, da es immer Mess-

ungenauigkeiten oder zufällige Fehler gibt – oder weitere unabhängige Variablen, 

die nicht im Modell berücksichtigt wurden.

Im Gegenteil ist es so, dass Sie einem sehr hohen Wert mit Vorsicht begegnen sollten, 

da er auf ein Overfitting des Modells hinweisen kann.

Wenn der R2-Wert beispielsweise bei 0.75 liegt, kann das so gedeutet werden, dass 75 % 

der Streuung der abhängigen Variable durch die im Modell enthaltenen unabhängigen 

Variablen erklärt werden kann. Die restlichen 25 % der Streuung sind auf andere, nicht 

im Modell berücksichtigte Faktoren oder zufällige Fehler zurückzuführen.

Allgemein gilt, dass ein höherer R2-Wert eine bessere Anpassung des Modells an die 

Daten widerspiegelt.

Extrem wichtig ist an dieser Stelle, dass ein hoher R2-Wert nicht zwangsläufig bedeu-

tet, dass es einen kausalen Zusammenhang gibt. Es muss demnach nicht automatisch 

gelten, dass die unabhängigen Variablen kausal die abhängige Variable beeinflussen. 

Es zeigt lediglich einen statistischen Zusammenhang.

Die Berechnung erfolgt mit der Funktion r2_score von sklearn. Wir übergeben der 

Funktion die echten sowie die vorhergesagten Werte und erhalten einen einzigen 

Zahlenwert:

#%% Calculate R-squared
r2 = r2_score(y_true=y, 
              y_pred=y_pred)
print(f"R-squared: {r2:.2f}") 
R-squared: 0.65 

Unser erstes Modell erreicht einen R2-Wert von 0.65. Diesen Wert könnten wir nun als 

Vergleichsmaß heranziehen, um dieses Modell mit anderen Modellen zu vergleichen.

Ob ein R2-Wert als gut oder schlecht einzuschätzen ist, hängt stark von seinem Kon-

text ab. In bestimmten Fällen ist ein R2-Wert von 0.98 als schlecht zu erachten und in 

anderen Fällen ein R2-Wert von 0.4 bereits als sehr gut.

Zunächst sind wir aber mit dem Ergebnis zufrieden und wollen unser Modelltraining 

weiter verbessern, indem wir Fähigkeiten von PyTorch nutzen, die unseren Code 

modularer und damit vielseitiger einsetzbar machen.

Im nächsten Abschnitt werden Sie lernen, wie Sie das Modell in einer eigenen Klasse 

definieren können und wie der Optimierer in das Training eingebettet werden kann.
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3.3    Modellklasse und Optimierer

Das Modell in einer eigenen Klasse zu definieren, macht es sehr viel einfacher, den 

Code später anzupassen. Für die spätere Nutzung des Modells ist es auch wichtig, dass 

es abgespeichert werden und zu einem späteren Zeitpunkt sehr einfach geladen wer-

den kann. Um diese Vorteile nutzen zu können, hilft es, das Modell in einer separaten 

Klasse zu speichern.

Zunächst importieren wir wieder die erforderlichen Pakete so, wie in Listing 3.12 

gezeigt:

#%% packages
from DataPrep import X, y
import torch
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score 

Listing 3.12  Modellklasse – Paketimport (Quelle: 030_FirstModel_Regression\10_

ModelClass.py)

Es gilt auch als guter Stil, die konstanten Trainingsparameter, die sogenannten Hyper-

parameter, gebündelt am Anfang des Skripts zu definieren. Nachdem die Pakete gela-

den wurden, definieren Sie direkt die Hyperparameter.

 

Hyperparameter

Hyperparameter sind Konstanten, also Variablen, die während des Programmablaufs 

nicht verändert werden. Sie werden vor dem Trainingsprozess festgelegt und dazu 

genutzt, diesen zu beeinflussen. Sie haben großen Einfluss auf das Modelltraining 

und werden vom Modellentwickler (uns) manuell, auf Basis bestimmter Optimie-

rungsverfahren oder Best Practices (Erfahrungswerten) festgelegt.

Die Hyperparameter steuern das Verhalten des Lernprozesses und haben einen enor-

men Einfluss auf die spätere Leistungsfähigkeit und Performance des Modells.

Die am häufigsten verwendeten Hyperparameter sind die Lernrate (Learning Rate), 

die Batch-Größe (Batch Size) sowie die Anzahl der Epochen.

Die Parameter hängen stark von den genutzten Daten und dem gewählten Modell ab. 

Daher ist die Hyperparameter-Optimierung ein wichtiger Schritt während des Mo-

delltrainings.

#%% Hyperparameters
EPOCHS = 100
LEARNING_RATE = 0.1 
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Die Daten müssen in Tensoren umgewandelt werden, da alle Objekte während des 

Trainings als Tensoren vorliegen müssen. Hierbei ist es ebenfalls wichtig, den Daten-

typ gegebenenfalls anzupassen. Üblicherweise werden wir hier float32 nutzen:

#%% convert to tensor
X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y.astype(np.float32))   

An dieser Stelle kommen wir zur Modellklasse. Das ist eine von uns definierte Klasse, 

die von der Klasse torch.nn.Module abstammt.

Die Modellklasse stellt zusammen mit dem Optimierer den Bauplan für ein Modell 

dar. Auf dieser Basis erstellen wir später eine Modellinstanz, die dann während des 

Trainings genutzt wird.

Die Modellklasse muss zwei Methoden aufweisen: __init__() und forward():

▸ Die __init__-Funktion wird während der Erstellung einer Modellinstanz einmalig 

aufgerufen. Idealerweise wollen wir eine Modellklasse erstellen, die flexibel nutz-

bar ist und sich somit an den Datensatz bzw. weitere Parameter anpassen kann. 

Aus diesem Grund übergeben wir hier der __init__()-Methode die Parameter 

input_size und output_size, die es uns ermöglichen, das Modell an die Anzahl der 

unabhängigen Features des Datensatzes sowie an die Anzahl der vorherzusagen-

den Features anzupassen. Üblicherweise werden hier auch die Netzwerkschichten 

erstellt, die anschließend verwendet werden sollen. In unserem Beispiel verwen-

den wir eine lineare Schicht, die direkt die Eingabefeatures mit der nächsten 

Schicht – hier der Ausgabeschicht – verbindet.

▸ In der forward()-Methode wird beschrieben, wie das Netzwerk aufgebaut ist und 

wie die Daten durch das Netzwerk fließen. Neben dem klassenspezifischen Para-

meter self erhält diese Funktion auch den Parameter x. Manchmal wird dieser 

Parameter auch input oder data genannt. Hierbei steht x für das, was ins Modell 

hineingegeben wird. Das sind die Daten, die das Modell verarbeiten wird. Im Fol-

genden wird dann innerhalb der Funktion beschrieben, wie diese Daten weiterver-

arbeitet werden, also wie sie von Schicht zu Schicht weitergereicht werden. In die-

sem einfachen Beispiel nutzen wir nur eine lineare Schicht mit self.linear(x). Das 

Ergebnis überschreibt dann den Wert von x und wird als Ergebnis der Funktion 

zurückgegeben.

#%% Model class
class LinearRegression(torch.nn.Module):
    def __init__(self, input_size, output_size):
        super(LinearRegression, self ).__init__()
        self.linear = torch.nn.Linear(input_size, output_size)
        
 
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    def forward(self, x):   
        x = self.linear(x)
        return x 

Listing 3.13  Modellklasse – Definition (Quelle: 030_FirstModel_Regression\10_

ModelClass.py)

Nachdem die Modellklasse erstellt wurde, können wir nun eine Instanz der Klasse 

erstellen. Hierfür übergeben wir die Dimensionen, die sich aus unserem Datensatz 

ergeben. Die Anzahl der unabhängigen Features lässt sich über die Anzahl der Spalten 

des Datensatzes mit X.shape[1] ermitteln. Da nur eine Zielgröße vorhergesagt wer-

den soll, beträgt die output_size 1:

#%% Model instance
model = LinearRegression(input_size=X.shape[1], 
                         output_size=1) 

Neben der Modellinstanz benötigen wir als weitere wichtige Elemente des Netzwerk-

trainings noch den Optimierer und die Verlustfunktion.

Als Optimierer wird an dieser Stelle Adam verwendet. Die gängigste Verlustfunktion bei 

Regressionsaufgaben ist der Mean Squared Error-(MSE-)Verlust, und sie wird über 

torch.nn.MSELoss() aufgerufen:

#%% Optimizer and Loss Function
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
loss_fn = torch.nn.MSELoss() 

Jetzt haben wir alles vorbereitet und können das Training beginnen. Listing 3.14 zeigt, 

wie wir zunächst die Verluste loss_list als leere Liste initialisieren. Während der Ite-

ration über die Epochen durchlaufen wir dieselben Schritte wie zuvor:

1. Im Forward Pass werden die Vorhersagen y_predict erstellt.

2. Die Verluste loss werden auf Basis der Vorhersagen y_predict und der tatsächli-

chen Werte y_tensor ermittelt. Wichtig ist hierbei immer, dass die Dimensionen 

der beiden Objekte exakt gleich sind.

3. Im Backward Pass können mittels loss.backward() alle Gradienten bestimmt wer-

den.

4. Letztlich werden die Modellgewichte über optimizer.step() aktualisiert.

5. Um zu vermeiden, dass die Gradientenberechnung verfälscht wird, müssen sie auf 

null zurückgesetzt werden. Das geschieht mit optimizer.zero_grad().

6. (optional) Zur späteren Auswertung, wie das Modelltraining sich kontinuierlich 

verbessert, werden die Verluste der aktuellen Epoche loss.item() zur Gesamtliste 
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der Verluste hinzugefügt. Um den tatsächlich berechneten Wert zwischenzuspei-

chern, wird die Methode item() aufgerufen. Diese liefert keinen Tensor, sondern 

einen numerischen Wert zurück.

loss_list = []
for epoch in range(EPOCHS):
    # 1. Forward pass
    y_predict = model(X_tensor)
    
    # 2. Calculate loss (MSE)
    loss = loss_fn(y_predict.squeeze(), y_tensor)
    
    # 3. Backward pass
    loss.backward()
    
    # 4. Update weights and biases
    optimizer.step()
 
    # 5. zero gradients
    optimizer.zero_grad()
    
    # 6. Store loss for plotting
    loss_list.append(loss.item())
    
    # 7. Print loss for this epoch
    print(f"Epoch {epoch}, Loss: {loss.item():.4f}") 

Listing 3.14  Modellklasse – Trainingsschleife (Quelle: 030_FirstModel_Regression\10_

ModelClass.py)

Nachdem das Modell trainiert wurde, können wir uns über die Verluste ein Bild davon 

machen, wie gut das Modelltraining ablief. Hierzu werden so, wie in Listing 3.15 dar-

gestellt, die Verluste über den Epochen geplottet:

#%% plot loss
sns.lineplot(x=range(EPOCHS), y=loss_list)
plt.title('Loss over Epochs')
plt.xlabel('Epoch [-]')
plt.ylabel('Loss [-]') 

Listing 3.15  Modellklasse – Verluste visualisieren (Quelle: 030_FirstModel_Regression\
10_ModelClass.py)
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Das Ergebnis des Trainings ist in Abbildung 3.6 zu sehen. Die Verluste nehmen 

zunächst mit zunehmenden Epochen stark ab, um dann ab circa Epoche 40 abzufla-

chen. Das Modell kann immer noch dazulernen, aber es profitiert immer weniger von 

weiteren Durchläufen, was an dem Abflachen der Verluste zu erkennen ist.

Abbildung 3.6  Modellklasse und Optimierer – Entwicklung der Verluste

Nachdem wir nun die Modell-Klasse und den Optimierer eingeführt haben, können 

wir unser System noch weiter verbessern. Eine Verbesserung betrifft das Übergeben 

der Trainingsdaten an das Modell während des Trainings. Wenn die Daten nicht kom-

plett, sondern in kleineren Häppchen übergeben werden, nennt man diese Batches, 

und damit beschäftigen wir uns ausführlich im folgenden Abschnitt.

3.4    Batches

Batches sind ein integraler Bestandteil jedes Trainings und können auch die Perfor-

mance des Trainings beeinflussen.

Sie sind außerdem auch Hyperparameter für das Training. Da auch sie das Ergebnis 

beeinflussen können, werden oftmals verschiedene Batchgrößen und deren Einfluss 

untersucht.

Ich werde im Folgenden erklären, was Batches sind, welche Vorteile sie bieten und 

welche Batchgrößen man verwenden sollte. In Abschnitt 3.4.3 werden Sie an einem 

praktischen Beispiel sehen, wie man Batches implementiert.
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3.4 Batches
3.4.1    Was sind Batches?

Zunächst sollten wir klären, was Batches genau sind. Das Konzept wird grundlegend 

in Abbildung 3.7 verdeutlicht.

Bisher haben wir in jeder Epoche den gesamten Datensatz dem Modell übergeben. 

Beim Training mit Batches wird hingegen der gesamte Datensatz in kleinere »Häpp-

chen« unterteilt und diese einzelnen Häppchen werden dem Modell übergeben.

Abbildung 3.7  Batches: links – Situation ohne Batches, rechts – Aufteilung des Datensatzes 

in einzelne Batches

Schauen wir uns im nächsten Abschnitt an, warum man Batches verwendet.

3.4.2    Vorteile von Batches

Warum wird das gemacht? Dafür gibt es einige Gründe, die ich im Kasten näher 

beleuchte.

 

Vorteile durch Batches

Die Implementierung von Batches macht die Trainingsschleife etwas komplizierter, 

bringt aber etliche Vorteile mit sich:

▸ Speicher: Oftmals gibt es technische Gründe, die die Nutzung von Batches erfor-

dern. So ist es vielleicht aufgrund der Größe des Datensatzes nicht mehr möglich, 

den gesamten Datensatz in einem Rutsch zu verarbeiten, weil er nicht komplett 

in den Arbeits- oder Grafikkartenspeicher passt. Das ist zum Beispiel häufig im Be-

reich von großen Bild- oder Video-Datensätzen der Fall.

▸ Parallelisierung: Das Training kann beschleunigt werden, indem Batches verwen-

det und diese dann parallel auf moderner Hardware wie GPUs ausgeführt werden.

▸ Verbessertes Lernen: Beim Training kommt es darauf an, dass das Modell lernt, zu 

generalisieren. Das heißt, dass es nicht nur die »bekannten« Trainingsdaten gut 

vorhersagen kann, sondern auch für gänzlich unbekannte Daten gute Vorhersagen 

trifft. Hierbei können kleinere und mittlere Batchgrößen helfen, sodass das Modell 

Datensatz Datensatz

Modell Modell

Batch
1

Batch
2

Batch
N…
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3 Unser erstes PyTorch-Modell
weniger schnell überangepasst (overfitted) reagiert. Die stärkeren Schwankungen 

in den Gradienten können das Modell aus lokalen Minima herausholen und so zu 

einer besseren Generalisierungsfähigkeit auf unbekannten Daten führen.

Gehen wir davon aus, dass wir Batches nutzen wollen. Die sich anschließende Frage 

lautet: Welche Batchgröße sollten wir verwenden?

3.4.3    Die optimale Batchgröße

Es gibt keine universelle beste Batchgröße, da sie stark von Parametern wie dem ver-

wendeten Datensatz, dem Modell oder den zur Verfügung stehenden Hardwareres-

sourcen abhängt.

Dennoch gibt es einige Best-Practice Empfehlungen:

▸ Üblicherweise werden Batchgröße als Potenz von 2 verwendet, also z. B. 16, 32, 64 

usw.

▸ Als Faustregel kann gelten, dass man mit moderaten Batchgrößen wie 32 oder 64 

startet und sie schrittweise erhöht, wenn es die Rechenressourcen zulassen und 

dadurch die Modellperformance verbessert werden kann.

▸ Wenn das Modell bereits komplexer ist, kann das kleinere Batchgrößen erfordern.

▸ Es gibt Zusammenhänge zwischen Batchgröße und Lernrate: Größere Batchgrö-

ßen können von höheren Lernraten profitieren. Wichtig kann es sein, beide Para-

meter zu optimieren.

▸ Im Bereich Computer-Vision, wie für das Klassifizieren von Bildern, werden häufig 

Batchgrößen zwischen 32 und 512 verwendet.

▸ Bei der Sprachverarbeitung werden Batchgrößen von 8 bis 256 verwendet. Gerade 

bei den häufig genutzten Transformer-Modellen werden eher kleinere Batches 

bevorzugt, da die Modelle selbst einen hohen Speicherbedarf aufweisen.

▸ Am Ende muss man meist mehrere Batchgrößen testen, um die für den jeweiligen 

Fall optimale Batchgröße zu ermitteln.

Im nächsten Abschnitt sehen wir uns an, wie Batches praktisch in das Training einge-

bettet werden können.

3.4.4    Coding: Implementierung von Batches

Schauen wir uns in der Praxis an, wie das implementiert werden kann. In Listing 3.16 

werden die Pakete sowie die vorbereiteten Daten X, y aus unserem früheren Skript 

DataPrep geladen und danach in die Tensoren X_tensor und y_tensor umgewandelt:
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3.4 Batches
#%% packages
import numpy as np
from sklearn.preprocessing import StandardScaler
import seaborn as sns
import matplotlib.pyplot as plt
import kagglehub
import torch
from sklearn.metrics import r2_score
from DataPrep import X, y
 
#%% convert to tensor
X_tensor = torch.from_numpy(X.astype(np.float32))
y_tensor = torch.from_numpy(y.astype(np.float32))  # Ensure y is float32 

Listing 3.16  Nutzung von Batches – Datenvorbereitung (Quelle: 030_FirstModel_Regres-

sion\20_Batches.py)

Das Training wird über mehrere Hyperparameter beeinflusst. Hierzu gehören EPOCHS, 

LEARNING_RATE sowie die neu hinzugekommene BATCH_SIZE:

#%% Hyperparameters
EPOCHS = 100
LEARNING_RATE = 0.01
BATCH_SIZE = 512 

Im folgenden Listing 3.17 werden die Modellklasse, der Optimierer sowie die Verlust-

funktion definiert. Hier gibt es keine Anpassungen im Vergleich zu früheren Skripten:

#%% Model class
class LinearRegression(torch.nn.Module):
    def __init__(self, input_size, output_size):
        super(LinearRegression, self).__init__()
        self.linear = torch.nn.Linear(input_size, output_size)
        
    def forward(self, x):   
        x = self.linear(x)
        return x
    
#%% Model instance
model = LinearRegression(X.shape[1], 1)
 
#%% Loss function
criterion = torch.nn.MSELoss()
 
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3 Unser erstes PyTorch-Modell
#%% Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) 

Listing 3.17  Nutzung von Batches – Modellklasse, Verlustfunktion und Optimierer 
(Quelle: 030_FirstModel_Regression\20_Batches.py)

In Listing 3.18 ist die Trainingsschleife mit den erforderlichen Anpassungen zur Ver-

arbeitung von Batches dargestellt. Das Entscheidende ist, dass in der Epochenschleife 

nun eine zusätzliche Schleife für die Verarbeitung der einzelnen Batches zu finden ist 

(1). In gleichbleibenden Schritten von der Größe der BATCH_SIZE wird durch den Daten-

satz iteriert.

Die weitere Anpassung (2) betrifft die Daten. Wir müssen für die jeweiligen Batchpo-

sitionen die entsprechenden unabhängigen Features X_batch und abhängigen Fea-

tures y_batch extrahieren.

Ab hier folgt das Training dem gewohnten Muster.

loss_list = []
for epoch in range(EPOCHS):
    epoch_loss = 0
    for i in range(0, len(X_tensor), BATCH_SIZE):   # (1)
        # get batch (2)
        X_batch = X_tensor[i:i+BATCH_SIZE]
        y_batch = y_tensor[i:i+BATCH_SIZE].unsqueeze(1)
 
        # forward pass
        y_predict = model(X_batch)
 
        # calculate loss
        loss = criterion(y_predict, y_batch)
 
        # backward pass
        loss.backward()
 
        # update weights and biases
        optimizer.step()
 
        # zero gradients
        optimizer.zero_grad()   
 
        # Store loss for plotting
        epoch_loss += loss.item()
    
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3.5 Dataset und DataLoader
    # Print loss for this epoch
    print(f"Epoch {epoch}, Loss: {epoch_loss/len(X_tensor):.4f}")
    loss_list.append(epoch_loss) 

Listing 3.18  Nutzung von Batches – Trainingsschleife (Quelle: 030_FirstModel_Regression\

20_Batches.py)

Wir haben damit erfolgreich das Konzept der Batches in das Training integriert. Aber es 

gibt noch Verbesserungspotenzial. So greifen wir innerhalb der Trainingsschleife direkt 

auf die Daten zu und müssen uns »händisch« um das Iterieren in Batches kümmern.

An dieser Stelle greifen wir auf weitere Hilfsfunktionen zurück: auf Dataset und Data-
Loader. Diesen Konzepten werden wir uns im nächsten Abschnitt widmen.

3.5    Dataset und DataLoader

In diesem Abschnitt lernen Sie weitere Hilfsfunktionen zum Training kennen: Data-
set und DataLoader. Lassen Sie mich zunächst erklären, was das genau ist. Dann schau-

en wir uns an, welche Vorteile mit diesen Hilfsfunktionen verbunden sind, und 

betrachten anschließend, wie diese Konzepte implementiert werden.

3.5.1    Was sind Dataset und DataLoader?

Dataset und DataLoader sind PyTorch-Klassen, die als Abstraktionen der Daten ge-

nutzt werden.

Mithilfe Dataset erhalten Sie eine Schnittstelle, um auf einzelne Daten des Datensat-

zes zuzugreifen. Damit erreichen Sie, dass die Logik zum Laden, Preprocessing (Vor-

verarbeiten) und Abrufen der Daten gekapselt wird.

Damit ist es möglich, die Logik des Datenzugriffs von dem Modelltraining zu trennen. 

Und durch diese Trennung der Logik werden unsere Skripte deutlich flexibler und las-

sen sich einfacher an neue Daten anpassen.

3.5.2    Die Vorteile von Dataset und DataLoader

Wie schon erwähnt, sind der konsistente Zugriff auf die Daten und die Trennung der 

Daten von der Modelllogik als Hauptvorteile dieses Konzeptes anzusehen.

Darüber hinaus ist es hiermit möglich, spezifische Datenstrukturen leicht anzupas-

sen. Zur Anpassung können auch Transformationen der Daten zählen wie die Data 

Augmentation. Darunter versteht man, die Anzahl und Vielfalt der Trainingsdaten 

künstlich zu erhöhen. Wir kommen in Kapitel 5, »Computer-Vision«, auf dieses The-

ma zurück.

Werfen wir nun einen Blick darauf, wie diese Klassen implementiert werden.
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3 Unser erstes PyTorch-Modell
3.5.3    Coding: Implementierung mit Dataset und DataLoader

Wir erweitern das bisher erstellte Skript. Die Klassen Dataset und DataLoader werden 

über torch bereitgestellt. Die weiteren Pakete sind bekannt und werden in Listing 3.19 

aufgeführt:

#%% packages
import numpy as np
import pandas as pd
import os
import torch
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import r2_score
from DataPrep import X, y
import seaborn as sns
 
#%% Hyperparameters
EPOCHS = 50
LEARNING_RATE = 0.1
BATCH_SIZE = 512 

Listing 3.19  Dataset und DataLoader – Datenvorbereitung (Quelle: 030_FirstModel_

Regression\30_DatasetDataLoaders.py)

Wir implementieren in Listing 3.20 zuerst die eigene Dataset-Klasse AnxietyDataset. 

Diese erbt von der Klasse Dataset. In dieser Klasse müssen drei Methoden definiert 

werden:

▸ __init__(): Dieser Konstruktor der Klasse wird aufgerufen, wenn eine neue In-

stanz der Klasse erstellt wird. Man nutzt sie, um Dateipfade und Metadaten zu laden, 

die für einen späteren Zugriff benötigt werden. Hier werden auch Transformatio-

nen auf die Daten angewandt.

▸ __len__(): Mit dieser Methode wird die Gesamtanzahl an Daten ermittelt. Der 

DataLoader nutzt diese Methode, um die Anzahl der Datenpunkte im Dataset zu 

ermitteln.

▸ __getitem__(): Diese Methode ist die wichtigste der drei Methoden. Sie wird aufge-

rufen, um einzelne Datenpunkte anhand eines Indexes abzurufen.

Sehen Sie sich das praktische Beispiel aus Listing 3.20 an. In der __init__-Methode 

werden die unabhängigen Features X und das abhängige Feature y übergeben und die 

entsprechenden Properties der Klasse erstellt. Auf diese kann dann über self.X und 

self.y zugegriffen werden. An dieser Stelle wird der Datentyp von y mittels astype()

in float umgewandelt.
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3.5 Dataset und DataLoader
Die __len__-Methode wird genutzt, um über die len-Funktion die Anzahl der Daten-

sätze zu ermitteln.

Die __getitem__-Funktion benötigt neben dem klasseneigenen Objekt self einen 

Index idx, der genutzt wird, um auf einzelne Datenpunkte zuzugreifen. Diese Metho-

de gibt das unabhängige und abhängige Feature an der Position des Indexes zurück.

#%% Dataset class
class AnxietyDataset(Dataset):
    def __init__(self, X, y):
        self.X = X
        self.y = y.astype(np.float32)
 
    def __len__(self):
        return len(self.X)
 
    def __getitem__(self, idx):
        return self.X[idx], self.y[idx] 

Listing 3.20  Dataset und DataLoader – Dataset-Klasse (Quelle: 030_FirstModel_Regres-

sion\30_DatasetDataLoaders.py)

Dataset und DataLoader kommen immer paarweise vor. DataLoader ist hierbei der 

Partner des Dataset, der dafür sorgt, dass das Modell immer optimal mit fertigen 

Daten versorgt wird.

Der DataLoader kümmert sich um das Batching. Darüber hinaus kann man leicht die 

Daten vor jeder Trainings-Epoche mischen. Dadurch kann man verhindern, dass das 

Modell die Daten immer in der gleichen Reihenfolge sieht und sich somit an 

bestimmte Muster anpasst, die vielleicht nur durch die Reihenfolge der Daten entste-

hen. Hierdurch kann das Modell robuster werden und eine bessere Generalisierbar-

keit erreichen.

Außerdem kann der DataLoader so konfiguriert werden, dass die Daten im Hinter-

grund geladen werden. Damit kann sichergestellt werden, dass die schnelle GPU 

immer ausgelastet ist. Das Laden und Preprocessing der Daten (z. B. Augmentierung, 

Normalisierung, Batch-Zusammenstellung) findet meist auf der langsameren CPU 

statt und ist damit oft langsamer als die eigentliche Modellberechnung. Auf diese 

Weise kann die CPU zum Flaschenhals werden.

Viele dieser Schritte mussten wir bisher manuell in den Trainingscode integrieren 

und können sie nun einfach an den DataLoader delegieren.
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Die eigentliche Erstellung der Modellinstanzen unseres Datensatzes ist mit wenig 

Aufwand erledigt.

Die Datensatzinstanz dataset wird mit unserer zuvor definierten Klasse AnxietyData-

set erstellt, wie Sie im Folgenden sehen.

Die dataloader-Instanz erhalten Sie mithilfe der Klasse DataLoader, die als wichtigsten 

Parameter dataset erhält. Weitere wichtige Parameter sind die Batchgröße BATCH_SIZE

sowie der Parameter shuffle, der ein Durchmischen der Daten ermöglicht:

#%% DataLoader
dataset = AnxietyDataset(X, y)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True) 

Listing 3.21 zeigt die Modellklasse, die Verlustfunktion und den Optimierer. Hier gibt 

es keine Überraschungen oder Anpassungen gegenüber früheren Implementierun-

gen:

#%% Model class
class LinearRegression(torch.nn.Module):
    def __init__(self, input_size, output_size):
        super(LinearRegression, self).__init__()
        self.linear = torch.nn.Linear(input_size, output_size)
        
    def forward(self, x):   
        x = self.linear(x)
        return x
    
#%% Model instance
model = LinearRegression(X.shape[1], 1)
 
#%% Loss function
loss_fun = torch.nn.MSELoss()
 
#%% Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) 

Listing 3.21  Dataset und DataLoader – Modellklasse, Verlustfunktion und Optimierer 

(Quelle: 030_FirstModel_Regression\30_DatasetDataLoaders.py)

In Listing 3.22 sehen Sie die Trainingsschleife und einen der großen Vorteile der Nut-

zung des Ansatzes mit Dataset und DataLoader: Es gibt nun keinen direkten Zugriff 

mehr auf den ursprünglichen Datensatz. Stattdessen werden X_batch und y_batch

direkt aus dem dataloader extrahiert.
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3.5 Dataset und DataLoader
#%% 
loss_list = []
for epoch in range(EPOCHS):
    epoch_loss = 0
    for i, (X_batch, y_batch) in enumerate(dataloader):
        # forward pass
        y_predict = model(X_batch)
 
        # calculate loss
        loss = loss_fun(y_predict, y_batch.reshape(-1, 1))
 
        # backward pass
        loss.backward()
 
        # update weights and biases
        optimizer.step()
 
        # zero gradients
        optimizer.zero_grad()   
 
        # Store loss for plotting
        epoch_loss += loss.item()
    
    # Print loss for this epoch
    print(f"Epoch {epoch}, Loss: {epoch_loss}")
    loss_list.append(epoch_loss) 

Listing 3.22  Dataset und DataLoader – Modelltraining (Quelle: 030_FirstModel_Regres-

sion\30_DatasetDataLoaders.py)

Dieser Ansatz ist dahingehend vorteilhaft, dass nun bei Anpassungen am Datensatz 

keinerlei Änderungen in der Trainingsschleife erforderlich sind. Der hier vorliegende 

Code mit der äußeren Schleife für die Epochen, der inneren Schleife für die Batches 

sowie den einzelnen Elementen für das Modelltraining wird uns in dieser Form sehr 

oft wiederbegegnen.

Damit haben Sie die verschiedenen Elemente des Modelltrainings kennengelernt. 

Was uns noch fehlt, ist die Fähigkeit, Modelle zu speichern und zu laden.

Wir wollen nicht jedes Mal ein Modell neu trainieren müssen, bevor wir es nutzen 

können. Stattdessen wollen wir trainierte Netzwerke mit wenig Aufwand laden und 

zum Einsatz bringen.
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3.6    Modelle speichern und laden

Um das trainierte Modell zu speichern, müssen wir uns zunächst mit dem Prozess des 

Speicherns vertraut machen. Es werden nämlich nur die Modellgewichte gespeichert.

Abbildung 3.8 verdeutlicht den Prozess anhand einer Analogie. Stellen Sie sich vor, 

dass Sie ein Haus gebaut haben und dieses nun an einem anderen Ort wieder aufbau-

en wollen. Sie können das Haus nicht komplett an seinen neuen Standort verfrach-

ten. Stattdessen müssen Sie das Haus Stein für Stein auseinandernehmen und detail-

liert in einem Bauplan beschreiben, wie es wieder aufgebaut werden muss.

Abbildung 3.8  Vorgehen beim Speichern und Laden eines Modells

Ganz ähnlich geschieht es beim Speichern und Laden eines Modells. Der Bauplan ist 

bekannt – das ist die zuvor erstellte Modellklasse. Den Steinen in unserer Analogie 

entsprechen die Modellparameter. Beide werden separat gespeichert und beim Laden 

wieder miteinander verbunden.

3.6.1    Modellparameter speichern

Auf die Modellparameter haben wir Zugriff über die Methode state_dict() des 

Modells. Wir können es uns direkt ausgeben lassen. Hierbei handelt es sich um ein 

geordnetes Dictionary, in dem Tupel den jeweiligen Schichtnamen sowie die dazuge-

hörigen Modellgewichte widerspiegeln:

model.state_dict() 
OrderedDict([('linear.weight',
              tensor([[-1.3479e-01, -5.1887e-01, -1.8175e-01, ... ]])),
             ('linear.bias', tensor([3.9327]))]) 

Dieses State Dictionary wird nun mittels torch.save() in einer Datei gespeichert. Übli-

cherweise wird beim Speichern einer solchen Gewichtsdatei die Dateiendung .pt oder 

.pth verwendet.

Modellklasse
(Bauplan)

Trainiertes Modell
(gebautes Haus)

Modellparameter
(Steine)

Montage

+
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3.6 Modelle speichern und laden
Der Code zeigt, wie die Modellgewichte in der Datei Model1.pth gespeichert werden:

#%% save model weights
torch.save(model.state_dict(), 'models/Model1.pth') 

Nachdem Sie jetzt wissen, wie Modelle gespeichert werden, schauen wir uns an, wie 

wir Modelle wiederherstellen können.

3.6.2    Modell laden

Dieser Schritt ist zweistufig. Im ersten Schritt wird eine Instanz der Modellklasse 

erstellt und anschließend werden die Modellgewichte ins Modell geladen.

Die Modellklasse kann in einer separaten Datei gespeichert werden. Listing 3.23 zeigt, 

wie die eigene Modellklasse definiert wird:

#%% packages
import torch
 
#%% Model class
class LinearRegression(torch.nn.Module):
    def __init__(self, input_size, output_size):
        super(LinearRegression, self).__init__()
        self.linear = torch.nn.Linear(input_size, output_size)
        
    def forward(self, x):   
        x = self.linear(x)
        return x 

Listing 3.23  Modellkasse (Quelle: 030_FirstModel_Regression\models\Model1.py)

Kommen wir nun zum eigentlichen Skript, das darauf aufbaut. In Listing 3.24 laden 

wir erst einmal alle Pakete. Unsere Modellklasse ist in ein Skript models/Model1.py

ausgelagert, sodass wir von dort die Modellklasse LinearRegression laden können. 

Anschließend erstellen wir eine Instanz des Modells:

import torch
from models.Model1 import LinearRegression
import seaborn as sns
import matplotlib.pyplot as plt
# %% create model instance
model = LinearRegression(37, 1) 

Listing 3.24  Modell laden – Pakete und Modellinstanz (Quelle: 030_FirstModel_Regres-

sion\40_ModelLoading.py)
89



3 Unser erstes PyTorch-Modell
Wir wollen überprüfen, dass die Modellgewichte erfolgreich geladen wurden. Dazu 

erstellen wir eine Funktion show_model_parameters, die die Modellgewichte als Histo-

gramm darstellt:

#%% function to show model parameter distribution
def show_model_parameters(model):
    params = []
    for param in model.parameters():
        params.append(param.detach().numpy().flatten())
    g = sns.histplot(params, kde=True)
    # add title
    g.set_title('Model Parameter Distribution')
    g.set_xlabel('Parameter Value')
    g.set_ylabel('Frequency')
    return g 

Listing 3.25  Modell laden – Funktion zur Visualisierung (Quelle: 030_FirstModel_Regres-

sion\40_ModelLoading.py)

Diese Funktion wird jetzt in Abbildung 3.9 genutzt, um die Modellgewichte direkt 

nach der Instanziierung des Modells und dann nach dem Laden der Modellgewichte 

zu zeigen:

show_model_parameters(model)
#%% load model weights
model.load_state_dict(torch.load('models/Model1.pth')) 
<All keys matched successfully> 
show_model_parameters(model) 

Abbildung 3.9  Modellgewichte (links: zufällige Gewichte; rechts: Gewichte nach dem 
Laden)

a) Zufällige Modellgewichte b) Modellgewichte nach dem 
Laden
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3.7 Data Sampling
Links ist der Zustand direkt nach dem Erstellen der Modellinstanz zu sehen. Die 

Gewichte liegen alle rund um 0. Im rechten Bild sieht man, dass die Modellgewichte 

einen viel größeren Bereich abdecken und dass der Biaswert (Balken ganz rechts) bei 

nahezu 4 liegt. Das Laden der Modellparameter hat also funktioniert.

Damit kommen wir nun zur nächsten Erweiterung unseres Trainings, und Sie werden 

lernen, wie und warum die Daten aufgeteilt werden.

3.7    Data Sampling

In diesem Abschnitt beschäftigen wir uns mit dem nächsten Konzept, das wichtig für 

das Modelltraining ist, dem Data Sampling.

Sie lernen zunächst, was genau unter diesem Begriff zu verstehen ist und warum man 

diesen Ansatz benötigt. Danach lernen Sie, das Data Sampling zu implementieren.

3.7.1    Was ist Data Sampling?

Data Sampling ist der Prozess der Auswahl von Datenpunkten aus einem größeren 

Datensatz. Anstatt das Modell auf Basis des kompletten Datensatzes zu trainieren, wird 

nur ein Teil für das Training verwendet und ein anderer Teil für die Validierung der 

Daten. Das ist das Konzept des Train Test Splits und wird in Abbildung 3.10 dargestellt.

Abbildung 3.10  Konzept des »Train Test Splits«

Die ursprünglichen Daten werden in zwei (oder in einigen Fällen auch drei) separate 

Teile unterteilt:

▸ Trainingsdatensatz (Train Dataset): Der größte Teil der Daten wird verwendet, um 

das Modell zu trainieren.

▸ Validierungsdatensatz (Validation Dataset): Die Validierungsdaten, in der Regel 

der kleinere Teil der Daten, dienen dazu, die Leistungsfähigkeit des trainierten 

Modells mit Daten zu bewerten, die es noch nicht gesehen hat. So können Sie über-

Trainingsdaten Validierungsdaten

Datensatz

Bestes Training 
Max!

Beste Validierung
Max!
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3 Unser erstes PyTorch-Modell
prüfen, wie gut es generalisiert. Das Modell soll ja nicht nur auf den Trainingsdaten 

gut funktionieren, sondern vor allem auf neuen, noch unbekannten Daten.

▸ Testdatensatz (Test Dataset): Manchmal gibt es auch einen dritten Datensatz, den 

Testdatensatz. Dieser Datensatz wird erst ganz am Ende verwendet, um die finale, 

unvoreingenommene Leistung des trainierten und validierten Modells zu bewer-

ten. Diese Daten darf das Modell während des Trainings und der Validierung nie-

mals »sehen«.

Abbildung 3.10 zeigt auch, dass es vorteilhaft ist, den Trainingsdatensatz so groß wie 

möglich zu machen. Problematisch wird es, weil dasselbe für den Test- (oder auch 

Validierungsdatensatz) gilt. Wie kann dieser Zielkonflikt überwunden und das opti-

male Verhältnis gefunden werden? Damit befasst sich die folgende Infobox.

 

Optimales Aufteilungsverhältnis von Trainings- und Validierungsdaten

Es gibt keine allgemeingültige »perfekte« Aufteilung, da sie von verschiedenen Fakto-

ren abhängt.

Die genaue Ausgestaltung hängt davon ab, ob es eine Zweiteilung (Trainings- und 

Validierungsdaten) oder eine Dreiteilung mit Trainings-/Validierungs-/Testdaten 

gibt.

Als groben Anhaltspunkt können Sie eine Aufteilung von 80 % Trainings- und 20 % 

Validierungsdaten annehmen. Falls eine Dreiteilung verwendet wird, können Sie 70 % 

für Trainingsdaten, 15 % für Validierungsdaten und 15 % für Testdaten vorsehen.

Im Folgenden gehen wir von einer Zweiteilung aus.

Einige Faktoren beeinflussen die Aufteilung:

▸ Größe des Datensatzes: Ein wichtiger Parameter ist die Größe des Datensatzes. Je 

größer der Datensatz ist, desto prozentual größer kann der Trainingsdatensatz 

sein, da die absolute Anzahl der Datenpunkte im Validierungsdatensatz immer 

noch groß genug ist, um statistisch signifikante Aussagen abzuleiten.

▸ Modellkomplexität: Je komplexer ein Modell ist, desto mehr Trainingsdaten be-

nötigt es tendenziell, um ein Overfitting zu vermeiden. Hier sind Validierungsda-

ten sehr wichtig, um die Generalisierungsfähigkeit zu überwachen.

▸ Zeitreihendaten: Eine Besonderheit stellen Zeitreihendaten dar, da sie nicht zufäl-

lig aufgeteilt werden dürfen, um die zeitliche Reihenfolge zu erhalten. Diesem 

Thema widmen wir uns in Kapitel 9.

▸ Unausgewogene Daten: Bei unausgewogenen Daten (Imbalanced Datasets) han-

delt es sich um Daten bei Klassifizierungsproblemen, in denen bestimmte Klassen 

stark unterrepräsentiert sind. In diesen Fällen müssen Sie darauf achten, die Klas-

sen in den verschiedenen Datensätzen ähnlich verteilt sind.

Die im nächsten Abschnitt vorgestellte Kreuzvalidierung (Cross-Validation) eröffnet 

Ihnen eine Möglichkeit, auf das Data Sampling zu verzichten.
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3.7.2    Kreuzvalidierung

Insbesondere bei kleinen Datensätzen ist die Kreuzvalidierung eine sehr empfehlens-

werte Technik. Dieses Verfahren wird hauptsächlich zur Ermittlung einer stabilen 

Modell-Performance verwendet und erweitert das zuvor beschriebene Data Sampling:

1. Der gesamte Datensatz wird in gleich große Teile (Folds) mit der Größe K aufgeteilt.

2. Das Modell wird K-mal trainiert, wobei in jeder Iteration ein anderer Fold als Vali-

dierungsdatensatz verwendet wird und die restlichen K-1 Folds als Trainingsdaten-

satz dienen.

3. Die Metriken zur Beurteilung der Modellperformance werden für jedes Modell 

ermittelt.

4. Die ermittelten Metriken werden gemittelt, um eine robuste Einschätzung der 

gesamten Modellleistung zu erhalten.

Der Prozess der Aufteilung der Daten ist in Abbildung 3.11 verdeutlicht.

Abbildung 3.11  Kreuzvalidierung

Üblicherweise werden die Validierungsdaten nicht »am Stück« festgelegt, sondern 

zufällig ausgewählt. Sie wurden hier nur vereinfacht so dargestellt, um das Prinzip zu 

erklären.

Übliche Werte für die Anzahl an Folds sind 5 oder 10. Das Verfahren hat den Vorteil, 

dass jeder Datenpunkt sowohl zum Trainieren als auch zum Validieren verwendet 

wird. Ein Nachteil ist natürlich, dass der Rechenaufwand stark ansteigt. Wo zuvor nur 

ein Modell trainiert und validiert wurde, muss es nun K-mal trainiert und validiert 

werden.

Aus diesem letzteren Grund wird die Kreuzvalidierung in diesem Buch nicht weiter 

eingesetzt. Aber es ist wichtig, dieses Konzept zu kennen, um es im Zweifelsfall ein-

setzen zu können.
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Modell 5
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3.7.3    Warum braucht man das?

Man will also die Fähigkeit des Modells zur Generalisierung sicherstellen. Mit ande-

ren Worten: Overfitting (Überanpassung) soll vermieden werden.

Von Overfitting spricht man, wenn ein Modell die Trainingsdaten zu genau lernt. 

Eigentlich soll es ja nur die grundlegenden Zusammenhänge verstehen. Bei einem 

Overfitting lernt es auch das Rauschen und andere spezifische Eigenheiten auswendig.

Abbildung 3.12 zeigt Beispiele für ein unterangepasstes und ein überangepasstes 

Modell.

Abbildung 3.12  Unterangepasstes und überangepasstes Modell

In Abbildung 3.12 sehen Sie links ein Beispiel für eine Unteranpassung. Der Einfach-

heit halber handelt es sich um ein Regressionsproblem mit einer unabhängigen 

Variable X und der abhängigen Variable y. Die Punktewolke ist leicht verrauscht, folgt 

aber grob einem quadratischen Trend.

Um das linke Teilbild zu erzeugen, wurde ein lineares Modell trainiert, das den 

Zusammenhang über eine Gerade widerspiegelt. Die Fehler der einzelnen Punkte 

sind als vertikale Linien verdeutlicht. Die Fehler sind relativ hoch.

Auf dem rechten Teilbild ist das andere Extrem dargestellt. Hier ist das Modell so an 

die Trainingsdaten angepasst, dass versucht wird, wirklich jeden einzelnen Punkt 

exakt nachzuvollziehen. Das sieht bei den Trainingsdaten sehr gut aus und der Fehler 

zwischen dem Modell (Linie) und dem jeweiligen Datenpunkt ist minimal, aber in der 

Praxis zeigt sich, dass das Modell schlecht mit Daten umgehen kann, die es vorher nie 

gesehenen hat, und somit sehr schlecht generalisiert.

Man kann sich das wie einen Schüler vorstellen, der Antworten einfach auswendig 

lernt, ohne die zugrunde liegenden Zusammenhänge zu verstehen. Der Schüler kann 

alle alten Fragen perfekt beantworten. Aber sobald eine Frage leicht abgewandelt 

wird, scheitert er.

Ein gutes Modell findet den Mittelweg zwischen Unter- und Überanpassung.

x x

yy

Unterangepasstes Modell Überangepasstes Modell
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3.7.4    Coding: Aufteilung in Trainings- und Validierungsdaten

Wir erweitern unseren bisherigen Code, um nun auch Trainings- und Validierungsda-

ten zu berücksichtigen.

Listing 3.26 zeigt alle benötigten Pakete, und es werden die Daten aus dem DataPrep-

Skript importiert:

#%% packages
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import torch
from torch.utils.data import Dataset, DataLoader
from DataPrep import X, y
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score
import seaborn as sns 

Listing 3.26  Train-Test-Split – Pakete und Datenimport (Quelle: 030_FirstModel_Regres-

sion\50_DataSplitting.py)

Die Hyperparameter, die Sie in Listing 3.27 sehen, umfassen die maximale Anzahl an 

Epochen EPOCHS, die LEARNING_RATE sowie die BATCH_SIZE:

#%% Hyperparameters
EPOCHS = 20
LEARNING_RATE = 0.1
BATCH_SIZE = 512 

Listing 3.27  Train-Test-Split – Hyperparameter (Quelle: 030_FirstModel_Regression\50_

DataSplitting.py)

Nun kommen wir zu dem besprochenen Ansatz des Datensplits. Wir teilen in Listing 

3.28 die Daten in Trainingsdaten und Validierungsdaten auf. Hierzu wird die Funktion 

train_test_split verwendet. In unserem Fall werden 80 % für die Trainingsdaten 

und 20 % für die Testdaten verwendet:

#%% split data
X_train, X_val, y_train, y_val = train_test_split(X, y, 
    test_size=0.2, 
    random_state=42) 

Listing 3.28  Train-Test-Split – Datensplit (Quelle: 030_FirstModel_Regression\50_

DataSplitting.py)
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Es ist üblich und fast immer ratsam, die Daten zu skalieren. Listing 3.29 zeigt, wie wir 

hierbei vorgehen. Die unabhängigen Trainingsfeatures X_train werden skaliert. In 

dem Schritt werden auch die Skalierungsparameter ermittelt und im Objekt scaler

gespeichert.

Ein interessantes Detail ist hierbei, dass man die Validierungsdaten X_val auf Basis 

der Skalierungsparameter der Trainingsdaten anpasst. Der Hintergrund ist, dass man 

davon ausgehen muss, dass nur die Trainingsdaten und deren Parameter bekannt 

sind. Würde man die Skalierung der Validierungsdaten auf den eigenen Verteilungs-

werten vornehmen, hieße das, dass man implizit Informationen über die Validie-

rungsdaten besitzt, die man praktisch nicht haben sollte. Der Einfluss mag in der 

Regel klein sein, aber ich empfehle Ihnen, dieser Best Practice zu folgen. Sie erhalten 

die angepassten Validierungsdaten, indem Sie die transform-Methode des scalers auf 

die Daten anwenden:

#%% scale data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val) 

Listing 3.29  Train-Test-Split – Skalierung der Daten (Quelle: 030_FirstModel_Regression\

50_DataSplitting.py)

An der in Listing 3.30 gezeigten Dataset-Klasse gibt es keine Änderungen gegenüber 

früheren Abschnitten:

#%% Dataset class
class AnxietyDataset(Dataset):
    def __init__(self, X, y):
        self.X = torch.from_numpy(X.astype(np.float32))
        self.y = torch.from_numpy(y.astype(np.float32))
 
    def __len__(self):
        return len(self.X)
 
    def __getitem__(self, idx):
        return self.X[idx], self.y[idx] 

Listing 3.30  Train-Test-Split – die Dataset-Klasse (Quelle: 030_FirstModel_Regression\50_

DataSplitting.py)

Spannend wird es jetzt wieder beim DataLoader. Da es zwei Datensätze gibt, werden 

auch zwei DataLoader (train_dataloader und val_dataloader) instanziiert:
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#%% DataLoader
train_dataset = AnxietyDataset(X_train, y_train)
train_dataloader = DataLoader(train_dataset, 
                              batch_size=BATCH_SIZE, 
                              shuffle=True)
 
val_dataset = AnxietyDataset(X_val, y_val)
val_dataloader = DataLoader(val_dataset, 
                             batch_size=BATCH_SIZE, 
                             shuffle=False) 

Listing 3.31  Train-Test-Split – DataLoader (Quelle: 030_FirstModel_Regression\50_

DataSplitting.py)

In Listing 3.32 wird die Modellklasse und damit die Instanz model erstellt:

#%% Model class
class LinearRegression(torch.nn.Module):
    def __init__(self, input_size, output_size):
        super(LinearRegression, self).__init__()
        self.linear = torch.nn.Linear(input_size, output_size)
        
    def forward(self, x):   
        x = self.linear(x)
        return x
    
#%% Model instance
model = LinearRegression(input_size=train_dataset.X.shape[1], 
                        output_size=1) 

Listing 3.32  Train-Test-Split – Modellklasse und Modellinstanz (Quelle: 030_FirstModel_

Regression\50_DataSplitting.py)

Wie Sie in Listing 3.33 sehen, verwenden wir die Verlustfunktion MSELoss, und der 

Optimizer basiert auf Adam:

#%% Loss function
loss_fun = torch.nn.MSELoss()
 
#%% Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) 

Listing 3.33  Train-Test-Split – Verlustfunktion und Optimierer (Quelle: 030_FirstModel_

Regression\50_DataSplitting.py)
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Nun kommen wir zum Training des Modells. Die entscheidenden Unterschiede zu 

früheren Trainings sind:

1. Den zwei verschiedenen Datensätzen wird Rechnung getragen, indem ihre Verlus-

te separat getrackt werden. Dafür werden die Listen epoch_loss_train und epoch_

loss_val erstellt.

2. Am Ende jeder Epoche werden die Verluste der Validierungsdaten ermittelt. Dafür 

wird der Scope torch.no_grad() verwendet. In diesem Scope wird mit einem For-

ward-Pass die Vorhersage berechnet und anschließend der Verlustwert ermittelt.

#%% 
# (1) Empty lists initialized
loss_train_list, loss_val_list = [], []
for epoch in range(EPOCHS):
    epoch_loss_train = 0
    epoch_loss_val = 0
    for i, (X_train_batch, y_train_batch) in enumerate(train_dataloader):
        # get batch
 
        # forward pass
        y_pred_train = model(X_train_batch)
 
        # calculate loss
        loss_train = loss_fun(y_pred_train, y_train_batch.reshape(-
1, 1)).mean()
 
        # backward pass
        loss_train.backward()
 
        # update weights and biases
        optimizer.step()
 
        # zero gradients
        optimizer.zero_grad()   
 
        # Store loss for plotting
        epoch_loss_train += loss_train.item()
 
    # (2) evaluate on test set
    with torch.no_grad():
        for X_val_batch, y_val_batch in val_dataloader:
            y_pred_val = model(X_val_batch)
            loss_val = loss_fun(y_pred_val, 
                                y_val_batch.reshape(-1, 1)).mean()
            epoch_loss_val += loss_val.item()
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    # Store the losses for plotting
    loss_train_list.append(epoch_loss_train / len(train_dataloader))
    loss_val_list.append(epoch_loss_val / len(val_dataloader))
    
    # Print loss for this epoch
    print(f"Epoch {epoch}, Train Loss: {epoch_loss_train}, Test Loss: {loss_
val.item()}") 

Listing 3.34  Train-Test-Split – Modelltraining (Quelle: 030_FirstModel_Regression\50_

DataSplitting.py)

In Listing 3.35 sehen Sie nun die Visualisierung der Verluste auf Basis der Trainings- 

und Validierungsverluste. Der Großteil des Codes dient zur Skalierung der Daten, 

sodass die Verluste jeweils auf den Bereich 0 bis 1 beschränkt werden. Andernfalls 

könnte es sein, dass die Verluste so unterschiedlich hoch sind, dass sie schlecht zu 

erkennen sind.

#%% plot loss
# Convert to numpy arrays
loss_train_arr = np.array(loss_train_list)
loss_val_arr = np.array(loss_val_list)
 
# Train loss: scale independently
train_min = loss_train_arr.min()
train_max = loss_train_arr.max()
train_range = train_max - train_min if train_max > train_min else 1
loss_train_scaled = (loss_train_arr - train_min) / train_range
 
# Val loss: scale independently
val_min = loss_val_arr.min()
val_max = loss_val_arr.max()
val_range = val_max - val_min if val_max > val_min else 1
loss_val_scaled = (loss_val_arr - val_min) / val_range
 
sns.lineplot(x=range(EPOCHS), y=loss_train_scaled, color='blue', label=
'Train')
sns.lineplot(x=range(EPOCHS), y=loss_val_scaled, color='red', label=
'Validation')
plt.title('Losses over Epochs: Train (blue) vs. Validation (red)')
plt.xlabel('Epoch [-]')
plt.ylabel('Loss [-]')
plt.legend()
plt.show() 

Listing 3.35  Train-Test-Split – Trainings- und Validierungsverluste (Quelle: 030_First-

Model_Regression\50_DataSplitting.py)
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Das Ergebnis des Aufwands ist in Abbildung 3.13 zu sehen. Die Trainingsverluste 

(blau) und die Validierungsverluste (rot) folgen demselben Trend. Zunächst nehmen 

sie sehr stark ab, um dann asymptotisch gegen null zu konvergieren.

Dass beide Kurven nahezu deckungsgleich sind, ist eher unüblich und liegt an dem 

konkreten Datensatz, mit dem das Modell trainiert wurde.

Abbildung 3.13  Train-Test-Split – Trainings- und Validierungsverluste

Damit haben wir das Ende dieses Abschnitts erreicht. Sie wissen nun, was Data 

Sampling ist und wie Sie es implementieren können.

3.8    Zusammenfassung

Dieses Kapitel lieferte einen Einstieg in das Training von Deep-Learning-Modellen 

mit PyTorch.

Nachdem Sie in Abschnitt 3.1 gelernt haben, wie die Daten vorzubereiten sind, begann 

das eigentliche Training in Abschnitt 3.2 mit dem Datenimport sowie dem Modelltrai-

ning und der Modellevaluierung.

Dieses erste Modelltraining hat ein funktionsfähiges Modell geliefert, aber noch 

reichlich Platz für Verbesserungen gelassen. Denen haben wir uns in den Nachfolge-

abschnitten gewidmet.

Dazu habe ich zunächst in Abschnitt 3.3 die Modellklasse und den Optimierer einge-

führt. Anschließend haben Sie in Abschnitt 3.4 gelernt, was Batches sind und warum 

und wie sie implementiert werden.
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Eine weitere Abstraktion habe ich in Abschnitt 3.5 eingeführt, in dem Sie Dataset und 

DataLoader kennenlernten. Mit diesem Konzept können Sie die Daten vom eigent-

lichen Modelltraining separieren, was Ihren Code modularer macht und somit einfa-

cher zu erweitern und zu pflegen.

Da wir üblicherweise Modelle trainieren, um sie danach einzusetzen, mussten Sie ler-

nen, wie Modelle gespeichert und anschließend wieder geladen werden können. Das 

war das Thema von Abschnitt 3.6.

Zu guter Letzt wurden die Daten in Abschnitt 3.7 in Trainings- und Validierungsdaten 

aufgeteilt. Dieser Schritt, der Data Sampling genannt wird, stellt sicher, dass das 

Modell zu generalisieren lernt, sodass es später nicht nur gut mit den Trainingsdaten, 

sondern auch mit unbekannten Daten funktioniert.

Mit diesem Wissen sind Sie jetzt dafür gerüstet, weitere Modellarchitekturen kennen-

zulernen. Die Konzepte aus diesem Kapitel werden Sie durch den Rest des Buches 

begleiten.
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Kapitel 10

Sprachmodelle

»Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.«
– Ludwig Wittgenstein, Philosoph

Unsere Sprache ist nicht nur ein Werkzeug zur Kommunikation, sondern auch das 

Medium, durch das wir unser Denken, unsere Wahrnehmung und unser Verständnis 

strukturieren. Wenn uns die Worte fehlen, um etwas zu beschreiben, verengt sich 

unsere Sichtweise. Wo wir Sprache erweitern, eröffnen sich automatisch neue Mög-

lichkeiten, die Welt zu begreifen.

Genau an dieser Stelle setzen große Sprachmodelle an. Sie werden den Foundation 

Models zugerechnet. Dabei handelt es sich um vielseitige Basismodelle, die auf riesi-

gen Datensätzen trainiert wurden. Sie dienen als Fundament, das für eine Vielzahl 

verschiedener Aufgaben angepasst werden kann.

Sprachmodelle können mehr, als nur Texte erzeugen. Dadurch, dass sie Muster in 

Sprache sichtbar machen, erweitern sie unser Ausdrucksspektrum.

Die Frage ist also nicht nur, wie Sprachmodelle funktionieren, sondern auch, wie sie 

unsere Welt verändern.

Große Sprachmodelle (Large Language Models, LLMs) haben sich als transformative 

Technologie etabliert, die das maschinelle Verstehen und Generieren von Texten 

grundlegend neu definiert.

Im Kern handelt es sich bei LLMs um komplexe neuronale Netze, die auf unvorstell-

bar großen Mengen an Textdaten trainiert wurden. Dadurch sind die Modelle in der 

Lage, komplexe sprachliche Muster und Zusammenhänge zu erkennen. Das verleiht 

ihnen die Fähigkeit, in sich stimmige und inhaltlich passende Texte zu erstellen, Fra-

gen zu beantworten, Übersetzungen durchzuführen und kreative Inhalte zu erstellen.

Die bemerkenswerten Fähigkeiten von LLMs beruhen auf Fortschritten in der Modell-

architektur, insbesondere der Transformer-Architektur. Diese spezielle Art von Netz-

werk ermöglicht es, langfristige Abhängigkeiten in Texten effizient zu verarbeiten.

In diesem Kapitel beginnen wir in Abschnitt 10.1 gleich mit einem Sprung ins kalte 

Wasser: Dort lernen Sie, wie Sie Sprachmodelle direkt mit Python nutzen können.
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Anschließend gehe ich in Abschnitt 10.2 auf Modellparameter ein, die Ihnen helfen, 

die Modellantwort zu beeinflussen. Sie werden lernen, was es mit Parametern wie der 

Temperatur, Top-p oder Top-K auf sich hat.

Heutzutage gibt es eine gewaltige Auswahl an Sprachmodellen. Welche Parameter man 

zur Auswahl des richtigen Modells heranziehen kann, beleuchte ich in Abschnitt 10.3.

Um komplexe Workflows abzubilden, empfiehlt es sich, sogenannte Chains zu ver-

wenden, da sie helfen, den Code zu modularisieren und sehr viel Flexibilität bieten. 

Chains sind die grundlegenden Bausteine, um LLMs mit anderen Komponenten wie 

Datenquellen oder Werkzeugen zu verbinden. Den Chains widmen wir uns in Ab-

schnitt 10.6. Da sie aber auf Prompt Templates (siehe Abschnitt 10.5) und Messages 

(siehe Abschnitt 10.4) beruhen, müssen Sie diese Konzepte zuvor kennenlernen.

Nachdem Sie sich mit Chains vertraut gemacht haben, lernen Sie in Abschnitt 10.7 

eine bestimmte Form von Chain kennen, die strukturierte Ergebnisse (Outputs) 

zurückliefert. Das kann ungemein hilfreich sein, wenn das Modellergebnis in einer 

Datenbank abgespeichert werden oder als Eingabe für einen folgenden Prozess die-

nen soll.

Zum Abschluss des Kapitels werfen wir einen Blick in die zugrunde liegende Architek-

tur von Sprachmodellen. Ohne die Transformer-Architektur wären heutige Sprach-

modelle nicht denkbar. Daher widmen wir uns in einem technischen Deep Dive in 

Abschnitt 10.8 diesem bahnbrechenden Netzwerktyp.

Legen wir nun aber direkt los, und sehen wir uns an, wie Sie ein Sprachmodell direkt 

aus Python heraus verwenden können.

10.1    Nutzung von LLMs mit Python

Aufgrund der Komplexität und der technischen Anforderungen beim Training von 

Sprachmodellen steigen wir auf einer höheren Abstraktionsebene ein. Sie werden 

bereits trainierte Sprachmodelle nutzen und vor allem lernen, wie Sie sie effizient 

nutzen können.

Abbildung 10.1 zeigt eine Reihe von beliebten Sprachmodellen und Modellfamilien. 

Zu den leistungsfähigsten Modellen gehören die Flaggschiffmodelle von OpenAI (z. B. 

GPT-5), Google (Gemini 2.5 Pro), Anthropic (Claude Opus 4.1) und X-AI (Grok 4). Erwäh-

nenswert ist hier Mistral mit LeChat als europäischer Anbieter, der auch DSGVO1-kon-

form arbeitet. Einige Modellanbieter gewähren nur Zugriff auf ihre proprietären 

Modelle über eine API. Im Unterschied dazu gibt es auch Open-Weight- oder Open-

Source-Modelle. Mehr dazu später.

1 DSGVO steht für »Datenschutz-Grundverordnung«. Das ist ein EU-Gesetz, das die Verarbeitung 

personenbezogener Daten durch Unternehmen und Behörden europaweit vereinheitlicht und 

die Rechte der Bürger auf den Schutz ihrer Daten stärkt.
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Abbildung 10.1  Beliebte Sprachmodelle und Modellfamilien

Für viele Menschen ist das Thema »Sprachmodell« synonym mit ChatGPT. Das liegt 

daran, dass OpenAI mit dem Release von ChatGPT Ende 2022 den Stein ins Rollen 

gebracht hat und dass seitdem die Modellreihe GPT die berühmteste Modellreihe bei 

den Sprachmodellen ist.

Das sind sehr leistungsstarke Modelle, für die Sie aber bezahlen müssen. Da es aber 

auch andere extrem fähige LLMs gibt, die als Open Source bereitgestellt werden, zeige 

ich Ihnen, wie Sie LLMs kostenlos über Groq1 nutzen können. Sie werden sehen, dass 

die Interaktion mit den Modellen dank des Python-Frameworks LangChain sehr ein-

fach ist. Nach diesen beiden Beispielen werden Sie in der Lage sein, sich mit jedem 

anderen LLM-Anbieter zu verbinden.

10.1.1    Coding: Nutzung von OpenAI

Um OpenAI nutzen zu können, benötigen Sie einen API-Schlüssel. Diese Modelle sind 

nicht kostenlos, also werden Sie für ihre Nutzung zur Kasse gebeten. Die Preise sinken 

ständig im Laufe der Zeit, und Sie können die aktuellen Preise unter https://

openai.com/api/pricing/ nachschauen.

1 Ein entscheidender Unterschied besteht zwischen Grok und Groq: Bei Groq handelt es sich um 

einen Hardwareanbieter, der den Zugriff auf Open-Weight-LLMs bereitstellt, während es sich bei 

Grok um ein Sprachmodell von X-AI handelt.
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Einen API-Schlüssel einrichten

Zuerst müssen Sie einen API-Schlüssel einrichten. Wenn Sie einen Webdienst nutzen 

möchten, benötigen Sie normalerweise einen Benutzernamen und ein Passwort, um 

auf den Dienst zuzugreifen. Wenn Sie einen Dienst jedoch programmgesteuert nut-

zen möchten, benötigen Sie einen API-Schlüssel. Ein API-Schlüssel ist also wie eine 

Kombination aus Benutzername und Passwort.

Wie können Sie einen API-Schlüssel bekommen, wenn Sie noch keinen haben? Folgen 

Sie hierzu diesen Schritten:

1. Navigieren Sie zu https://platform.openai.com/.

2. Erstellen Sie einen Account.

3. Aktivieren Sie die Abrechnung und laden etwas Geld auf ihr Konto.

4. Gehen Sie zum Bereich der API-Schlüssel und erstellen Sie einen neuen API-Schlüs-

sel. Der Name, den Sie im Web-Frontend angeben, ist nur für die spätere Wieder-

erkennung relevant. Praktisch benötigen Sie nur den Schlüssel.

5. Kopieren Sie den Schlüssel in die Zwischenablage.

6. Fügen Sie ihn in eine Datei namens .env ein. Sie sollte so aussehen: sk-proj...

Mehr dazu erfahren Sie im nächsten Abschnitt.

Umgebungsvariablen

Es ist generell eine gute Praxis, Code von Anmeldeinformationen zu trennen. Daher 

speichern Sie den API-Schlüssel in einer separaten Datei. Ein gängiger Ansatz ist, ihn 

in einer Datei namens .env zu speichern und diese im Arbeitsordner abzulegen. In die-

ser Datei speichern Sie den API-Schlüssel und möglicherweise viele weitere Schlüssel, 

falls nötig. Listing 10.1 zeigt, wie eine Umgebungsdatei aussehen sollte:

OPENAI_API_KEY = sk-proj... 

Listing 10.1  Beispielinhalt einer ».env«-Datei 

Die API-Schlüssel werden als Umgebungsvariablen behandelt. Umgebungsvariablen 

sind typischerweise Variablen, die von Ihrem Betriebssystem verwendet werden. 

Unsere Variable heißt OPENAI_API_KEY. Sie hat einen Wert, der auf der rechten Seite des 

Gleichheitszeichens definiert werden muss. Es ist wichtig, im Codeskript denselben 

Schlüsselnamen zu verwenden.

Wenn Sie zögern, Ihre Bankdaten im Internet anzugeben, überspringen Sie diese Lek-

tion und gehen zur nächsten, um direkt mit Groq zu arbeiten, das kostenlosen 

Zugang zu den Modellen bietet. Verwechseln Sie Groq nicht mit Grok: Groq ist ein KI-

Startup, das sich auf die Entwicklung von Chips für schnelle Inferenz von LLMs kon-

zentriert, während Grok ein LLM ist, das als Initiative von Elon Musk ins Leben geru-

fen wurde.
314

https://platform.openai.com/


10.1 Nutzung von LLMs mit Python
Coding-Skript

Lassen Sie uns mit unserem Coding-Skript anfangen. Sie finden es im Materialordner 

unter 100_LLM/10_model_chat_openai.py. Hier ist es eine gute Praxis, alle benötig-

ten Pakete und Funktionen am Anfang der Datei zu platzieren. Lassen Sie uns durch-

gehen, was wir hier brauchen.

Das Paket os wird benötigt, um die Umgebungsvariablen abzurufen und zu laden. Alle 

großen Modellanbieter bieten Pakete zur Integration in LangChain an. Hier verwen-

den wir also langchain_openai. Das Paket dotenv ist erforderlich, um mit der Datei der 

Umgebungsvariablen zu arbeiten. Seine Funktion load_dotenv() lädt den Inhalt der 

.env-Datei und stellt ihn als Umgebungsvariablen zur Verfügung:

#%% packages
import os
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
load_dotenv('.env') 

Sie können ganz einfach überprüfen, ob der API-Schlüssel verfügbar ist, indem Sie 

os.getenv('OPENAI_API_KEY') ausführen. Dadurch sollten Sie den API-Schlüssel auf 

dem Bildschirm angezeigt bekommen.

Jetzt erstellen wir eine Instanz des Modells, das wir verwenden werden, indem wir die 

ChatOpenAI-Klasse nutzen. Dafür brauchen wir einen Modellnamen. Wir wählen hier 

gpt-4o-mini. Ein weiterer wichtiger Parameter ist die Temperatur (mehr zu Modellpa-

rametern lesen Sie in Abschnitt 10.2). Dieser Parameter steuert die Kreativität des 

Modells. Und Sie müssen den API-Schlüssel übergeben, um sich zu authentifizieren 

und es OpenAI zu ermöglichen, die Kosten basierend auf Ihrer Nutzung zu berechnen.

MODEL_NAME = 'gpt-4o-mini'
model = ChatOpenAI(model_name=MODEL_NAME,
 temperature=0.5, 
 api_key=os.getenv('OPENAI_API_KEY')) 

Das model-Objekt hat eine sehr wichtige Methode: invoke(). Damit können Sie das 

Modell basierend auf bestimmten Parametern ausführen. In unserem ersten Beispiel 

bitten wir das Modell um Informationen zu »Was ist LangChain?«. Das Ergebnis wird 

in einem Objekt gespeichert. Das Ergebnis ist ein Objekt des Typs AIMessage. Wir kön-

nen herausfinden, welche Informationen wir vom Modellaufruf erhalten haben, 

indem wir uns die Ausgabe seiner model_dump()-Methode anschauen. Die Modellaus-

führung und das erzeugte Ergebnis sehen Sie in Listing 10.2:

res = model.invoke("What is a LangChain?")
res.model_dump()
{'content': 'LangChain is ...',
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 'additional_kwargs': {'refusal': None},
 'response_metadata': {'token_usage': {'completion_tokens': 290,
   'prompt_tokens': 13,
   'total_tokens': 303,
   'completion_tokens_details': {'accepted_prediction_tokens': 0,
    'audio_tokens': 0,
    'reasoning_tokens': 0,
    'rejected_prediction_tokens': 0},
   'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}},
  'model_name': 'gpt-4o-mini-2024-07-18',
  'system_fingerprint': 'fp_560af6e559',
  'id': 'chatcmpl-C5oA3wS5xLKygiq66IWHdOWbFigRC',
  'service_tier': 'default',
  'finish_reason': 'stop',
  'logprobs': None},
 'type': 'ai',
 'name': None,
 'id': 'run--95a59d13-84a9-4d1b-838a-38fa7b8b0d92-0',
 'example': False,
 'tool_calls': [],
 'invalid_tool_calls': [],
 'usage_metadata': {'input_tokens': 13,
  'output_tokens': 290,
  'total_tokens': 303,
  'input_token_details': {'audio': 0, 'cache_read': 0},
  'output_token_details': {'audio': 0, 'reasoning': 0}}} 

Listing 10.2  OpenAI-Nutzung

Es gibt eine Menge Informationen, die vom Modell zurückkommen. Lassen Sie uns 

mit dem Wichtigsten anfangen: dem Inhalt content. Diese Eigenschaft enthält den 

tatsächlichen Modellausgabe-Prompt. Von den anderen Eigenschaften möchte ich 

nur die response_metadata erwähnen. Diese enthält Informationen zur Token-Nut-

zung. Sie werden für Eingabe-Tokens und Ausgabe-Tokens zur Kasse gebeten. Hier 

können Sie sehen, wie viele Tokens in der Anfrage verwendet wurden.

Sie können sich mit den verschiedenen Modellen aus der Modellfamilie von OpenAI 

vertraut machen, indem Sie die Modellübersicht studieren, die Sie unter https://plat-

form.openai.com/docs/models/overview finden. Einige wichtige Funktionen sind un-

ten im Kasten aufgeführt.

Sie sind natürlich nicht auf die OpenAI-Modellfamilie beschränkt. Sie können mit vie-

len anderen LLMs arbeiten. Jetzt werden Sie entdecken, wie man mit Open-Source-

LLMs arbeitet, die Sie kostenlos über Groq ausführen können.
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Die OpenAI-Modellfamilie

OpenAI hat eine Modellfamilie (https://platform.openai.com/docs/models) geschaf-

fen, die aus mehreren Modellen besteht, die für verschiedene Aufgaben geeignet 

sind:

▸ Sprachmodelle wie die GPT-Familie (z. B. GPT-5) können Text verarbeiten und er-

zeugen, und einige von ihnen können auch Bilder erzeugen.

▸ Text-zu-Bild-Generierung: GPT Image 1 und DALL-E 3 sind Modelle, die Bilder ge-

nerieren und bearbeiten können.

▸ Text-zu-Sprache (TTS): Mehrere Modelle (wie z. B. GPT-4o mini TTS) können Text 

in natürliche, gesprochene Audios umwandeln.

▸ Realtime-Modelle: Mit Realtime-Modellen können Sie Text und Audio-Ein- und

-Ausgaben in Echtzeit erstellen.

▸ Text-Embeddings: Embeddings sind numerische Darstellungen von Text. Solche 

Embeddings sind das Fundament der Verarbeitung natürlicher Sprache.

10.1.2    Coding: Nutzung von Groq

Groq ist ein Unternehmen, das KI-Hardware entwickelt, die schnelle Inferenz ermög-

licht. Für Entwickler bietet Groq Zugang zu LLMs, insbesondere zu Open-Source-

LLMs. Sie können den Service kostenlos nutzen, müssen sich aber mit einem API-

Schlüssel authentifizieren. Der erste Schritt ist also, zu https://console.groq.com/ zu 

gehen, ein Konto einzurichten und einen API-Schlüssel zu erstellen, den Sie in Ihrem 

Code verwenden können.

Bitte kopieren Sie diesen API-Schlüssel und speichern Sie ihn in einer Datei namens 

.env im Arbeitsordner. Der Inhalt der Datei sollte so aussehen:

GROQ_API_KEY = gsk_... 

Listing 10.3  Ausschnitt aus der ».env«-Datei

Das Skript, das Sie unter 100_LLM/20_model_chat_groq.py finden, beginnt damit, die 

relevanten Pakete zu laden. Das Hauptpaket ist langchain_groq – es ist die Schnittstel-

le, um die Modelle aus der Groq-Modellfamilie zu verwenden. Die Pakete os und 

dotenv werden verwendet, um Umgebungsvariablen einzurichten und abzurufen, die 

den Groq-API-Schlüssel enthalten.

#%% packages
import os
from langchain_groq import ChatGroq
from dotenv import load_dotenv
load_dotenv('.env') 
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Wir müssen nun ein Modell auswählen. Details zu spezifischen Modellen finden Sie 

in der Übersicht über Groq-Modelle unter https://console.groq.com/docs/models.

Hier wählen wir jetzt ein Modell aus der Llama-Familie. Das ist ein Open-Source-

Modell, genauer gesagt ein Open-Weight-Modell. Das bedeutet: Das Modell wird der 

Öffentlichkeit zur kostenlosen Nutzung zur Verfügung gestellt, allerdings sind nicht 

alle Details zu den verwendeten Datensätzen und dem Trainingsprozess öffentlich 

zugänglich.

Nachdem wir uns für ein Modell entschieden haben, können wir eine Instanz der 

ChatGroq-Klasse erstellen. Bei dieser Instanziierung übergeben wir den Namen des 

Modells als Parameter. Wir müssen auch den API-Schlüssel übergeben, den wir zuvor 

erstellt haben. Diese beiden Parameter sind Pflicht. Unter vielen anderen verfügbaren 

Parametern setzen wir nur den Temperaturparameter, der die Kreativität des Modells 

steuert. (Mehr über die Modellparameter erfahren Sie in Abschnitt 10.2.) Damit haben 

wir alles bereit, um mit dem LLM zu interagieren:

MODEL_NAME = 'llama-3.3-70b-versatile'
model = ChatGroq(model_name=MODEL_NAME,
 temperature=0.5,
 api_key=os.getenv('GROQ_API_KEY')) 

Wir fragen das Modell »What is a Huggingface?« über die invoke()-Methode:

# %% Run the model
res = model.invoke("What is a Huggingface?") 

Mit der in Listing 10.4 gezeigten model_dump()-Methode bekommen wir einen Über-

blick über die Ausgabe des Modells:

# %% find out what is in the result
res.model_dump()
{'content': 'Hugging Face is a popular open-source library and platform for 
natural language processing (NLP) and machine learning (ML) ...',
 'additional_kwargs': {},
 'response_metadata': {'token_usage': {'completion_tokens': 314,
   'prompt_tokens': 42,
   'total_tokens': 356,
   'completion_time': 1.032163328,
   'prompt_time': 0.010863083,
   'queue_time': 0.085254578,
   'total_time': 1.043026411},
  'model_name': 'llama-3.3-70b-versatile',
  'system_fingerprint': 'fp_2ddfbb0da0',
  'service_tier': 'on_demand',
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  'finish_reason': 'stop',
  'logprobs': None},
 'type': 'ai',
 'name': None,
 'id': 'run--982093cc-280a-49cc-9568-a9c9e6d37943-0',
 'example': False,
 'tool_calls': [],
 'invalid_tool_calls': [],
 'usage_metadata': {'input_tokens': 42,
  'output_tokens': 314,
  'total_tokens': 356}} 

Listing 10.4  Groq-Modellausführung und -ergebnis

Der wichtigste Output hier ist wieder der Inhalt. Typischerweise greifen wir auf ihn 

direkt über seine Eigenschaft zu:

# %% only print content
print(res.content)
Hugging Face is a popular open-source library and platform for natural language 
processing (NLP) and machine learning (ML) tasks. It was founded in 2016 by 
Julien Chaumond, Clement Delangue, and Thomas Wolf. Hugging Face is known for its 
Transformers library, which provides pre-trained models and a simple interface 
for using and fine-tuning transformer-based models for various NLP tasks, such as 
text classification, language translation, question answering, and more.
… 

Listing 10.5  Groq-Modellergebnis – nur der Inhalt 
(Quelle: 03_LLMs/10_model_chat_groq.py)

Wir haben erfolgreich ein Modell von Groq aufgerufen. Lassen Sie uns jetzt anschau-

en, wo wir mehr Informationen zu den verfügbaren Modellen finden können.

 

Groq-Modell-Übersicht

Sie können alle von Groq bereitgestellten Modelle unter https://console.groq.com/

docs/models finden.

Für jedes Modell sind die Informationen zur Modell-ID angegeben. Das ist der String, 

den Sie in Ihrem Skript verwenden müssen. Außerdem wird der Entwickler angezeigt 

sowie ein begrenzender Faktor. Bei LLMs ist das das Kontextfenster, und die maximale 

Anzahl an Tokens wird ebenfalls angezeigt. Mehr dazu finden Sie im nächsten Info-

kasten. Wenn Sie tiefer in das Modell eintauchen möchten, können Sie sich die 

Modellkarte anschauen und werden zur Entwicklerseite des Modells weitergeleitet.
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Eine Besonderheit sind die Whisper-Modelle, die ein Sprach-zu-Text-Modell bereit-

stellen. Das bedeutet, Sie können eine MP3-Datei (bis zu einer bestimmten Größe) 

hochladen und erhalten die dazugehörige Transkription.

Die meisten verfügbaren Modelle sind LLMs. Sie sind alle Open-Source- oder Open-

Weight-Modelle.

Prominente Modelle hier sind die Mitglieder der Llama-Familie (von Meta), Gemma-

Modelle (von Google), DeepSeek-Modelle, Kimi (von Moonshot AI) oder Qwen (von Ali-

baba).

Im Modellüberblick haben Sie vielleicht das Kontextfenster als einen der wichtigsten 

Parameter gesehen. Deshalb lege ich in dem folgenden Infokasten den Fokus auf die-

sen Parameter.

 

Kontextfenster

Der Kontextfenster bezieht sich auf die maximale Anzahl von Eingabe-Tokens, die ein 

Modell auf einmal verarbeiten kann. Das ist ein wichtiger Aspekt, denn die Fähigkeit 

des Modells, relevante Ausgaben zu generieren, hängt davon ab, welche Informatio-

nen es in einem einzigen Prompt behalten und nutzen kann. Jedes LLM hat eine feste 

Grenze, wie viele Tokens es gleichzeitig in seinem Kontextfenster verarbeiten kann.

Was ist aber ein Token genau? Ein LLM zerlegt den Eingabetext in kleinere Einheiten, 

die Tokens genannt werden. So ein Token kann ein Wort sein, nur ein Teil eines Wortes 

oder sogar nur ein Satzzeichen. Beispiel: Der Satz »Sprachmodelle sind sehr leistungs-

fähig.« wird in die Token Sp, rach, model, le, sind, sehr, leistungs, fähig und . unterteilt.

Ein großes Kontextfenster ermöglicht es dem Modell, mehr Informationen zu verar-

beiten, was seine Fähigkeit verbessert, längere Texte zu verstehen oder sich lange 

Gespräche zu »merken«. Wenn die Größe des Kontextfensters zunimmt, steigen aber 

auch die benötigten Rechenressourcen, um den Text zu verarbeiten. Außerdem 

erhöht sich die Latenz des Modells – das heißt, es dauert länger, bis das Modell eine 

Antwort liefert.

Wenn das Kontextfenster überschritten wird, »vergisst« das Modell entweder ältere 

Tokens oder der LLM-Aufruf kann sogar nicht verarbeitet werden. Das hängt von der 

Implementierung des Pakets ab.

10.1.3    Multimodale Modelle

In diesem Kapitel werden wir hauptsächlich mit Texteingaben und -ausgaben arbei-

ten und traditionelle große Sprachmodelle verwenden. Aber die Nachfrage nach 

Modellen, die komplexere und vielfältigere Informationsformen verstehen und mit 

ihnen interagieren können, ist gestiegen. Deshalb wurden multimodale Modelle ent-
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wickelt. Diese Modelle sind darauf trainiert, mehrere Arten oder Modalitäten von Ein-

gabe- und Ausgabeformaten zu verstehen und zu generieren. Modalitäten sind typi-

scherweise neben Text auch Bilder, Audio und Video.

Im Gegensatz zu traditionellen LLMs, die in einer einzigen Modalität (Text) arbeiten, 

können diese multimodalen Modelle Informationen in verschiedenen Formaten ver-

arbeiten. Dafür kombinieren sie Fortschritte in der Verarbeitung natürlicher Sprache 

(NLP, Natural Language Processing) mit Innovationen in der Computer-Vision und 

der Audioverarbeitung.

Dadurch können diese Modelle

▸ Bilder in Textform analysieren und beschreiben,

▸ Bilder basierend auf Textbeschreibungen generieren,

▸ Audiobeiträge transkribieren und

▸ Audiobeiträge interpretieren und darauf basierende Antworten geben.

Lassen Sie uns ein paar multimodale Modelle verwenden, damit Sie lernen, wie man 

mit ihnen arbeitet.

10.1.4    Coding: Multimodale Modelle

Wir wollen herausfinden, wie wir ein Bild als Eingabe für ein Modell verwenden kön-

nen. Dann werden wir mit dem LLM interagieren, um herauszufinden, ob es versteht, 

was es im Bild »sieht«.

Abbildung 10.2 stellt ein Flussdiagramm dar, das den Prozess des Trainings eines tie-

fen neuronalen Netzwerks beschreibt, und wir werden dieses Bild an das multimoda-

le Modell weitergeben.

Abbildung 10.2  Trainingsprozess eines Deep-Learning-Netzwerks
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Sie finden den Code für dieses Skript unter 100_LLM\30_multimodal.py. Er basiert 

hauptsächlich auf der Dokumentation von Groq (https://console.groq.com/docs/vision).

In Listing 10.6 beginnen wir mit dem Import der benötigten Pakete:

#%% packages
from groq import Groq
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv(usecwd=True))
import base64 

Listing 10.6  Multimodales Modell – erforderliche Pakete

Es ist eine gute Praxis, die Konstanten am Anfang des Skripts zu definieren. Hier legen 

wir fest, welches Modell wir wählen, wo sich das Bild befindet und was die Eingabe des 

Nutzers ist:

MODEL = "meta-llama/llama-4-maverick-17b-128e-instruct"
IMAGE_PATH = "TrainingProcess.png"
USER_PROMPT = "What is shown in this image?
 Answer in a paragraph and in German." 

Da wir mit einem lokalen Bild arbeiten und es an die API von Groq gesendet werden 

muss, muss das Bild geladen und in ein Format umgewandelt werden, damit es als 

Text-String gesendet werden kann. Für diese Funktionalität definieren wir in Listing 

10.7 eine Funktion namens encode_image. Sie lädt das Bild und wandelt es direkt in das 

base64-Format um. (Base64 ist ein Binär-zu-Text-Codierungsverfahren, das binäre 

Daten in ein ASCII-String-Format umwandelt.)

#%% Function to encode the image
def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')
 
base64_image = encode_image(IMAGE_PATH) 

Listing 10.7  Multimodales Modell – Funktion zur Codierung des Bildes 

Jetzt können wir eine Groq-Instanz einrichten. Das ist die native Implementierung des 

groq-Pakets, also hat die Chat-Anfrage ein anderes Format im Vergleich zur 

LangChain-Interaktion mit Modellen. Aber Sie können viele Elemente erkennen, wie 

zum Beispiel die Nachrichten. Im messages-Objekt definieren wir eine Benutzer-Nach-

richt. Darin übergeben wir ein Dictionary mit Textinhalt – dem Benutzer-Prompt 

sowie dem Bildinhalt – dem Bild, mit dem wir interagieren wollen:
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#%% Getting the base64 string
client = Groq()
 
chat_completion = client.chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": USER_PROMPT},
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{base64_image}",
                    },
                },
            ],
        }
    ],
    model=MODEL,
) 

Wir haben eine Antwort im Objekt chat_completion erhalten, die wir auf dem Bild-

schirm ausgeben können:

#%% analyze the output
print(chat_completion.choices[0].message.content) 
Das Bild zeigt einen Prozess zur Entwicklung eines Modells, das auf 
künstlicher Intelligenz basiert. Der Prozess beginnt mit der Datensammlung, 
die in Form von drei USB-Sticks dargestellt wird, und führt über verschiedene 
Stufen wie Pre-Trained Model, Instruction Model und Safety Model schließlich 
zur Evaluation. Jeder Schritt wird durch eine Zahnradgrafik symbolisiert, die 
die Verarbeitung und Verfeinerung des Modells darstellt. 

Listing 10.8  Multimodales Modell – Modellantwort

Das Modell kann wertvolle Antworten liefern. Es versteht, was es sieht. Versuchen Sie 

doch, die Benutzeranfrage zu ändern, um zu überprüfen, ob das Modell detailliertere 

Fragen zum Bild beantworten kann.

10.1.5    Coding: Lokales Betreiben von LLMs

Bisher haben wir große Sprachmodelle über API-Aufrufe von Software-as-a-Service-

(SaaS-)Anbietern genutzt. Manchmal möchten Sie ein Modell jedoch lokal ausführen. 
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Das kann notwendig sein, wenn die Privatsphäre wichtig ist und Sie es vermeiden 

möchten, vertrauliche Informationen über das Internet zu übertragen.

In solchen Fällen können Sie ein Modell auf Ihrem lokalen Computer betreiben. Ide-

alerweise haben Sie hierfür eine leistungsstarke GPU, die ein ordentlich großes 

Modell ausführen kann. Aber auch ein kleines Modell kann auf Ihrer CPU laufen.

Eine leistungsstarke Plattform, die diesen Prozess sehr einfach macht, ist Ollama. Mit 

Ollama können Sie ein LLM auf Ihrem Laptop oder Desktop-Rechner betreiben, ohne 

dass Sie eine Internetverbindung benötigen.

Ein alternativer Anbieter ist LM Studio (https://lmstudio.ai/).

Die lokale Nutzung von Sprachmodellen bietet Privatsphäre und volle Kontrolle, 

indem sie es Ihnen ermöglicht, direkt auf Ihrer eigenen Hardware mit einem LLM zu 

interagieren.

Zunächst müssen Sie die Ollama-Software lokal auf Ihrem Rechner installieren. Dafür 

besuchen Sie, wie in Abbildung 10.3 gezeigt, bitte https://ollama.com/.

Abbildung 10.3  Download der Ollama-Software 

Hier können Sie die Software herunterladen, die zu Ihrem Betriebssystem passt. Sie 

wird von Ollama für macOS, Linux und Windows angeboten.

Nachdem Sie das gemacht haben, müssen Sie herausfinden, welches Modell für Ihre 

Hardware und Projektanforderungen geeignet ist. Auf https://ollama.com/library fin-

den Sie eine Liste der verfügbaren Modelle.

In diesem Abschnitt werden wir mit gemma3 arbeiten. Abbildung 10.4 zeigt die gemma3-

Modellklasse.
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Abbildung 10.4  Ollama – die verwendete Modellklasse »gemma3«

gemma3 wird von Google bereitgestellt. Es ist ein Modell mit relativ wenigen Modell-

parametern, das aber dennoch sehr leistungsstark ist. Es gibt mehrere verschiedene 

Varianten: von einem winzigen 270m- bis hin zu einem großen 27b-Modell. Die Zah-

len und Buchstaben beziehen sich auf die Anzahl der Parameter. das heißt, 270m steht 

für 270 Millionen Parameter bzw. 27b für 27 Milliarden (engl. billons) Parameter. Wenn 

Sie auf den Namen des Modells klicken, finden Sie weitere Informationen, z. B. die 

Dateigröße und den tatsächlichen Namen des Modells.

Eine Besonderheit bei dieser Modellklasse ist, dass sie auch multimodal sein kann. 

Werfen Sie hierzu einen Blick auf die letzte Spalte. Dort wird ersichtlich, dass Modelle 

ab 4b sowohl Texte als auch Bilder verarbeiten können.

Wir werden nun das Modell mit dem Namen gemma3:4b verwenden.

Listing 10.9 zeigt, wie Sie ein Modell herunterladen können, indem Sie es über Ollama 

abrufen. Bitte führen Sie in Ihrem Terminal Folgendes aus:

ollama pull gemma3:4b
pulling manifest
pulling aeda25e63ebd: 100% |███████| 3.3 GB
pulling e0a42594d802: 100% |███████| 358 B
pulling dd084c7d92a3: 100% |███████| 8.4 KB
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pulling 3116c5225075: 100% |███████| 77 B
pulling b6ae5839783f: 100% |███████| 489 B
verifying sha256 digest
writing manifest
success 

Listing 10.9  Ollama – Modelldownload

Das Modell wurde auf Ihre Festplatte heruntergeladen und ist jetzt verfügbar. Sie kön-

nen das überprüfen mit:

ollama list 
NAME           ID          SIZE      MODIFIED
gemma3:4b  a2af6cc3eb7f   3.3 GB   2 minutes ago 

Der letzte Schritt auf Betriebssystemebene ist, das Python-Paket langchain-ollama

hinzuzufügen. Sie können es über

uv add langchain-ollama 

hinzufügen oder mittels pip:

pip install langchain-ollama 

Damit sind die Vorbereitungen abgeschlossen. Jetzt können wir direkt aus einem 

Python-Skript mit dem lokalen Modell interagieren.

In unserem Python-Skript, das Sie unter 100_LLMs\40_ollama.py finden, müssen 

zuerst die Pakete importiert werden. Wir werden wie im vorherigen Abschnitt das 

Modell multimodal nutzen und benötigen das Paket base64 für die Codierung des Bil-

des. Auf das Modell wird über ChatOllama zugegriffen. Die Nutzeranfrage wird als 

HumanMessage übergeben (mehr zu Messages folgt in Abschnitt 10.4).

import base64
from langchain_ollama import ChatOllama
from langchain_core.messages import HumanMessage 

Nun definieren wir zunächst einige Variablen, auf die wir später zugreifen werden. 

Der Modellname MODEL_NAME bezieht sich auf gemma3. Die eigentliche Anfrage 

besteht aus einer Frage im USER_PROMPT sowie aus dem Bild, das wir mit seinem Pfad 

IMAGE_PATH übergeben:

MODEL_NAME = "gemma3:4b"
USER_PROMPT = "Was zeigt dieses Bild?
 Antworte in einem Absatz und auf Deutsch."
IMAGE_PATH = "TrainingProcess.png" 
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Das Bild kann nicht als Pfad übergeben werden, sondern muss mit base64 codiert wer-

den. Dafür benutzen wir die Hilfsfunktion encode_image, der wir den Pfad zum Bild 

übergeben und von der wir das codierte Bild zurückerhalten:

def encode_image(image_path: str) -> str:
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")
 
base64_image = encode_image(IMAGE_PATH) 

Listing 10.10  Ollama – Bildcodierung

Die Interaktion mit dem Modell geschieht über eine Modellinstanz model, die wir mit 

ChatOllama erstellen:

model = ChatOllama(model=MODEL_NAME, temperature=0.2) 

Die Anfrage, die aus einem Text und einem Bild besteht, muss über ein Message-

Objekt übergeben werden. Das Objekt erstellen wir mit HumanMessage und es besteht 

aus dem Text sowie dem Bild:

message = HumanMessage(
    content=[
        {"type": "text", "text": USER_PROMPT},
        {"type": "image_url", "image_url": f"data:image/png;base64,{base64_
image}"},
    ]
) 

Listing 10.11  Ollama – Message-Objekt

Es ist alles vorbereitet, sodass wir jetzt die Daten an das Modell übergeben können. 

Dazu verwenden wir wieder invoke:

res = model.invoke([message]) 

Das Schöne an den Modellintegrationen über LangChain ist, dass sie alle dem glei-

chen Schema folgen. Auf die Modellantwort können wir daher wie in vorherigen 

Abschnitten über die Eigenschaft content zugreifen:

res.content 
'Das Bild stellt einen Prozess zur Bewertung von Sprachmodellen dar. Es 
beginnt mit den Daten, die in ein vortrainiertes Modell eingespeist werden. 
Dieses Modell erzeugt dann hochwertige Ausgaben, die auf menschliche 
Präferenzen abgestimmt sind. Abschließend werden diese Ausgaben anhand von 
Benchmarks bewertet, um die Qualität und Angemessenheit des Modells zu 
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beurteilen. Es handelt sich um einen iterativen Prozess, der darauf abzielt, 
Modelle zu entwickeln, die nicht nur technisch leistungsfähig, sondern auch 
den menschlichen Werten und Erwartungen entsprechen.' 

Ist das nicht großartig? Sie können ein LLM verwenden, sogar mit vertraulichen Infor-

mationen, ohne irgendwelche Daten über das Internet preiszugeben.

Fragen Sie sich nun auch, wie Sie das Verhalten des Modells steuern, ja sogar finetu-

nen können? Dazu müssen Sie sich zunächst mit den Grundlagen und der Theorie 

befassen. Im folgenden Abschnitt werden Sie die wichtigsten Modellparameter ken-

nenlernen.

10.2    Modellparameter

Es gibt einige sehr wichtige Parameter, die Sie anpassen können, um die Ausgaben zu 

steuern, die ein Modell erzeugt. Parameter wie Temperatur, Top-p und Top-k spielen 

eine wichtige Rolle, und mit ihrer Hilfe können Sie die Kreativität, Zufälligkeit und 

den Fokus der erzeugten Ausgaben steuern.

Modelltemperatur

Mit der Modelltemperatur können Sie die Zufälligkeit der Ergebnisse steuern. Typi-

sche Werte sind 0 (niedrige Temperatur) und 1 oder sogar darüber (hohe Temperatur):

▸ Niedrige Temperaturen halten das Modell sehr fokussiert: Sie bekommen eher 

deterministische Ergebnisse, was bedeutet, dass Sie immer wieder die gleiche Ant-

wort erhalten. Das Modell bevorzugt extrem wahrscheinliche Tokens.

▸ Hohe Temperaturen hingegen erhöhen die Zufälligkeit bei der Token-Auswahl. Es 

wird eine breitere Verteilung von Tokens ausgewählt, was kreativere oder uner-

wartete Ausgaben ermöglicht. Temperaturen sollten normalerweise den Wert 1 

nicht überschreiten, da dies zu chaotischen und inkohärenten Ausgaben führen 

kann.

Lassen Sie mich das an einem Beispiel verdeutlichen: Stellen Sie sich vor, Sie besitzen 

eine Eisdiele. Wenn die (Umgebungs-)Temperatur niedrig ist, kommen weniger Kun-

den, und es könnte eine bessere Geschäftsentscheidung sein, nur die beliebtesten 

Sorten anzubieten (siehe Abbildung 10.5). Aber wenn die Temperatur steigt, steigt die 

Nachfrage, und es ist eine gute Entscheidung, auch exotischere Sorten anzubieten.

Die Temperatur ist direkt mit der Wahrscheinlichkeitsverteilung der Tokens verbun-

den. Lassen Sie mich erklären, wie die Temperatur die Wahrscheinlichkeitsverteilung 

anhand eines künstlichen Beispiels beeinflusst.
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Abbildung 10.5  Modellparameter – Temperatur am Beispiel einer Eisdiele erklärt

Sie haben den Prompt »Bert mag <MASK>.«, und das Modell hat die Aufgabe, das feh-

lende Wort auszufüllen. Es gibt eine riesige Anzahl möglicher Wörter. Zur Vereinfa-

chung verwenden und zeigen wir nur drei Wörter: »lesen«, »laufen« und »program-

mieren«.

Das Modell hat eine zugrunde liegende Wahrscheinlichkeit für diese Wörter, die auf sei-

nen Trainingsdaten basiert. Bei sehr niedrigen Temperaturen verstärkt das Modell die 

Unterschiede zwischen den Wahrscheinlichkeiten. Bei sehr hohen Temperaturen ver-

schwinden diese Unterschiede und alle Wörter haben die gleiche Wahrscheinlichkeit.

Abbildung 10.6 zeigt die Beispiel-Wahrscheinlichkeitsverteilungen für eine gegebene 

Benutzeranfrage und verschiedene Temperaturwerte.

Abbildung 10.6  Modellparameter – Temperatur und Wahrscheinlichkeitsverteilung

Niedrige Temperaturen von zum Beispiel 0.1 sind im Diagramm auf der linken Seite 

dargestellt. Das mittlere Diagramm zeigt den Einfluss einer mittleren Temperatur auf 

Temperature highlow
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die Wahrscheinlichkeitsverteilung, während das Diagramm auf der rechten Seite eine 

extrem hohe Temperatur darstellt.

Können Sie sehen, wie die Unterschiede mit steigender Temperatur kleiner werden? 

Genau das bewirkt dieser Parameter. Jetzt schauen wir uns zwei weitere Parameter an, 

die zusammen mit der Temperatur wirken: Top-p und Top-k.

Top-p und Top-k

Top-p (auch Nucleus Sampling genannt) steuert die Wahrscheinlichkeit, das nächste 

Token zu berücksichtigen. Das geschieht, indem die Anzahl der möglichen Tokens, 

aus denen das Modell wählen kann, dynamisch angepasst wird. Nehmen wir ein Bei-

spiel mit top-p = 0.9. In diesem Fall berücksichtigt das Modell eine kumulierte Wahr-

scheinlichkeit von Tokens, die sich auf 90 % summiert, und wählt die kleinste Menge 

von Tokens innerhalb dieser Grenzen.

Dieser Ansatz balanciert deterministische und kreative Ausgaben. Wenn Sie top-p = 1
einstellen, gibt es keine Filterung und effektiv werden alle möglichen Tokens berück-

sichtigt. Wenn Sie einen kleinen Wert wie top-p < 0.5 definieren, tendieren die Ausga-

ben des Modells dazu, fokussierter und vorhersehbarer zu sein, da nur die besten 

Tokens berücksichtigt werden.

Das Top-k Sampling steuert, wie viele der wahrscheinlichsten Tokens berücksichtigt 

werden, wenn das nächste Wort generiert wird. Wenn ein Wert von top-k = 1 gewählt 

wird, wird nur das wahrscheinlichste Token ausgewählt.

So erhalten Sie ein völlig deterministisches Ergebnis. Wenn top-k = 50 ist, sampelt das 

Modell aus den 50 wahrscheinlichsten Tokens für jeden Schritt. Das erhöht die Viel-

falt und ermöglicht kreativere und abwechslungsreichere Ausgaben. Top-k legt eine 

feste Anzahl von Tokens fest, aus denen gewählt werden kann, unabhängig von der 

kumulierten Wahrscheinlichkeit, die durch die Top-k-Tokens dargestellt wird.

Abbildung 10.7 zeigt ein Beispiel für Top-p- und Top-k-Parameter.

Abbildung 10.7  Modellparameter – Top-p- und Top-k-Parameter

Am Abend möchte ich mir ein(en) _____ ansehen.

Film Spiel ArztRestaurant

Wahrschein-
lichkeit

Token

0.5 0.3 0.11 0.01

Top p = 0.9

…

0.8

Top k = 3 Film Spiel Restaurant
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Der Beispielbenutzer-Prompt lautet: »Am Abend möchte ich mir ein(en) <MASK> 

ansehen«, wobei die Lücke (oder <MASK>) ausgefüllt werden soll. Es gibt wieder meh-

rere möglichen Tokens.

Basierend auf einer bestimmten Temperatur können die Wahrscheinlichkeiten die-

ser Tokens berechnet werden. Die Tokens werden in absteigender Reihenfolge darge-

stellt. Alle Wahrscheinlichkeiten, die zusammen weniger als Top-p ergeben, werden 

berücksichtigt. In diesem Fall haben »Film« und »Spiel« eine Wahrscheinlichkeit von 

80 %. Wenn das nächste Token »Restaurant« hinzugefügt wird, würde die aggregierte 

Wahrscheinlichkeit 91 % betragen und damit über dem Top-p-Wert liegen.

Top-k ist in diesem Beispiel einfach zu verstehen. Hier ist Top-k auf 3 gesetzt, sodass 

die drei wahrscheinlichsten Tokens ausgewählt werden, aus denen die endgültige 

Vorhersage zufällig gewählt wird.

Empfehlungen

Das Gleichgewicht zwischen diesen Parametern hängt vom jeweiligen Einsatzgebiet 

oder der zu lösenden Aufgabe ab:

▸ Beim kreativen Schreiben sollten Sie eine höhere Temperatur (0,8 bis 1,0) wählen, 

kombiniert mit einem moderaten Top-p (0,9 bis 1,0) und Top-k (50 bis 100), um 

eine Vielzahl kreativer Ausgaben zu erkunden.

▸ Bei der Code-Generierung möchten Sie eher zuverlässige Code-Schnipsel erhalten 

und wählen daher eine niedrige Temperatur (0,1 bis 0,3) mit kleinem Top-k (10 bis 

20) und Top-p (0,7 bis 0,9), um syntaktisch korrekte Ausgaben sicherzustellen.

▸ Im Kundenservice oder bei Chatbot-Anwendungen muss die Modellausgabe 

zuverlässig, fokussiert und konsistent sein. Eine niedrige Temperatur von 0,2 bis 

0,4 sorgt für vorhersehbare Antworten. Ein Top-p von 0,7 bis 0,9 ermöglicht es 

dem Modell, sehr wahrscheinliche Tokens auszuwählen, behält aber etwas Flexibi-

lität, um die Interaktion natürlich zu gestalten. Sie möchten ja robotermäßige Ant-

worten vermeiden. Top-k kann im Bereich von 20 bis 50 liegen; damit bleibt das 

Modell auf relevante Antworten fokussiert.

In diesem Abschnitt haben Sie gesehen, über welche Parameter die Modellantwort 

beeinflusst werden kann. Schauen wir uns nun an, auf welche Parameter wir achten 

sollten, um das richtige Modell auszuwählen.

10.3    Modellauswahl

Im vorherigen Abschnitt haben wir unsere ersten Interaktionen mit verschiedenen 

LLMs gemacht, und in 10.1 hatte Ihnen eine Auswahl der Modelle vorgestellt. Nun fra-

gen Sie sich vielleicht, wie Sie das »richtige« Modell für Ihre Aufgabe auswählen sollten.
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Je nach Ihrem Projekt gibt es harte und weiche Kriterien, die zu berücksichtigen sind:

▸ Wenn Sie lange Eingabeaufforderungen verarbeiten möchten, ist das Kontextfens-

ter (siehe den Infokasten in Abschnitt 10.1.2, »Coding: Nutzung von Groq«) ein ent-

scheidender Faktor.

▸ Wenn Sie mit einem Modell interagieren möchten, das aktuelle Entwicklungen 

und Trends berücksichtigt, könnte das Modell-Cutoff-Date extrem wichtig sein.

▸ Weitere wichtige Parameter sind die Kosten, die Latenz und die Leistung.

Lassen Sie uns die Leistung des Modells betrachten und einen genaueren Blick darauf 

werfen.

10.3.1    Leistungsfähigkeit

Sie können die Leistung verschiedener Modelle in der LMArena (https://lmarena.ai/?

leaderboard) überprüfen. Sie erhalten dann ein Ergebnis, das so wie in Abbildung 10.8 

aussieht.

Abbildung 10.8  Das »LMArena Leaderboard« (Snapshot vom 18. August 2025, Quelle: 

https://lmarena.ai/leaderboard)
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Die Modelle sind nach dem Arena-Score sortiert. Aber wie wird dieser Arena-Score 

bewertet? Er heißt nicht umsonst »Arena« (https://lmarena.ai/): In der Arena inter-

agiert der Nutzer mit zwei Modellen – Modell A und Modell B.

Der Nutzer kann einen Prompt definieren und erhält die Antworten von den beiden 

Modellen, die er dann bewerten muss, um herauszufinden, welches Modell besser 

abschneidet. So haben wir ein doppelblindes Testsetting, das als Goldstandard in der 

Bewertung von Testergebnissen gilt. In Abbildung 10.8 sehen Sie, dass mehrere 

Modelle den gleichen Rang teilen. Das liegt daran, dass das 95-%-Konfidenzintervall

berücksichtigt wird. Die Ränge ändern sich oft, also wird Ihr Ranking wahrscheinlich 

ganz anders aussehen, je mehr Zeit vergeht.

Oben werden die Hauptkategorien Text und WebDev angezeigt. Aber Sie können 

auch andere Kategorien auswählen – wie Vision, Text-to-Image, CoPilot oder 

Search – und das Ranking überprüfen.

Aber die Leistungsfähigkeit ist nicht der einzige relevante Faktor.

10.3.2    Der Wissensstand des Modells

Jedes Modell hat einen »Wissensstichtag« (Knowledge Cutoff Date). Das bedeutet, 

dass die Daten, mit denen das Modell trainiert wurde, an einem bestimmten Datum 

finalisiert wurden. Deshalb ist es wichtig, das Cutoff-Datum zu kennen: Wenn Sie ein 

Modell nach Informationen fragen, wie zum Beispiel nach einem Ereignis oder 

einem anderen Fakt, kann das Modell nicht wissen, ob es nach dem Cutoff-Datum 

passiert ist.

Für Chatbots wird dieser Parameter immer weniger relevant, da diese Modelle immer 

häufiger die Fähigkeit haben, im Internet nach aktuellen Informationen zu suchen. 

Aber für Sie als Entwickler oder Entwicklerin von KI-Systemen könnte das ein wichti-

ger Faktor sein, den Sie berücksichtigen wollen.

10.3.3    On-Premises vs. Cloud-Hosting

Ein weiterer wichtiger Aspekt bei der Modellauswahl ist der Datenschutz. Wenn Sie 

mit vertraulichen Informationen arbeiten, möchten Sie oder Ihre Kunden vielleicht 

nicht, dass die Daten das Unternehmensnetzwerk verlassen. Außerdem ist es wichtig 

zu wissen, mit welchen Daten das Modell trainiert wurde und ob es DSGVO-kompati-

bel ist.

Wenn Sie unter Berücksichtigung dieser Parameter ein lokales Modell gewählt haben, 

können Sie es risikolos im eigenen Netzwerk verwenden und können davon ausge-

hen, dass Ihre Daten Ihr Netzwerk nicht verlassen.
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10.3.4    Open-Source-, Open-Weight- und proprietäre Modelle

Es gibt proprietäre Modelle, die den Nutzern über Webanwendungen oder APIs zur 

Verfügung gestellt werden. Ein bekannter Vertreter dieser Klasse ist Anthropic. Anth-

ropic bietet üblicherweise seine Modelle auf diese Weise an.

Google und OpenAI handhaben das anders: Ihre Modelle werden entweder als prop-

rietäre Modelle über APIs bereitgestellt, z. B. Gemini oder GPT 5. Aber andere Modell-

klassen wie Gemma oder GPT-OSS werden als Open-Weight-Modelle angeboten.

Um ganz korrekt zu sein, sollten wir zwischen Open Source und Open Weight unter-

scheiden: Wirkliche Open-Source-Modelle werden mit allen Details wie Modellarchi-

tektur oder verwendeten Trainingsdaten bereitgestellt. Das ist meist nicht der Fall. Der 

Anbieter veröffentlicht das trainierte Modell mit seinen Gewichten für die Öffentlich-

keit, aber spezifische Details zu den zugrunde liegenden Daten und Trainingsdetails 

bleiben geheim. In so einem Fall spricht man von einem Open-Weight-Modell.

Ein bekanntes Beispiel aus dieser Gruppe ist Meta mit seiner Llama-Modellfamilie. 

Diese Modelle sind kostenlos nutzbar, aber das Unternehmen hält die Details der 

Trainingsdaten geheim.

10.3.5    Kosten

Die Kosten für die Nutzung eines LLM-Dienstes können ein entscheidender Faktor bei der 

Auswahl des Modells sein. Typischerweise werden proprietäre Modelle auf Token-Basis 

abgerechnet. Um genau zu sein: Es wird zwischen Eingabe-Tokens und Ausgabe-Tokens 

unterschieden. Eingabe-Tokens sind normalerweise günstiger als Ausgabe-Tokens. Die 

aktuellen Preise für OpenAI-Modelle finden Sie unter https://openai.com/api/pricing/

und für Anthropic unter https://www.anthropic.com/pricing#anthropic-api.

Sie sollten eine Abschätzung vornehmen, wie viele API-Anfragen und wie viele Tokens 

verarbeitet werden. Basierend darauf können Sie eine Schätzung Ihrer Gesamtkosten 

erstellen.

10.3.6    Kontextfenster

Ihr Projekt könnte die Verarbeitung von sehr langen Dokumenten beinhalten, und es 

könnte notwendig sein, so viele Informationen wie möglich an das Modell weiterzu-

geben. Daher ist das Kontextfenster ein entscheidender Faktor für die beste Wahl des 

Modells.

Wenn Sie sich zum Beispiel die Modelle auf Groq (https://console.groq.com/docs/

models) anschauen, finden Sie Modelle mit eher kleinen Kontextfenstern wie LlaVa 

1.5 7B mit einem Kontextfenster von 4.096 Tokens oder aber Llama 3.3 70B Versatile

mit einem extrem großen Kontextfenster von 128.000 Tokens.
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10.3.7    Latenz

Einige Anwendungsfälle erfordern sehr schnelle Modellantworten. Es gibt eine Ab-

hängigkeit von der Bereitstellung eines Modells bzw. wie lange es bis zur Bereitstel-

lung der Antwort dauert (Time to First Token).

Wenn Latenz keine Rolle spielt, könnten Sie sogar ein Open-Source-Modell auf einer 

CPU laufen lassen. In anderen Fällen könnte die Latenz jedoch der wichtigste Faktor 

sein, z. B. wenn Sie ein LLM mit Sprachgenerierung koppeln möchten, um Echtzeit-

Chats zu ermöglichen. In so einer Situation kann ein LLM leicht zum Flaschenhals 

werden und die Benutzererfahrung beeinträchtigen, weil es keine »natürliche« Kon-

versation gibt, wenn der Gesprächspartner lange Antwortzeiten hat.

10.4    Nachrichtentypen

In Abschnitt 10.1 haben Sie Ihre ersten Schritte mit LLMs gemacht. Wir haben die 

Modellobjekte aufgerufen, eine einfache Nachricht gesendet und eine Antwort erhal-

ten. In einem realistischeren Chat gibt es verschiedene Arten von Nachrichten. Jede 

Nachricht hat eine bestimmte Rolle und einen bestimmten Inhalt. Wir schauen uns 

die häufigsten Nachrichtentypen an.

10.4.1    Benutzereingabe (User- bzw. Human Message)

Dieser Nachrichtentyp bezieht sich auf die menschliche Nachricht und stellt die Ein-

gabe des Nutzers dar. Die Effektivität einer LLM-Antwort hängt von der Klarheit der 

Nutzer-Nachricht ab. Ein ganzer Arbeitsbereich namens Prompt-Engineering beschäf-

tigt sich im Grunde genommen damit, die Nutzer-Nachricht zu optimieren.

10.4.2    Systemnachricht

Neben der Benutzereingabe kann eine Systemnachricht definiert werden. Diese legt 

fest, wie das Modell sich verhalten und arbeiten soll, ähnlich wie in einem Rollenspiel.

▸ Wenn Sie zum Beispiel einen allgemeinen Assistenten einrichten möchten, könn-

te eine typische Systemnachricht so aussehen:

You are a helpful AI assistant designed to provide accurate, concise, and polite

responses. Always ensure that your answers are clear and informative.

▸ Falls Sie aber möchten, dass Ihr Modell sich wie ein technischer Support-Assistent 

verhält, könnten Sie das Modell mit der folgenden Systemnachricht anweisen:

You are a technical support AI assistant specializing in troubleshooting and exp-

laining software-related issues. Respond with clear, step-by-step instructions,

avoiding technical jargon whenever possible.
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Mit der Systemnachricht definieren Sie also die Rolle des Modells, seinen Ton und 

spezifische Ziele, bevor die Interaktion mit dem Nutzer beginnt. Die Systemnachricht 

ist entscheidend, um die Grenzen und Erwartungen des Modells festzulegen. Sie hilft 

dabei, es so zu lenken, dass es sich im Einklang mit den Anforderungen des Nutzers 

verhält.

Systemnachrichten haben jedoch ihre Grenzen. Während sie das anfängliche Verhal-

ten prägen können, können sie nicht durchgehend die strikte Einhaltung während 

des Gesprächs durchsetzen. Das bedeutet, dass Modelle in ihrem Ton oder Verhalten 

»abdriften« können, wenn sie mit unvorhergesehenen Eingaben des Nutzers kon-

frontiert werden.

Außerdem können Systemnachrichten allein keine feingranulare Kontrolle über die 

Genauigkeit der Inhalte oder ethische Überlegungen durchsetzen, ohne ergänzende 

Leitplanken oder Moderation.

10.4.3    Assistant

Der Nachrichtentyp assistant entspricht der Antwort des Modells. Die Haupteigen-

schaft ist der Inhalt, der die Ausgabe des Modells enthält.

Außerdem gibt es eine Eigenschaft namens response_metadata. Diese Eigenschaft ent-

hält einige modellspezifische Ausgaben. Typischerweise werden hier die Token-Nut-

zung sowie die Dauer der Abfrage angezeigt.

Damit kennen Sie die verfügbaren Nachrichtentypen. Lassen Sie uns nun herausfin-

den, wie sie in Prompts verwendet werden können. LangChain bietet eine sehr flexi-

ble Schnittstelle, um Prompts einzurichten: die Prompt-Templates.

10.5    Prompt-Templates

Bevor wir das LLM aufrufen und eine Anfrage senden, richten wir einen Prompt auf eine 

einheitliche und strukturierte Weise ein, indem wir die Prompt-Vorlagen (Prompt-Tem-

plates) des Frameworks LangChain verwenden. So können wir das Modell anleiten, wie 

es handeln soll. Außerdem kann das Modell mithilfe der Prompt-Vorlagen den Nutzer 

und dessen Absichten besser verstehen.

10.5.1    Coding: ChatPromptTemplates 

Die flexibelste Möglichkeit ist die Verwendung von ChatPromptTemplates, was es 

Ihnen erlaubt, eine Liste von Nachrichten zu übergeben. In Listing 10.12 sehen Sie ein 

Beispiel für den Code, um eine Prompt-Vorlage einzurichten.
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Wir beginnen mit einem einfachen Beispiel, das die Idee veranschaulicht. Zuerst müs-

sen wir die Klasse ChatPromptTemplate importieren. Im nächsten Schritt erstellen wir 

eine Instanz dieser Klasse, indem wir die Methode from_messages() aufrufen. Diese 

Nachrichten sind eine Liste von Tupeln. Jedes Tupel hat die Form ("Nachrichtentyp",
"Inhalt"). So definieren wir eine Systemnachricht, die dem Modell sagt, wie es sich 

verhalten soll, gefolgt von einer menschlichen Nachricht, die die eigentliche Benut-

zeranfrage enthält. Wichtig ist hier, wie wir Variablen definieren, die als Platzhalter 

eingerichtet und später befüllt werden. In unserem Beispiel sind die Variablen in den 

Benutzer- oder Menschennachrichten in geschweifte Klammern {} gesetzt. Wir rich-

ten input und target_language als Variablen ein.

Obwohl es ein bisschen wie ein Python-f-String aussieht, ist es nicht dasselbe: In 

einem f-String werden vordefinierte Variablen übergeben und durch die String-Dar-

stellung der Variablen ersetzt. Hier haben wir jedoch keine Variable input oder tar-
get_language im Voraus vordefiniert.

Im letzten Schritt rufen wir die Prompt-Vorlage auf, und in diesem Schritt werden die 

Variablen durch den tatsächlichen Inhalt ersetzt. Dafür müssen wir einfach die invo-
ke()-Methode des prompt_template-Objekts aufrufen. Als Parameter wird ein Dictio-

nary übergeben, das Schlüssel verwendet, die den Variablen entsprechen; und die 

Werte entsprechen dem Inhalt, der verwendet werden soll.

Schließlich wird, da wir den Invoke-Prompt nicht in einer neuen Variablen speichern, 

die Ausgabe einfach im Terminal angezeigt. Die Prompt-Vorlage wurde in ein Chat-
PromptValue-Objekt umgewandelt, das eine SystemMessage und HumanMessage enthält:

#%% packages
from langchain_core.prompts import ChatPromptTemplate
 
#%% set up prompt template
prompt_template = ChatPromptTemplate.from_messages([
    ("system", "You are an AI assistant that translates English into another language."),
    ("user", "Translate this sentence: '{input}' into {target_language}"),
])
 
#%% invoke prompt template
prompt_template.invoke({"input": "I love programming.", "target_language": "German"})  
ChatPromptValue(messages=[
  SystemMessage(content='You are an AI assistant that translates English into another 
language.'), 
  HumanMessage(content="Translate this sentence: 'I love programming.' into German")]) 

Listing 10.12  Prompt-Template – Nutzung
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Was ist der Zweck dieses Ansatzes? Mit der Prompt-Vorlage haben wir eine flexible 

erste Komponente, die an ein Modell übergeben werden kann, um eine Antwort zu 

erhalten. Der Ansatz »Prompt an das LLM schicken« ist eine einfache Abfolge von 

Schritten.

Wir werden uns im nächsten Abschnitt mit LangChain-Ketten beschäftigen.

Aber vorher lassen Sie uns die Weisheit der Menge nutzen, um einen guten Prompt 

zu entwickeln. LangChain hat ein Ökosystem geschaffen, das es Nutzern ermöglicht, 

Prompts mit dem LangChain Hub zu teilen und zu erkunden.

10.5.2    Coding: Verbesserung eines Prompts mit dem LangChain Hub

Sie finden den LangChain Hub unter https://smith.langchain.com/hub. Dort können 

Sie sich Prompts anschauen, die von anderen für verschiedene Zwecke erstellt wur-

den. Von dort holen wir uns Hilfe bei der Erstellung eines Prompts.

Wenn Sie nach »prompt maker« suchen, werden Sie den Prompt hardkothari/prompt-

maker finden. Dieser Prompt wurde erstellt, um einen detaillierteren Prompt zu gene-

rieren. In unserem Beispiel werden Sie herausfinden, wie das funktioniert.

Der Code in Listing 10.13 entspricht der Datei 100_LLM\60_prompt_hub.py.

Wir müssen die benötigten Pakete laden. Der Neuling hier ist hub aus dem langchain-

Paket:

from langchain import hub
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from dotenv import load_dotenv
load_dotenv('.env')
from pprint import pprint 

Listing 10.13  Prompt Hub – erforderliche Pakete

Um die Erstellung von Prompts zu nutzen, müssen wir die pull-Methode von hub auf-

rufen:

#%% fetch prompt
prompt = hub.pull("hardkothari/prompt-maker") 

Es gibt einige Eingangsvariablen, die über die Eigenschaft input_variables zugänglich 

sind:

#%% get input variables
prompt.input_variables
['lazy_prompt', 'task'] 
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Nun erstellen wir einen verbesserten Prompt. Wir müssen nur ein Modell einrichten 

und es in einer Kette ausführen. Das geht schon auf das Wissen des nächsten 

Abschnitts ein, haben Sie also noch etwas Geduld: Wir werden uns mit Ketten aus-

führlicher beschäftigen. Nehmen Sie das für den Moment bitte einfach so hin:

# %% model instance
model = ChatOpenAI(model="gpt-4o-mini", 
                   temperature=0)
# %% chain
chain = prompt | model | StrOutputParser() 

Listing 10.14  Prompt Hub – Setup der Chain 

Wir rufen die Kette in Listing 10.15 auf und übergeben die relevanten Parameter lazy_

prompt und task, um einen verbesserten Prompt zu erhalten:

# %% invoke chain
lazy_prompt = "summer, vacation, beach"
task = "Shakespeare poem"
improved_prompt = chain.invoke({"lazy_prompt": lazy_prompt, "task": task})
print(improved_prompt) 
 
As a skilled poet in the style of William Shakespeare, compose a sonnet that 
captures the essence of summer, vacation, and the beach. ### Instructions: 
Your poem should reflect the beauty and joy of a summer getaway, using rich 
imagery and evocative language typical of Shakespearean verse. Aim for 14 
lines, adhering to the traditional iambic pentameter and ABABCDCDEFEFGG rhyme 
scheme. ### Context: Incorporate themes of nature, leisure, and the fleeting 
nature of time, while evoking a sense of nostalgia and warmth. Use metaphors 
and similes to enhance the emotional depth of the poem, and consider including 
references to the sun, sea, and the carefree spirit of summer. ### Desired 
Outcome: The final piece should resonate with readers, transporting them to a 
sun-drenched beach, filled with laughter and the gentle sound of waves, while 
also reflecting on the transient beauty of such moments. 

Listing 10.15  Prompt Hub – Chain-Ausführung 

Dieser verbesserte Prompt beschreibt die Rolle des Modells viel detaillierter und gibt 

umfassende Anweisungen zur Aufgabe sowie eine Beschreibung des gewünschten 

Ergebnisses. Lassen Sie uns in Listing 10.16 das Modell mit dem verbesserten Prompt 

ausführen:

res = model.invoke(improved_prompt)
print(res.content)
Upon the golden sands where sunbeams play, 
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The azure waves do kiss the shore with glee, 
In summer’s arms, we cast our cares away, 
As laughter dances on the breeze so free. 
 
The sun, a sovereign in the heavens high, 
Doth paint the sky with hues of rose and gold, 
While seagulls wheel and cry, as if to vie 
For joy that in this fleeting time we hold. 
 
O, let us linger in this warm embrace, 
Where time, like grains of sand, slips through our hands, 
Each moment savored, sweet as summer’s grace, 
A tapestry of dreams upon the strands. 
 
Yet, as the twilight calls the day to rest, 
We cherish memories, our hearts possessed. 

Listing 10.16  Prompt Hub – Chain-Ergebnis für den verbesserten Prompt 

Ich überlasse es Ihnen, das Modell nur basierend auf dem lazy_prompt und der Aufga-

be task auszuführen und die beiden Ergebnisse zu vergleichen. Im Skript finden Sie 

meine Beispiellösung.

Damit haben Sie ein kleines Beispiel gesehen, wie eine Kette verschiedene Bausteine 

kombiniert. Dieses Konzept ist sehr mächtig aufgrund seiner Struktur, wie Sie im 

nächsten Abschnitt sehen werden.

10.6    Chains

Verkettungen (Chains) sind ein so wichtiges Konzept, dass sie Teil des Pakets namens 

LangChain sind. Da der englische Begriff geläufiger ist, werde ich im Folgenden das 

Wort »Chain« anstelle von »Verkettung« nutzen. Eine Chain bezieht sich auf eine 

Abfolge von Prozessschritten, die miteinander verbunden sind, um eine Aufgabe zu 

erfüllen. Typischerweise bestehen sie aus mehreren Komponenten.

Wir beginnen mit der kleinsten und einfachsten Kette.

10.6.1    Eine einfache sequenzielle Chain

Die einfachste Chain könnte eine »Prompt zu LLM«-Chain sein, wie sie in Abbildung 

10.9 dargestellt ist: Eine Benutzereingabe wird an eine Prompt-Vorlage weitergege-

ben. Die Prompt-Vorlage selbst gibt ihre Ausgabe an einen LLM-Schritt weiter. Und 

schließlich erzeugt der LLM-Schritt eine Modellausgabe.
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Abbildung 10.9  Einfache LangChain-Verkettung

Aber Sie sind nicht auf eine sequenzielle Chain beschränkt. Sie können auch komple-

xere Strukturen wie parallel laufende Chains oder Router-Chains nutzen. Diese Kon-

zepte sind in Abbildung 10.10 dargestellt.

Abbildung 10.10  Komplexere Verkettungen (links: parallel, rechts: Router)

10.6.2    Coding: Eine einfache sequenzielle Chain

Wir werden eine Chain einrichten, die aus einem Prompt-Template besteht. Das 

Prompt-Template wird an ein LLM übergeben. Nachdem das Modell eine Ausgabe 

erstellt hat, wird die Ausgabe an einen StrOutputParser weitergegeben. Den entspre-

chenden Code finden Sie in 100_LLM/70_simple_chain.py.

In Listing 10.17 beginnen wir damit, relevante Pakete und API-Schlüssel zu importie-

ren. Als LLM-Provider verwenden wir OpenAI. Der API-Schlüssel wird über dotenv

geladen. Bitte stellen Sie sicher, dass eine .env-Datei im Arbeitsordner gespeichert ist, 

die einen Eintrag für OPENAI_API_KEY enthält.

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from dotenv import load_dotenv
from langchain_core.output_parsers import StrOutputParser
load_dotenv('.env') 

Listing 10.17  Sequenzielle Chain – erforderliche Pakete 

Prompt LLM

Kette

Nutzer-
eingabe

Modell-
ausgabe

Prompt A LLM A

Prompt B LLM B
…

Chain A

Chain B

a) Parallele Verkettung b) Verkettung mit Router

User
Input

Prompt A LLM A

Prompt B LLM B
…

Router

Chain B

Chain A
User-
Input

… …
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Wir erweitern in Listing 10.18 die Prompt-Vorlage aus Abschnitt 10.5 und erstellen ein 

ChatPromptTemplate, das auf einer System- und User-Message basiert. Die Aufgabe 

besteht darin, einen Eingabetext input in eine Zielsprache target_language zu über-

setzen:

#%% set up prompt template
prompt_template = ChatPromptTemplate.from_messages([
    ("system", "You are an AI assistant that translates English into another 
       language."),
    ("user", "Translate this sentence: '{input}' into {target_language}"),
]) 

Listing 10.18  Sequenzielle Chain – Prompt-Template-Erstellung 

Die nächste Komponente, die wir anwenden, ist ein LLM. Wir verwenden GPT-4o-mini

und erstellen die Modellinstanz model mit ChatOpenAI:

model = ChatOpenAI(model="gpt-4o-mini", 
                   temperature=0) 

Das Verbinden der Chain-Elemente kann nicht einfacher sein. Wir müssen nur den 

Pipe-Operator | anwenden. Die Komponenten werden durch | getrennt. In unserem 

Beispiel ist der Prompt die erste Komponente in der Kette, gefolgt vom Modell, und 

anschließend wird die Modellausgabe an den StrOutputParser übergeben, der die 

Modellausgabe in den wahrscheinlichsten String parst:

# %% chain
chain = prompt_template | model | StrOutputParser() 

Alles ist vorbereitet, damit wir die Kette mit Eingabeparametern aufrufen können. 

Dadurch erhalten wir das endgültige Ergebnis:

# %% invoke chain
res = chain.invoke({"input": "I love programming.", 
  "target_language": "German"})
res 

Jetzt, da Sie wissen, wie Sie eine einfache sequenzielle Chain verwenden, könnten Sie 

sich höhere Ziele setzen und deutlich komplexere Konstrukte wie Router oder parel-

lele Chains aufbauen. Das überlasse ich Ihnen zum Selbststudium. Stattdessen will ich 

auf eine Fähigkeit der Sprachmodelle eingehen, die extrem wertvoll ist: auf die struk-

turierten Ausgaben.
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10.7    Strukturierte Outputs

10.7.1    Was sind strukturierte Outputs?

Sprachmodelle sind sehr gut darin, freien Text zu generieren, und das ist toll für kre-

ative Geschichten, E-Mails oder auch für die Code-Generierung. Manchmal ist jedoch 

ein bestimmtes Format erforderlich, etwa für die Datenerfassung, die Automatisie-

rung von Prozessen oder für die Integration in andere Systemen – also eigentlich 

immer dann, wenn das Sprachmodell nicht am Ende des Prozesses steht, sondern die 

Ausgabe des Sprachmodells von anderen Tools oder Systemen weiterverwendet wer-

den soll. Genau an dieser Stelle kommen strukturierte Outputs ins Spiel.

Ein strukturierter Output ist eine Modellantwort, die nicht als freier Text, sondern in 

einem bestimmten, maschinenlesbaren Format ausgegeben wird. Die gängigsten 

Formate sind JSON oder XML, aber auch CSV oder einfache Listen.

Die großen Vorteile von strukturierten Outputs sind:

▸ die nahtlose Kommunikation zwischen Sprachmodellen und anderen Software-

Systemen

▸ Mit strukturierten Outputs lassen sich Workflows automatisieren. Zum Beispiel 

könnte ein LLM Produktdetails aus einem freien Text extrahieren und sie dann in 

ein E-Commerce-System einspeisen.

▸ Durch strukturierte Outputs lassen sich Mehrdeutigkeiten vermeiden, die bei 

freiem Text auftreten könnten. Da das Modell gezwungen wird, sich an ein klar 

definiertes Schema zu halten, werden die Ergebnisse konsistenter.

Schauen wir uns an, wie wir strukturierte Outputs implementieren können.

10.7.2    Coding: Strukturierte Outputs

Waren Sie schon einmal in der Situation, dass Ihnen zwar die Handlung eines Films 

einfällt, aber Sie sich beim besten Willen nicht an den Titel oder die Darsteller erin-

nern können? Für dieses Problem bauen wir uns nun eine Chain, wie sie in Abbildung 

10.11 zu sehen ist.

Abbildung 10.11  Chain für strukturierten Output

Prompt-
Template

LLM Parser
Strukturierter

Output

{'title': 'The Martian‹,
'main_character': 'Mark Watney‹,
'director': 'Ridley Scott‹,
'release_year': '2015'}

User-
Prompt

{'plot': 'mars,botanik'}

Beispiel:
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Der Nutzer übergibt die Rahmenhandlung an die Chain, die aus einem Prompt-Tem-

plate, einem Modell und einem Output-Parser besteht. Als Ergebnis erhalten wir den 

strukturierten Output im JSON-Format.

Ein solcher Workflow lässt sich einfach implementieren. Dafür nutzen wir den Code 

aus 100_LLM\80_structured_outputs.py.

Wir laden zunächst in Listing 10.19 die benötigten Pakete. Die entscheidende neue 

Funktionalität kommt über den Parser, der das Ergebnis des Modells nachbearbeitet. 

Dazu nutzen wir PydanticOutputParser. Hiermit in Verbindung steht das Paket pydan-
tic, aus dem wir die Klasse BaseModel laden:

from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv(usecwd=True))
from langchain_core.output_parsers import PydanticOutputParser
from pydantic import BaseModel 

Listing 10.19  Strukturierte Outputs – erforderliche Pakete

Bei der Ausgabe erwarten wir ein ganz bestimmtes Format, das wir über eine eigene 

Klasse MyMovieOutput definieren. Diese Klasse erbt von BaseModel, und in dieser Klasse 

definieren wir die Keys und den Datentyp der Values des JSON-Objektes, das uns 

zurückgegeben werden soll. So wird beispielsweise festgelegt, dass der Titel title als 

String erwartet wird:

#%% pydantic model
class MyMovieOutput(BaseModel):
    title: str
    main_character: str
    director: str
    release_year: str 

Dieses Ausgabeformat wird nun dem PydanticOutputParser übergeben. Damit kön-

nen wir dem Modell klare Anweisungen hinsichtlich des Outputs geben:

# %% prompt
parser = PydanticOutputParser(pydantic_object=MyMovieOutput) 

In den Nachrichten wird das Modellverhalten über den system-Prompt festgelegt. 

Hier werden auch die Formatanweisungen übergeben. Im user-Prompt wird dann die 

eigentliche Benutzeranfrage hinterlegt:

messages = [
    ("system", "Du bist ein Filmexperte. {format_instructions}"),
    ("user", "Handlung: {plot}")
] 
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Kommen wir jetzt zum ersten Modul unserer Chain – dem prompt_template. Basierend 

auf den messages wird das Prompt-Template erstellt. Neu ist hier die Methode parti-

al(), die den Zweck hat, dem Prompt-Template bereits den Parameter format_inst-

ructions zu übergeben. Wir müssen die Formatanweisungen nicht selbst schreiben, 

sondern können direkt auf die Anweisungen des parser zurückgreifen:

prompt_template = ChatPromptTemplate.from_messages(messages).partial(
    format_instructions=parser.get_format_instructions()
) 

Die Modellinstanz wird ganz klassisch mit ChatGroq erzeugt. Sinnvoll ist es, dem 

Modell eine niedrige Temperatur mitzugeben.

 

Temperatur bei strukturierten Outputs

Ein wichtiger Hinweis an dieser Stelle: Bei strukturierten Outputs soll das Modell 

wenig kreativ sein, sondern eher deterministisch arbeiten. Daher sollte die Tempera-

tur gering eingestellt werden, zum Beispiel auf 0 bis 0.3.

MODEL_NAME = "meta-llama/llama-4-scout-17b-16e-instruct"
model = ChatGroq(model=MODEL_NAME, temperature=0.2) 

Jetzt können wir die chain erstellen, die aus einer Sequenz aus prompt_template, model

und parser besteht:

chain = prompt_template | model | parser 

Damit ist alles für unseren ersten Test vorbereitet. Die Eingabe wird im Objekt chain_

inputs als Dictionary definiert und der chain mittels invoke übergeben:

chain_inputs = {"plot": "mars, botanik"}
res = chain.invoke(chain_inputs) 

Das Ergebnis können wir in Listing 10.20 über die Methode model_dump() abgreifen:

res.model_dump() 

{'title': 'The Martian',
 'main_character': 'Mark Watney',
 'director': 'Ridley Scott',
 'release_year': '2015'} 

Listing 10.20  Strukturierte Outputs – Modellergebnis

Das Ergebnis ist wie gewünscht ein JSON-Objekt mit den genannten Keys und den 

korrekten Werten.
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Es gäbe noch unendlich mehr zum Thema »Sprachmodelle und allgemeine generati-

ve KI« zu berichten. An dieser Stelle möchte ich daher auf mein Buch »Generative KI 

mit Python« verweisen, das sich diesen Themen sehr ausführlich widmet.

Das Thema der großen Sprachmodelle ist technologisch untrennbar mit der Transfor-

mer-Architektur verbunden. Im folgenden Abschnitt wagen wir einen technischen 

Deep Dive in diese Technologie.

10.8    Deep Dive: Wie funktionieren Transformer?

Abbildung 10.12 verdeutlicht den grundsätzlichen Aufbau eines Transformer-Mo-

dells. Ein Transformer-Modell besteht aus einigen fundamentalen Bausteinen, die Sie 

besser verstehen müssen.

Abbildung 10.12  Aufbau eines Transformer-Modells

Auf der untersten Ebene steht der Text, der dem Modell übergeben wird. In unserem 

Beispiel wird der Satz »PyTorch macht Spaß« an das Modell übergeben. Dabei wird der 

Text zunächst tokenisiert, also in einzelne Teile zerlegt (mehr dazu erfahren Sie in 

Abschnitt 10.8.1).

Der Einfachheit halber nehmen wir an dieser Stelle an, dass der Text in einzelne Wör-

ter zerlegt wurde. Die Wörter werden durch ein erstes Netzwerkmodul geleitet, das 

Word Embeddings ermittelt. Diese Word Embeddings sind Vektoren, die für jedes 

Wort die inhaltliche Bedeutung widerspiegeln. Weitere Details hierzu lesen Sie in 

Abschnitt 10.8.2.

Der nächste Schritt ist das Positional Encoding. Stellen Sie sich den Satz »Die Katze 

fängt die Maus« vor. Dass die Reihenfolge der Wörter eine Rolle spielt, zeigt der Satz: 

»Die Maus fängt die Katze«. Es werden exakt die gleichen Wörter verwendet, aber die 

machtPyTorch Spaß<CLS> <EOS>

Token-ID

Positional Encoding

Token

Word Embeddings

AttentionQ V K
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Bedeutung hat sich durch die geänderte Position der Wörter komplett verändert. Mit 

dem Positional Encoding bekommt das Modell die Information, welches Wort an wel-

cher Stelle zu finden ist.

Im nächsten Schritt werden die Daten in ein Modul geführt, das sich Attention nennt. 

Das ist das eigentliche Kernstück des Modells. Hier lernt das Modell die innere Struk-

tur des Satzes und welches Wort mit welchem anderen Wort zusammenhängt. Mit 

diesem Konzept werden wir uns in Abschnitt 10.8.4 näher beschäftigen.

10.8.1    Tokenisierung

Tokenisierung bedeutet einfach nur, dass der Text in kleinere Einheiten, sogenannte 

Tokens, zerlegt wird. Die Tokens können einzelne Wörter, Satzteile oder sogar einzelne 

Zeichen sein. Das hängt von der verwendeten Tokenisierungsmethode ab. Bei heutzu-

tage üblichen Sprachmodellen kommt eine Subword-Tokenisierung zum Einsatz.

Jedes Token wird dann einem eindeutigen numerischen Wert, der sogenannten 

Token-ID, zugewiesen. Diese ID ist so eine Art Wörterbucheintrag, wobei dieses Wör-

terbuch eine Zuordnung zwischen menschlichen Wörtern und zugeordneten Zahlen-

werten ermöglicht.

Abbildung 10.13 zeigt die Funktionsweise des Tokenizers. Er verarbeitet eine Textein-

gabe des Nutzers, extrahiert die einzelnen Tokens und liefert die Tokens mit ihren 

dazugehörigen Token-IDs zurück.

Abbildung 10.13  Tokenisierung

Im Beispiel wurde der Tokenizer von GPT-4o und GPT-4o mini verwendet. Sie können 

das selbst mit anderen Eingaben testen, wenn Sie den Tokenizer von OpenAI unter 

https://platform.openai.com/tokenizer verwenden.

Wie Sie sehen, beruht dieser Tokenizer auf Subword Tokenization. Das ist daran zu 

erkennen, dass das Wort »PyTorch« in die beiden Tokens »Py« und »Torch« zerlegt 

PyTorch macht großen Spaß. Nutzereingabe

Tokenizer

Py Torch macht großen Spaß .

37863 162709 25048 36568 59262 13 Token-ID

Tokens
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10 Sprachmodelle
wurde. Außerdem ist es wichtig zu wissen, dass auch für Sonderzeichen separate 

Tokens erstellt werden. In unserem Beispiel wurde der Punkt als eigenes Token codiert.

In der Praxis wird immer von »Tokens« gesprochen, wobei für uns eher das Konzept 

»Wort« verständlicher ist. Es ist für mich einfach, die Wörter in diesem Kapitel zählen 

zu lassen, aber wie vielen Tokens entspricht das? Damit befassen wir uns im folgen-

den Infokasten.

 

Umrechnung von Wörtern in Tokens

Die Umrechnung von Wörtern in Tokens ist keine exakte Wissenschaft, da sie von 

mehreren Faktoren abhängt.

Es gibt aber gute Heuristiken, die man heranziehen kann. Sie unterscheiden sich von 

Sprache zu Sprache:

▸ Im Englischen ist die gängige Faustformel, dass 1 Token ungefähr ¾ eines Wortes 

entspricht. Vereinfacht gesagt bedeutet das, dass 75 Wörter durch 100 Tokens be-

schrieben werden können.

▸ Im Deutschen ist das Verhältnis ungünstiger. Eine Faustformel lautet, dass 1 Wort 

im Durchschnitt in 2.1 Token umgesetzt wird. Das liegt an Eigenheiten der deut-

schen Sprache, zum Beispiel daran, dass viele Wörter zusammengesetzte Wörter 

sind. Es liegt aber auch daran, dass die meisten Sprachmodelle sich am englischen 

Sprachschatz orientieren, was dazu führt, dass viele gängige englische Wörter als 

einzelne Tokens behandelt werden.

Es gibt nicht nur ein solches »Wörterbuch«. Stattdessen müssen Sie als Entwickler 

bzw. Entwicklerin darauf achten, dass der zum Modell passende Tokenizer verwendet 

wird. Häufig wird dieser Schritt vor dem Nutzer verborgen, sodass er sich nicht darum 

kümmern muss, aber das ist nicht immer der Fall.

Da Deep-Learning-Modelle nur mit Tensoren und allgemeiner mit numerischen Wer-

ten arbeiten können, findet dieser Schritt bei allen Sprachmodellen statt. Die Nutzer-

eingabe wird tokenisiert, vom Modell verarbeitet, und die Modellausgabe wird wieder 

in menschliche Sprache zurückgewandelt.

Kommen wir nun zum nächsten wichtigen Aspekt des Transformer-Modells: den 

Word Embeddings.

10.8.2    Word Embeddings

Wenn Sie an Ihren Mathematikunterricht zurückdenken, erinnern Sie sich vielleicht, 

was ein Vektor ist – die Linie mit einem Pfeil, die Sie in ein Koordinatensystem zeich-

nen mussten. Damals mussten Sie diese Linien zeichnen, die durch zwei Zahlen dar-

gestellt werden konnten.
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Ein ganz einfaches Beispiel sehen Sie in Abbildung 10.14. Dieses Diagramm zeigt Lebe-

wesen und ihre Position in einem zweidimensionalen Diagramm, in dem die beiden 

Dimensionen die Anzahl der Beine und die Körpergröße darstellen. Indem wir die 

Informationen auf diese Weise darstellen, lernen wir etwas über die Welt und die 

semantische Bedeutung von Wörtern, zum Beispiel, dass sich Katzen und Hunde in 

Bezug auf diese beiden Eigenschaften ziemlich ähnlich sind.

Abbildung 10.14  Beispiel für einen vereinfachten Vektorraum

Wir Menschen können uns einen Punkt in einem zweidimensionalen Raum vorstel-

len (wie im Beispiel gezeigt) oder in einem dreidimensionalen Raum. Stellen Sie sich 

vor, wir fügen eine dritte Dimension wie Intelligenz in dieses Diagramm ein.

Aber wir können uns keinen 1536- oder 3072-dimensionalen Raum vorstellen. Com-

puter können das problemlos. Und das ist hilfreich, denn die semantische Bedeutung 

von Wörtern, Bildern, Geräuschen oder jeder anderen Art von Informationen kann in 

einer höheren Dimension dargestellt werden. Der entscheidende Aspekt hier ist, dass 

ähnliche Konzepte näher beieinander liegen als Konzepte, die sehr unterschiedlich 

sind. Wie in unserem Beispiel, in dem wir sehen können, dass Katzen und Hunde oder 

Schlange und Schnecke vergleichbar sind – je nach den Eigenschaften, die wir ausge-

wählt haben. Mit jeder zusätzlichen Dimension lernt der Computeralgorithmus, die 

Bedeutung eines Wortes besser zu verstehen.

Wir verwenden Sprachen wie Englisch oder Deutsch, um zu kommunizieren und ein 

Konzept zu klären. Computer arbeiten nicht direkt mit unseren Sprachen, sondern 

mit ihrem Äquivalent – numerischen, sogenannten Einbettungsvektoren (Embedding 

Vectors).

Körpergröße
[m]

Anzahl der
Beine [-]

2 40

Katze

Hund

Mensch

Huhn
Schlange

Elefant

2

3

1

0.5

0 Schnecke
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In unserem Beispiel wird für den Computeralgorithmus z. B. ein Hund durch [4, 1] 

definiert, eine Katze durch [4, 0.5] und ein Mensch durch [4, 2]. Eine Beispielzu-

ordnung ist in Tabelle 10.1 dargestellt.

Und der Prozess, menschliche Texte in Vektoren zu übersetzen, wird Embedding

genannt. Es gibt verschiedene Arten der Embeddings. Es können einzelne Wörter, aber 

auch ganze Textpassagen durch jeweils einen Embedding-Vektor repräsentiert werden.

Zum jetzigen Zeitpunkt versteht das Transformer-Modell bereits einzelne Wörter, 

aber was passiert, wenn sich die Position der Wörter verändert? Hier kommt das Posi-

tional Encoding ins Spiel.

10.8.3    Positional Encoding

Eine entscheidende Technik, um die Reihenfolge der Wörter zu erhalten, ist das Posi-

tional Encoding.

In der Praxis wird den Word Embeddings ein weiterer Vektor hinzugefügt, der die 

Informationen über die absolute oder relative Position des Tokens in der Eingabese-

quenz beinhaltet.

Die mathematische Implementierung verwendet trigonometrische Funktionen wie 

Sinus- oder Kosinus. Dies ermöglicht es dem Modell, unabhängig von der Länge der 

Eingabesequenz konsistente Positionsmuster zu erkennen und die Positionsinfor-

mationen auch auf Sequenzen zu übertragen, die viel länger sind als die im Training 

verwendeten.

10.8.4    Attention

Attention wird hier am Beispiel der Self-Attention erläutert. Die Self-Attention berech-

net die Ähnlichkeit der Word Embeddings zwischen allen Wörtern und sich selbst.

Menschliches Konzept Einbettungsvektor

Hund [4, 1]

Katze [4, 0.5]

Mensch [4, 2]

Elefant [4, 3]

Schlange [0, 0.5]

Schnecke [0, 0.1]

Tabelle 10.1  Menschliche Konzepte und ihre Computer-Entsprechung 
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Abbildung 10.15 zeigt den Prozess am Beispiel des Satzes »The man ate the pizza 

because it smelled delicious«. Wenn wir uns hier nur auf das Wort »it« konzentrieren 

– worauf bezieht es sich? Mit einem gewissen Grundverständnis von Sprache könnte 

man einem Algorithmus beibringen, dass es sich auf ein Substantiv bezieht. Aber in 

diesem Fall könnte es sich auf »man« oder »pizza« beziehen. Genau hier kommt das 

Konzept der Self-Attention zum Tragen. Damit ist es einem Modell möglich, den 

Zusammenhang zwischen Wörtern zu »verstehen«. Wenn es auf genügend Daten 

trainiert wurde, sollte es dem Modell deutlich werden, dass sich »it« sehr viel wahr-

scheinlicher auf »pizza« bezieht.

Abbildung 10.15  Der Self-Attention-Prozess

Diese Funktionsweise schauen wir uns an einem praktischen Beispiel an und über-

prüfen sie anhand des Skriptes unter 100_LLM\self_attention.py.

Wir laden zu Beginn des Skriptes in Listing 10.21 die erforderlichen Pakete. Zur Verar-

beitung der Modelle brauchen wir torch bzw. AutoTokenizer und AutoModel. Die Ergeb-

nisse werden mit matplotlib und seaborn visualisiert:

#%% packages
import torch
from transformers import AutoTokenizer, AutoModel
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np 

Listing 10.21  Self-Attention – Paketimport

In Listing 10.22 übergeben wir den Beispieltext sample_sentence an das Modell, nach-

dem zuvor der Tokenizer erstellt wurde. Wie schon erwähnt muss der Tokenizer zum 

Modell passen. Hier werden das Modell (und der Tokenizer) bert-base-uncased ver-

wendet. Die inputs sind die Token-IDs, die mit dem Tokenizer erstellt wurden. Die 

Word Embeddings ergeben sich hingegen aus der letzten versteckten Schicht namens 

output.last_hidden_state:

#%% test
sample_sentence = "the man ate the pizza because it smelled delicious"
 

The man ate the pizza because it smelled delicious
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#%% Get word encodings and attention weights from BERT
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased", output_attentions=True)
inputs = tokenizer(sample_sentence, return_tensors="pt", 
  padding=True, truncation=True)
 
with torch.no_grad():
    outputs = model(**inputs)
word_encodings = outputs.last_hidden_state
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0]) 

Listing 10.22  Self-Attention – Erstellung der Word Embeddings und Tokens

Nun können die Attention-Gewichte ebenso aus den Modellergebnissen extrahiert 

werden. Die durchschnittliche Attention avg_attention wird ermittelt:

#%% Get attention weights from all layers and heads
attention_weights = outputs.attentions  
 
last_layer_attention = attention_weights[-1][0]  
 
avg_attention = last_layer_attention.mean(dim=0) 

Abbildung 10.16 zeigt das Ergebnis des Modells. Die Zahlen repräsentieren die Atten-

tion-Gewichte ausgehend vom Wort »it«.

Abbildung 10.16  Self-Attention von »it« in Bezug auf »man« und »pizza«

Es wird deutlich, dass sich »it« am ehesten auf »pizza« bezieht.

The man ate the pizza because it smelled delicious
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10.9 Zusammenfassung
In einem realen Transformer gibt es nicht nur ein Attention-Modul (man spricht in 

der Regel von einem Attention-Head), sondern Multi-Head Attention.

Bei der Multi-Head Attention fokussiert sich jeder Head auf verschiedene Aspekte 

von Zusammenhängen zwischen den Wörtern. So kann es zum Beispiel sein, dass sich 

ein Head auf den Zusammenhang zwischen Verb und Substantiven oder ein anderer 

Head auf Adjektive und Substantive fokussiert.

10.9    Zusammenfassung

In diesem Kapitel haben Sie die Grundlagen von Sprachmodellen kennengelernt: von 

ihrer einfachen Nutzung mit Python über die Bedeutung von Modellparametern bis 

hin zu verschiedenen Kriterien der Modellauswahl – darunter Leistung, Cutoff-Date, 

Hosting- und Deployment-Optionen.

Wir haben uns mit Nachrichtentypen, Prompt-Templates und Chains befasst, um 

effektive Interaktionen zu gestalten.

Ein besonderer Fokus lag auf strukturierten Outputs, die es uns ermöglichen, spezifi-

sche und vorhersehbare Ergebnisse zu erhalten.

Abschließend erhielten Sie einen tieferen Einblick in die Transformer-Architektur, 

der Ihnen ein besseres Verständnis der Funktionsweise dieser mächtigen Modelle 

vermittelt hat. Mit diesem Wissen sind Sie nun bestens gerüstet, um Sprachmodelle 

in Ihren eigenen Projekten zu verwenden.
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