Bert Gollnick

PyTorch

KI-Modelle trainieren,
tunen und einsetzen

+ Deep Learning von der Datenaufbereitung
iiber Training und Finetuning bis zum
Deployment

+ Vielfdltige Architekturen wie Autoencoder,
RNNs, LLMs und RAG-Systeme

+ Inkl. PyTorch Lightning, TensorBoard,
LangChain, FastAPI u.v.m.

> Mit lokal lauffahigen Beispielprojekten
zum Download

# Rheinwerk
Computing




Kapitel 3
Unser erstes PyTorch-Modell

»Jede hinreichend fortschrittliche Technologie ist von Magie nicht zu
unterscheiden.«
—Arthur C. Clarke, Autor und Physiker

Fiir mich fiihlte sich das erste Deep-Learning-Modell, das ich trainiert habe, genauso
an — wie Magie. Moglicherweise wird es Thnen dhnlich gehen.

In diesem Kapitel legen wir die Grundlage fiir alle weiteren Kapitel. Sie werden lernen,
wie PyTorch-Modelle trainiert werden.

Zunichst werden wir ein Modell von Grund auf trainieren und hierbei nahezu jeden
Schritt »von Hand« implementieren. Das wird Ihnen helfen, ein besseres Verstandnis
flr die Arbeitsweise von PyTorch zu erlangen.

Danach werden wir sukzessiv mehr Features von PyTorch nutzen, um unsere Skripte
somodular wie moglich zu definieren. Im Idealfall soll unser Skript am Ende so modu-
lar sein, dass ein anderer Datensatz verwendet werden kann und das Modell trainiert
wird, ohne dass an diversen Stellen im Code Anpassungen notwendig sind.

Auf dem Weg werden wir uns in Abschnitt 3.1 zunachst mit dem Datensatz vertraut
machen und diesen vorbereiten. In Abschnitt 3.2 trainieren wir unser Modell, das wir
im Anschluss verbessern.

Im Anschluss werden Sie in Abschnitt 3.3 lernen, wie eine Modellklasse definiert wird.
Das Konzept der Batches wird in Abschnitt 3.4 eingefiihrt. Der Datensatz wird mittels
Dataset- und DataLoader-Klasse abstrahiert. Dieser Thematik widmen wir uns in
Abschnitt 3.5.

Da wir nicht immer wieder das Modell neu trainieren wollen, erklare ich in Abschnitt
3.6, wie Modelle und deren Modellgewichte gespeichert und geladen werden konnen.

Zum Abschluss dieses Kapitels widmen wir uns in Abschnitt 3.7 dem Data Sampling.
Hierbei geht es letztlich darum, sicherzustellen, dass das Modell zu generalisieren
lernt, damit es nicht nur die Trainingsdaten gut vorhersagen kann, sondern im besten
Fall jegliche Daten, die es noch nie zuvor gesehen hat.
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3 Unser erstes PyTorch-Modell

Ganzallgemein kann gesagt werden, dass es in diesem Kapitel weniger um Regression
geht, sondern um das gesamte »Drumherum« des Modelltrainings.

Aber bevor wir in unser erstes Modelltraining einsteigen, miissen wir uns zunachst
mit dem Datensatz vertraut machen, fir den das Modell trainiert werden soll.

3.1 Datenvorbereitung

Wir arbeiten mit einem Datensatz von Kaggle (www.kaggle.com). Kaggle ist eine
Online-Community mit speziellem Fokus auf Datenanalysten und Data Scientists.
Mit dieser Plattform ist es moglich, Datensatze zu erforschen, Analysen durchzufiih-
ren und von anderen zu lernen, die bereits mit den Daten gearbeitet haben. Es ist eine
sehr wertvolle Quelle von Wissen.

Im Speziellen werden wir mit dem Social-Anxiety-Datensatz (https.//www.kaggle.com/
datasets/natezhangl23/social-anxiety-dataset) arbeiten. Er enthédlt mehr als 10.000
Stichproben von Personen, die unterschiedlich starke soziale Angste aufweisen. Das
Angst-Level folgt einer Punkteskala von 1 bis 10. Das ist die Zielgrofle (oder auch
abhdngige Gréfie genannt), die vom Modell letztlich vorhergesagt werden soll.

Abbildung 3.1 zeigt einen Ausschnitt des Datensatzes.

Family
History
of
Anxiety

Physical Caffeine Alcohol
Activity Intake Consumption Smoking
(hrs/week) (mg/day) (drinks/week)

Sleep
Hours

Age Gender Occupation

29 Female
46 Other
Male

Female

Female

Abbildung 3.1 Ein Ausschnitt des Social-Anxiety-Datensatzes

3.1.1 Feature-Typen

Erklart werden kann die Zielgrof3e von verschiedenen unabhiangigen Variablen. Hier-
zu gehoren demografische Merkmale wie Alter, Geschlecht oder Beruf. Weitere Merk-
male sind den Bereichen »allgemeine Gesundheit«, »mentale Indikatoren« sowie
»mentale Gesundheit« zuzuordnen.

Unabhéngige und abhangige Features

Die Begriffe unabhdngige und abhdngige Features beziehen sich auf die Rollen, die
Variablen (Spalten) in einem Datensatz spielen. Das Konzept kommt vor allem beim
Uberwachten (supervised) Lernen zum Einsatz.
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3.1 Datenvorbereitung

» Unabhangige Features (engl. Independent Features) werden auch Eingabevariab-
len, Pradiktoren oder Merkmale genannt. Das sind die Eingaben fiir ML-Modelle.
Man geht davon aus, dass diese Features die Ursachen oder beeinflussende Fak-
toren fiir die abhangige Variable sind.

» Abhangige Features (engl. Dependent Features) werden in der Statistik auch Ziel-
variablen, Ausgabevariablen oder Label genannt. Das ist der Ausgabewert, der
letztlich vom Modell vorhergesagt wird.

Das ML-Modell lernt somit den Zusammenhang bzw. die Muster, die zwischen den
unabhangigen und der abhangigen Variable bestehen. Auf der Basis kénnen, nach-
dem das Modell trainiert wurde, zukiinftige Werte der abhangigen Variable basierend
auf neuen Werten der unabhangigen Features vorhergesagt werden.

Am Beginn jedes Skripts laden wir alle bendtigten Pakete und Klassen. Der Datensatz
kommt wie zuvor erwdhnt von Kaggle und wird direkt mittels des hauseigenen
Pakets kagglehub importiert. Die Daten werden als pandas-Dataframe importiert. Das
Paket numpy bendtigen wir, um spater die Daten von einem Dataframe in ein numpy-
Array umzuwandeln.

Auf das Thema Skalierung der Daten gehe ich spater noch ein. An dieser Stelle laden
wir den StandardScaler aus dem Paket sklearn. Das Paket os nutzen wir immer, wenn
wir mit Funktionen des Betriebssystems interagieren wollen.

Zur Visualisierung der Daten und Ergebnisse verwenden wir seaborn und matplotlib:

#%% packages

import numpy as np

import pandas as pd

import kagglehub

import os

from sklearn.preprocessing import StandardScaler
import seaborn as sns

import matplotlib.pyplot as plt

Listing 3.1 Datenvorbereitung — Paketimport

Kaggle bietet uns einen einfachen Weg, um die Daten mithilfe des Pakets kagglehub
in Python zu importieren. Wir miissen nur den Datensatz tiber dessen ID laden. Wah-
rend des Ladens wird der Datensatz auf die Festplatte kopiert und der Ordner zurtick-
geliefert. In dem Ordner ist die Datei gespeichert und kann nun direkt tiber die Funk-
tionpd.read csv() geladen werden. Nun haben wir die Daten erfolgreich geladen und
den Dataframe anxiety erstellt:
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3 Unser erstes PyTorch-Modell

#%% Download latest version

path = kagglehub.dataset download("natezhangl23/social-anxiety-dataset")
print("Path to dataset files:", path)

#%% data import

anxiety file = os.path.join(path, 'enhanced anxiety dataset.csv')
anxiety = pd.read csv(anxiety file)

Path to dataset files: C:\Users\BertGollnick\.cache\kagglehub\datasets\
natezhangl23\social-anxiety-dataset\versions\2

Listing 3.2 Datenvorbereitung — Paket- und Datenimport (Quelle: 030_FirstModel Regres-
sion\DataPrep.py)

Schauen wir uns nun an, welche Spalten der Datensatz aufweist und wie viele Zeilen
und Spalten er hat:

#%% check data

print(f"anxiety.columns: {anxiety.columns}")

print(f"anxiety.shape: {anxiety.shape}")

anxiety.columns: Index(['Age', 'Gender', 'Occupation', 'Sleep Hours',
'Physical Activity (hrs/week)', 'Caffeine Intake (mg/day)’,
'Alcohol Consumption (drinks/week)', 'Smoking',
'Family History of Anxiety', 'Stress Level (1-10)',
'Heart Rate (bpm)', 'Breathing Rate (breaths/min)’,
'Sweating Level (1-5)', 'Dizziness', 'Medication’,
'Therapy Sessions (per month)', 'Recent Major Life Event',
‘Diet Quality (1-10)', 'Anxiety Level (1-10)'],

dtype="object")
anxiety.shape: (11000, 19)

Insgesamt umfasst der Datensatz 11.000 Stichproben und 19 Features. Einige davon
beinhalten keine numerischen Informationen, sondern Texte.

Das ist zum Beispiel bei dem Feature Smoking der Fall, das die zwei Zustande Yes und
No aufweist.

3.1.2 Datentypen

Vergegenwartigen wir uns an dieser Stelle, welche Typen von Daten es gibt.

Typen von Daten

Es werden im Allgemeinen zwei Haupttypen bei Daten unterschieden: numerische
Daten und kategorische Daten:
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3.1 Datenvorbereitung

» Numerische Daten werden auch quantitative Daten oder metrische Daten ge-
nannt. Diese Daten bestehen aus Zahlen, die gemessen werden kénnen.

» Kategorische Daten werden auch qualitative oder nominale Daten genannt. Sie
beschreiben Qualitaten oder Kategorien. Sie konnen nicht im herkémmlichen
Sinne gemessen oder gezahlt werden. Typische Beispiele sind das Geschlecht oder
der Beruf. Man kann hier noch weiter unterteilen in nominale Daten, die ungeord-
net sind (z. B. Lieblingsfarben) und ordinale Daten. Letztere sind Kategorien mit
einer natirlichen Reihenfolge. Ein ganz tibliches Beispiel sind Bildungsabschliisse.

Da PyTorch nur numerische Daten verarbeiten kann, miissen alle Features, die kate-
gorische Informationen enthalten, in numerische Informationen umgewandelt wer-
den. Das wird mittels One-Hot Encoding erreicht.

3.1.3 One-Hot Encoding

One-Hot Encoding ist eine spezielle Technik, die im Machine Learning (ML) eingesetzt
wird, um kategorische Daten in ein numerisches Format umzuwandeln. Nur so kon-
nen die Daten von Algorithmen verarbeitet werden.

Wie funktioniert One-Hot Encoding?

Das zugrunde liegende Konzept konnen wir uns anhand eines Beispiels verdeutli-
chen. Stellen Sie sich vor, dass in einem Datensatz iiber Personen die Spalte Lieblings-
farbe erfasst wurde:

Person Lieblingsfarbe

Bob Gelb

Stuart Grin

Kevin Rot

Gru Grin

Beim One-Hot Encoding werden alle erfassten eindeutigen Werte als einzelne Spalte
dargestellt. Nach der Anwendung von One-Hot Encoding wird die Spalte Lieblingsfar-
bein soviele Spalten umgewandelt, wie es eindeutige Auspridgungen gibt. In unserem
Beispiel gibt es drei eindeutige Auspragungen [Gelb, Griin, Rot]. Aus diesen entstehen
die Spalten Lieblingsfarbe_gelb, Lieblingsfarbe griin und Lieblingsfarbe_rot.

Diese Spalten enthalten nur bindre Informationen —also 1, wenn es der Lieblingsfarbe
entspricht, und O, falls nicht. Fiir jede Person wird dann eine 1in die Spalte eingetra-
gen, die der Lieblingsfarbe entspricht.
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3 Unser erstes PyTorch-Modell

Die oben dargestellte Tabelle sieht nach dem One-Hot Encoding dann wie folgt aus:

Person Lieblingsfarbe_gelb | Lieblingsfarbe_griin | Lieblingsfarbe_rot
Bob 1 0 0
Stuart 0 1 0
Kevin 0 1 0
Gru 0 1 0

Man kann sogar eine Spalte weglassen, ohne Informationen zu verlieren, weil sich
diese Spalte dann implizit aus den anderen Spalten ergibt. Konkret funktioniert das,
wenn es nur die Farben Gelb, Griin und Rot gibt und jede Person genau eine Lieblings-
farbe besitzt.

Vorteile von One-Hot Encoding

In dieser Form sind die Informationen nun numerisch dargestellt und eignen sich
daher fir die meisten ML-Algorithmen. Ein weiterer Vorteil ist, dass es keine implizite
Ordnung gibt. Stellen Sie sich vor, die urspriinglichen Farben waren numerisch
kodiert gewesen, zum Beispiel Gelb =1, Griin = 2, Rot = 3. Dann hitte die urspriingliche
Form bereits formell die Anforderungen von ML-Algorithmen erfiillt, da die Informa-
tion numerisch kodiert worden ware. Aber der Algorithmus hatte implizit eine Ord-
nung der Farben »angenommenc, und zwar in der Form, dass Griin doppelt so viel
zahlt wie Gelb und Rot dreimal so viel wie Gelb, was keinen Sinn macht. Solche Pro-
bleme konnen mit One-Hot Encoding umgangen werden.

Nachteile von One-Hot Encoding

Ein eindeutiger Nachteil ist, dass die Anzahl der Dimensionen zunimmt. Gerade
wenn es viele verschiedene Auspragungen gibt, schldgt sich das in einer grofien
Anzahl neuer Features nieder.

Damit verbunden ist eine erh6hte Trainingszeit des Modells sowie der sogenannte
Fluch der Dimensionalitdt!. Damit sind Probleme gemeint, die auftreten, wenn die
Anzahl der Features im Vergleich zur Anzahl der Datenpunkte grof3 ist.

Wenden wir nun diese neu erlernte Technik auf unsere Daten an. Dankenswerterwei-
se haben die Entwickler des pandas-Pakets uns die Arbeit hier sehr leicht gemacht,
sodass wir die One-Hot-Kodierung mit der Methode pd.get dummies erstellen konnen.

Listing 3.3 verdeutlicht, wie das One-Hot Encoding implementiert wird. Neben dem
Datensatz anxiety werden einige weitere Parameter tibergeben. Der Parameter drop

1 Der Begriff »Fluch der Dimensionalidt« wurde vom Mathematiker Richard E. Bellman gepragt. Er
verwendete den Begriff erstmals in den 1950er-Jahren.
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3.1 Datenvorbereitung

first sorgt dafiir, dass die erste kodierte Spalte weggelassen wird und man Dummy-
Variablen erhalt:

anxiety dummies = pd.get dummies(anxiety, drop first=True, dtype=int)
anxiety dummies.head()

#%% df shape

anxiety dummies.shape

(11000, 31)

Listing 3.3 Datenvorbereitung — One-Hot Encoding (Quelle: 030_FirstModel_Regression\
DataPrep.py)

Durch die Anwendung dieser Technik hat sich die Anzahl der Spalten von 19 auf 31
erhoht. Nun konnen wir zum besseren Verstindnis einen Blick auf einen Zusammen-
hang der Daten werfen.

3.1.4 Explorative Datenanalyse

Insbesondere schauen wir uns an, wie sich das Schlafverhalten auf die Angststorung
auswirkt.

Der entsprechende Code ist in Listing 3.4 dargestellt:

sns.regplot(x="Sleep Hours', y="Anxiety Level (1-10)', data=anxiety
dummies, color='blue", line kws={'color': 'red'})

# add a title

plt.title('Sleep Hours vs Anxiety Level')

# add x title

plt.xlabel('Sleep Hours")

# add y title

plt.ylabel('Anxiety Level")

Listing 3.4 Datenvorbereitung — Datenvisualisierung (Quelle: 030_FirstModel_Regression\
DataPrep.py)

Es ergibt sich das in Abbildung 3.2 gezeigte Bild fiir den Zusammenhang. Die Daten-
punkte werden als Punktdiagramm dargestellt. Zusatzlich ist die lineare Korrelation
zwischen den beiden Grof3en als Linie verdeutlicht.

Der Zusammenhang ist ziemlich eindeutig: Mit schlechterem Schlaf (geringe Schlaf-
dauer) steigt das Angst-Level.

Dasist nur ein moglicher Zusammenhang. Wir haben insgesamt 30 unabhéngige Fea-
tures, die wir uns ansehen konnten.
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3 Unser erstes PyTorch-Modell

10 7 @0 Conp-aNNNNRINNNNNNN

g8 © oNNNNNNNNNNNNNND ® e

Anxiety Level

2 4 5] 8 10
Sleep Hours

Abbildung 3.2 Zusammenhang zwischen Schlaf und Angststérung

Um schnell einen Uberblick zu erhalten, kann man die Korrelation zwischen den
unabhdngigen Features und der Zielgrofie ermitteln und in einer Korrelationsmatrix
als Heatmap darstellen. Eine Heatmap ist eine Diagrammform, bei der die kategori-
schen Informationen als Farbwerte codiert werden. Hierbei wird die lineare Korrela-
tion zwischen allen Grof3en ermittelt und kann anschlief3end als Farbwert visualisiert
werden.

Listing 3.5 verdeutlicht, wie die Korrelationen ermittelt werden. Der besseren Uber-
sichtlichkeit halber werden nur numerische Features analysiert. Der gefilterte
Pandas-Dataframe numerical features besitzt die Methode corr (). Mit ihr kann die
lineare Korrelation zwischen allen Features ermittelt werden. Bei N Spalten ergibt
sich hieraus eine Korrelationsmatrix corr mit den Dimensionen NxN.

#%% check correlation

# Select only numerical features for correlation analysis

numerical features = anxiety.select dtypes(include=['int64', 'floate4'])
corr = numerical features.corr()

Listing 3.5 Datenvorbereitung — Ermittlung der Korrelation
Listing 3.6 zeigt, wie diese Korrelationen nun mit sns.heatmap visualisiert werden

konnen. Da die Matrix symmetrisch ist, reicht es aus, das obere oder untere Dreieck
zu betrachten. Das konnen Sie Uber eine Maskierung mask implementieren, die dann
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3.1 Datenvorbereitung

als Parameter der Heatmap tibergeben wird. Diese Maske besteht aus NxN Boolean-
Werten und gibt an, welche Werte somit dargestellt werden sollen:

# Create mask for upper triangle
mask = np.triu(np.ones like(corr, dtype=bool))

# Plot correlation heatmap

sns.heatmap(corr, annot=False, cmap='coolwarm', vmin=-1, vmax=1, mask=mask)
plt.title('Correlation Heatmap (Numerical Features Only)', fontsize=10)
plt.xticks(rotation=45, ha='right', fontsize=8)

plt.yticks(rotation=0, ha='right", fontsize=8)

plt.tight layout()

plt.show()

Listing 3.6 Datenvorbereitung — Visualisierung der Korrelationen

Unsere Visualisierung der numerischen Features sehen Sie in Abbildung 3.3. Hierbei
reicht die Farbcodierung von -1 iiber O bis zu +1.

1.00
Age -
Sleep Hours - 0.75
Physical Activity (hrsfweek) -
i 0.50
Caffeine Intake {mg/day) -
Alcohol Consumption {drinks/week) — -0.25
Stress Level (1-10) -
- 0.00
Heart Rate (bpm} -
Breathing Rate (breaths/min} - -=0.25
Sweating Level {1-5) —
—-0.50

Therapy Sessions (per month) -

Diet Quality (1-10) - —-0.75

Anxiety Level (1-10) — - - -
| | | 1 | 1 1 | | =1.00
a .

Abbildung 3.3 Korrelation der numerischen Features
Ein Korrelationskoeffizient von +1 stellt den maximal positiven Zusammenhang dar.

Das kann man so interpretieren, dass ein steigender Wert des einen Features mit
einem steigenden Wert des anderen Features einhergeht. Man kann hier nicht sagen,
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3 Unser erstes PyTorch-Modell

dass der steigende Werte des einen Features den steigenden Wert des anderen Fea-
tures bedingt oder zur Folge hat. Das wiirde heifien, dass eine Kausalitat zwischen den
beiden Groflen herrscht. Es heifdt erst mal nur, dass es einen Zusammenhang gibt. Ob
dieser Zusammenhang kausal ist, kann auf dieser Basis jedoch nicht gesagt werden.

Umgekehrt gilt, dass ein Korrelationskoeffizient von -1 einen perfekt negativen
Zusammenhang darstellt. Das heif3t, dass ein steigender Wert des einen Features mit
einem fallenden Wert des anderen Features einhergeht.

Wir sind vor allem an den Korrelationen zwischen unserer Zielgrofie Anxiety Level (1-
10) und den beschreibenden Features interessiert. Diese sind in der letzten Zeile von
Abbildung 3.3 dargestellt. An der Stelle wird deutlich, dass das Anxiety Level stark mit
Sleep Hours und Stress Level korreliert ist.

Bis zu diesem Punkt haben wir die Daten in einem pandas-Dataframe gespeichert.

Wir miissen nun zwei Dinge bearbeiten: Erstens miissen wir die Daten in unabhangi-
ge und abhingige Features trennen, und zweitens miissen wir die Daten in numpy-
Arrays umwandeln, also in reine Zahlenmatrizen.

Beide Schritte werden im folgenden Listing 3.7 vereint. Die unabhdngigen Features
werden im Objekt X und die abhdngigen im Objekt y gespeichert. Diese Begrifflichkeit
stammt aus der Mathematik. Das steht im Widerspruch zu Namenskonventionen in
Python — vor allem das grofie X, aber da die Begriffe so verbreitet sind, folge ich an
dieser Stelle der statistischen Konvention.

Die unabhdngigen Features entsprechen allen Features des anxiety dummies-Daten-
satzes, aufler der Spalte mit der Zielgrofie. Im Gegensatz dazu steht das unabhéangige
Feature y, in dem nur die Zielgrofie gespeichert wird.

Letztlich Uiberpriifen wir die Ausgabe, indem wir uns die Grofen der Objekte veran-
schaulichen:

#%% convert data to numpy array

X = np.array(anxiety dummies.drop(
columns=["'Anxiety Level (1-10)']),
dtype=np.float32)

y = np.array(anxiety dummies[['Anxiety Level (1-10)']],
dtype=np.float32)

print(f"X shape: {X.shape}, y shape: {y.shape}")

X shape: (11000, 30), y shape: (11000, 1)

Listing 3.7 Datenvorbereitung — Umwandlung der Daten in numpy-Arrays
(Quelle: 030_FirstModel_Regression\DataPrep.py)

Vonden 31urspringlichen Spalten sind nun 30 im Objekt X und eine im Objekt y tiber-
nommen worden.
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3.1 Datenvorbereitung

3.1.5 Skalierung

Im nachsten Schritt geht es um die Skalierung der Daten. Hier schauen wir uns
zundchst an, warum dieser Schritt iiberhaupt notwendig ist.

Daten-Skalierung

Die Skalierung der Daten spielt beim Training vieler Modelle eine entscheidende Rolle.
Warum ist das so? Rohdaten, die in ihren Werten sehr stark variieren, konnen beim
Training zu Problemen fiihren. GroRe Werte kénnen dazu fiihren, dass Gradienten
wahrend des Backpropagation-Prozesses »explodieren«. Dadurch wiirde das Training
instabil werden und sogar ganz scheitern.

Umgekehrt konnten sehr kleine Werte zu verschwindenden Gradienten (siehe Ab-
schnitt 2.7.2) fiihren, wodurch das Lernen ebenso instabil werden kénnte.

Die Skalierung der Daten wird mit dem Ziel durchgefiihrt, die Werte der Eingabefea-
tures in einen dhnlichen Wertebereich zu transformieren. Hierfiir gibt es verschiede-
ne Arten:

> Eine geldufige Art ist die Min-Max-Skalierung. Dabei werden die Daten Ublicher-
weise in den Wertebereich 0 bis 1skaliert.

> Ein anderer Ansatz ist die Standardisierung. Dabei werden die Daten so transfor-
miert, dass sie um einen Mittelwert von 0 schwanken und eine Standardabwei-
chungvon Taufweisen. Wichtigist hierbei auch, dass die Skalierung konsistent ist,
um vergleichbare Ergebnisse zu erzielen.

Die Parameter der Skalierung (Mittelwerte und Standardabweichungen) sollten aus-
schlieBlich auf den Trainingsdaten berechnet werden und erst dann auf den Validie-
rungs- und Testdatensatz angewandt werden. So kann Data Leakage vermieden wer-
den. Auf diese Aspekte zum Thema Datenaufteilung komme ich in Abschnitt 3.7,
»Data Sampling«, zu sprechen.

Die Skalierung, in unserem Falle die Standardisierung, kann mithilfe der Klasse Stan-
dardScaler durchgefiihrt werden. Zunachst wird eine Instanz der Klasse erstellt, und
im Anschluss werden die Daten der Methode fit transform iibergeben, die die Para-
meter ermittelt und die Standardisierung durchgefiihrt wird. Das finale Objekt X
beinhaltet die standardisierten Daten.

#%% normalize data
scaler = StandardScaler()
X = scaler.fit transform(X)

Damit haben wir unsere Daten hinreichend vorbereitet und sind in der Lage, unser
erstes Modell zu trainieren.
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3 Unser erstes PyTorch-Modell

3.2 Modell-Erstellung

In unserem ersten Modell werden wir noch viele Details selbst implementieren, da
Ihnen das beim Verstehen des Modells helfen wird. So werden wir zum Beispiel die
Vorhersagen des Modells mittels Matrixmultiplikation ermitteln, die Modellparame-
ter selbst implementieren und die Anpassung der Modellparameter eigenstandig
vornehmen.

Die hierbei trainierten Modellparameter, Slopes und Offsets, bezeichnen die zwei
wichtigsten lernbaren Parameter innerhalb eines Neurons oder einer linearen Trans-
formation.

Spater werden wir diese Aufgaben mehr und mehr dem Framework PyTorch tiberge-
ben. Wiirden wir das aber von vornherein machen, blieben viele Aspekte des Modell-
trainings Blackboxes, die Sie nicht ganz verstehen wurden.

Letztlich trainieren wir ein Modell, um y (das Angstlevel) auf Basis einer Vielzahl von
unabhangigen Features vorherzusagen:

y=W1'X]+W2'X2+...+W30'X30+b

3.2.1 Datenimport

Wir beginnen wie gehabt mit dem Import der Pakete. Da wir direkt auf der Datenvor-
bereitung des vorherigen Abschnittes aufbauen, importieren wir die unabhangigen
Features X und das abhdngige Feature y direkt aus dem Skript Dataprep. Wir laden auch
numpy und torch fiir die Erstellung von Tensoren. Fiir die Visualisierung werden sea-
born und matplotlib geladen. Letztlich nutzen wir den R?-Wert zur Evaluierung des
Modells und laden daher die Funktion r2_score von sklearn:

#%% packages

from DataPrep import X, vy

import torch

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import r2 score

Listing 3.8 Unser erstes Modell — Paketimport (Quelle: 030_FirstModel_Regression\00
LinRegFromScratch.py)

PyTorch arbeitet nur mit Tensoren, sodass wir zundchst die numpy-Arrays mit
torch.from numpy in Tensoren umwandeln:

#%% convert to tensor
X_tensor = torch.from numpy(X.astype(np.float32))
y_tensor = torch.from numpy(y.astype(np.float32)) # Ensure y is float32
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3.2.2 Modelltraining

Jetzt haben wir die Daten so weit in Form gebracht, dass wir loslegen konnen. Unser
Regressionsmodell wird letztlich durch einen Bias-Parameter sowie einen Steigungs-
parameter (Slope oder Weight) beschrieben. Fiir jedes Feature gibt es einen Slope-
Parameter und insgesamt einen Bias-Parameter.

Diese Terme w (fiir weight) und b (bias) werden zunichst initialisiert. Das kdnnen wir
mit torch.zeros implementieren. Wichtig ist hierbei, dass der Parameter requires_
gradauf True gesetzt werden. Nur so kann das automatische Riickwartsrechnen (Back-
propagation) und das Trainieren des Modells ermdglicht werden.

#%% training

# Initialize weights with smaller values to prevent exploding gradients
w = torch.zeros(X.shape[1], 1, requires grad=True, dtype=torch.float32)
b = torch.zeros(1, requires grad=True, dtype=torch.float32)

print(f"w shape: {w.shape}, b shape: {b.shape}")

w shape: torch.Size([30, 1]), b shape: torch.Size([1])

Der Trainingsprozess wird tiber einige Parameter beeinflusst. Die wichtigsten sind die
Anzahl der Epochen sowie die Learning Rate.

Bevor wir das Training starten, schauen wir uns diese beiden wichtigen Parameter
noch einmal genauer an. Beginnen wir mit den Epochen.

Epoche

Unser Trainingsdatensatz hat 11.000 Samples. Diese werden lblicherweise in kleine-
ren Happchen dem Modell iibergeben. Diese Happchen nennt man Batches, und zu
dem Konzept kommen wir noch. Nachdem alle Samples einmal verwendet wurden,
um die Gewichte des Modells anzupassen, ist die Epoche abgeschlossen.

Der Prozess wiederholt sich, sodass das Modell dieselben Daten viele Male »sieht«,
um aus ihnen zu lernen.

Typischerweise trainiert man ein Modell tiber mehrere Epochen, wobei mit jeder Epo-
che die Muster in den Daten immer besser erfasst werden.

Nachdem Sie nun das Konzept der Epochen kennen, erkldre ich noch, was es mit der
Learning Rate auf sich hat.

Learning Rate

Stellen Sie sich das Modelltraining wie die Suche nach dem tiefsten Punkt in einem
unbekannten Tal vor. Einem Wanderer, der vom Berg herabsteigt, wurden die Augen
verbunden und er muss sich langsam vorantasten. Er kann nun entscheiden, ob seine
Schritte eher grof3 oder klein sein sollen. Die Schrittlange entspricht der Learning Rate.
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Bei grolRen Schrittlangen (hohen Learning Rates) deckt unser Wanderer schnell ein
grolRes Gebiet ab. Er konnte aber auch schnell am tiefsten Punkt vorbeigehen und
schon wieder den gegentiiberliegenden Berg hinaufsteigen.

Umgekehrt kénnte er sehr kleine Schritte (geringe Learning Rates) wahlen, um sich
sehr vorsichtig fortzubewegen. In diesem Fall ist die Wahrscheinlichkeit hoch, dass er
genau den tiefsten Punkt findet, aber es konnte bis dahin relativ lange dauern. Es
konnte aber auch sein, dass er in einem lokalen Minimum stecken bleibt.

Die Learning Rate definiert somit, wie zligig oder vorsichtig der tastende Wanderer
das Tal des Fehlers erkundet, um den optimalen Punkt zu finden.

Jetzt kann es aber wirklich losgehen! Wir definieren diese beiden Parameter.

EPOCHS = 100
LEARNING RATE = 0.01

Nun kommen wir zum eigentlichen Kern des Modelltrainings: zu der Trainingsschlei-

fe, die in Listing 3.9 implementiert wird.

Die Daten werden dem Modell 100-mal gezeigt. Das wird mit einer for-Schleife tiber
die EPOCHS implementiert. Wie gut das Modell lernt, konnen Sie begutachten, indem

Siedie Verluste studieren. Diese werden in jeder Epoche extrahiert und der Liste loss_

list hinzugefugt.

Innerhalb der Schleife werden die immer gleichen Schritte durchlaufen:

L.

Im Forward-Pass werden die Vorhersagen erstellt. Hierbei werden die unabhangi-
gen Features mit den Modellgewichten multipliziert sowie die Aktivierungsfunk-
tionen angewandt.

Diese Vorhersagen werden mit den richtigen Ergebnissen verglichen, und dabei
wird der Verlust berechnet. Hierfiir gibt es verschiedene Verlustfunktionen, wie Sie
in Kapitel 2 gelernt haben. Fiir Regressionsmodelle ist der Mean Squared Error-Ver-
lust (MSE-Loss) eine gute Wahl.

Nun konnen die Gradienten berechnet werden. Hierfir fiihren wir loss.back-
ward() aus, und siamtliche Gradienten werden ermittelt.

. Diese Gradienten werden jetzt genutzt, um die Modellgewichte zu aktualisieren.

Dabei wird die Lernrate mit den Gradienten multipliziert und diese Korrektur vom
bisherigen Modellgewicht abgezogen.

Bevor die niachste Epoche startet, miissen die Gradienten auf O zuriickgesetzt wer-
den, da sie sich sonst aufsummieren wiirden und das Ergebnis verfilscht werden
wurde.

. Der Verlustwert der aktuellen Epoche wird der Gesamtliste aller Verluste hinzuge-

fugt.
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7. Zum Uberpriifen des Modelltrainings wird jeweils die aktuelle Epoche sowie der
aktuelle Verlust ausgegeben.

loss list = []
for epoch in range(EPOCHS):
# 1. Forward pass
y predict = torch.matmul(X tensor, w) + b

# 2. Calculate loss (MSE)
loss = torch.nn.functional.mse loss(y predict, y tensor)

# 3. Backward pass
loss.backward()

# 4. Update weights and biases
with torch.no grad():
w -= LEARNING RATE * w.grad
b -= LEARNING RATE * b.grad
# 5. Zero gradients after using them
w.grad.zero ()
b.grad.zero ()

# 6. Store loss for plotting
loss list.append(loss.item())

# 7. Print loss for this epoch
print(f"Epoch {epoch}, Loss: {loss.item():.4f}")

Epoch 0, Loss: 19.9446
Epoch 1, Loss: 19.0938

Epoch 98, Loss: 1.5858
Epoch 99, Loss: 1.5732
Listing 3.9 Unser erstes Modell — Trainingsschleife (Quelle: 030_FirstModel_Regression\
00_LinRegFromScratch.py)

Wir kénnen hier bereits in der Ausgabe beobachten, wie das Training voranschreitet
und die Verluste immer geringer werden.

3.2.3 Modell-Evaluierung

Das kdnnen wir jetzt aber auch noch einmal in einer Grafik visualisieren (siehe Abbil-
dung 3.4). Der dazugehorige Code ist in Listing 3.10 dargestellt. Die Verluste, die in der
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Liste loss_list gespeichert sind, werden tiber der Anzahl der Epochen EPOCHS als Lini-
endiagramm gezeigt. Hierfiir nutzen wir seaborn mit der Funktion sns.lineplot:

#%% plot loss
sns.lineplot(x=range(EPOCHS), y=loss list)
plt.title('Loss over Epochs")
plt.xlabel('Epoch [-]")

plt.ylabel('Loss [-]")

Listing 3.10 Unser erstes Modell — Visualisierung der Verluste (Quelle: 030_FirstModel
Regression\00_LinRegFromScratch.py)

Abbildung 3.4 zeigt das Ergebnis des Modelltrainings.

20.0 A

17.5 A

15.0 ~

12.5

10.0 ~

Loss [-]

7.5 A

5.0 1

2.5 1

0 20 40 60 80 100
Epoch [-]

Abbildung 3.4 Unser erstes Modell — Verluste und Epochen

Der Verlust sinkt kontinuierlich mit jeder weiteren Epoche. Man kann hier aber auch
schon erkennen, dass das Modell zwar immer weniger Verluste aufweist, dass sich die
Verluste aber asymptotisch einer Grenze anndhern. Der Frage nach der optimalen
Trainingsdauer werden wir uns an spaterer Stelle noch einmal zuwenden.

Selten sieht das Bild so »sauber« aus wie hier. Ublicherweise gibt es mehr Fluktuation,
also auch Epochen, in denen die Verluste kurzzeitig wieder leicht steigen, bevor sie
dem langerfristigen Trend der fallenden Verluste folgen.

Schauen wir uns als Ndchstes die Modellgewichte (die Steigungswerte w und den Off-
setwert b) ndher an:

#%% check results
print(f"Weights: {w.detach().numpy().flatten()}, Bias: {b.item()}")
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Weights: [-0.09916524 -0.5292779 -0.16298231 0.34272027 0.06862636

Bias: 3.408252716064453

3.2.4 Modell-Inferenz

Letztlich konnten wir in diesem einfachen Fall diese Werte nutzen und die Berech-
nung auf Basis der Formel zur Berechnung der Regression durchfuhren.

Wir erreichen das, indem wir die unabhéangigen Features mit den Modellgewichten
multiplizieren. Wichtig ist hierbei, dass die Berechnung innerhalb des Scopes von
torch.no_grad() durchgefiihrt wird. Damit wird verhindert, dass Gradienten berech-
net werden. Wir befinden uns hier in der Modell-Inferenz, also beim Testen des
Modells —im Gegensatz zum Modelltraining. Wahrend der Modell-Inferenz mochten
wir keine Operationen ausfithren, die das Netzwerk beeinflussen konnten, aber nicht
Teil des Trainingsprozesses sein sollen. Ein positiver Nebeneffekt ist, dass hiermit
auch Ressourcen wie Speicher und Rechenzeit geschont werden konnen. Es wird
sichergestellt, dass bestimmte Operationen nicht filschlicherweise in die Gradien-
tenberechnung einflief3en.

# %%
with torch.no grad():
y _pred = (torch.matmul(X tensor, w) + b).detach().numpy().flatten()

Die Vorhersagey pred haben wir berechnet und sie zusammen mit den tatsachlichen
Werten y dargestellt. Listing 3.11 zeigt den entsprechenden Code. Wir nutzen die Funk-
tion sns.regplot(), um ein Streuungsdiagramm mit Gberlagerter Regressionsgerade
zu erstellen. Die Datenpunkte sind blau dargestellt mit einem Transparenzwert von
0.1. Letzterer sorgt dafiir, dass in Bereichen, in denen viele Werte tibereinanderliegen,
die Punkte in einem intensiveren Blau dargestellt sind, und dass in Bereichen mit
sehr wenigen Punkten die Punkte eher in einem schwachen Blau zu sehen sind.
Zusatzlich ist die Regressionsgerade als rote Linie zu sehen.

# %% visualise correlation
sns.regplot(x=y pred, y=y, color='red",
scatter kws={'s': 10,
‘color': 'blue',
‘alpha': 0.1})
plt.title('Predicted Anxiety Level vs Actual Anxiety Level')
plt.xlabel('Predicted Anxiety Level [-]")
plt.ylabel('Actual Anxiety Level [-]")

Listing 3.11 Unser erstes Modell — Visualisierung der Korrelationen (Quelle: 030_FirstMo-
del_Regression\00_LinRegFromScratch.py)
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3 Unser erstes PyTorch-Modell

Das Ergebnis ist ein Korrelationsdiagramm, das Sie in Abbildung 3.5 sehen. Hierbei ist
das tatsdchliche Angst-Level iber dem vorhergesagten Angst-Level geplottet.

Die Korrelation ist positiv und im Mittel wird ein Angst-Level von 5 auch als 5 vorher-
gesagt. Aber naturlich gibt es Streuung in den Daten, sodass in manchen Fallen dann
auch Werte zwischen 1 und 7 vorhergesagt werden.

Mit dieser Darstellung konnen Sie sich einen guten Uberblick dartiber verschaffen, in
welchen Bereichen das Modell gut funktioniert und in welchen vielleicht noch Ver-
besserungen notwendig waren.

10 1

Actual Anxiety Level [-]

0 2 4 6 8 10
Predicted Anxiety Level [-]

Abbildung 3.5 Unser erstes Modell —vorhergesagtes und tatsachliches Angst-Level

Haufig will man aber verschiedene Modelle miteinander vergleichen. Das geht einfa-
cher, wenn man die Modellgiite auf einen einzigen Zahlenwert verdichtet.

Im Bereich der Regressionsmodelle ist der R?-Wert ein haufig genutztes Maf.

Der R?-Wert

Der R%-Wert wird auch Bestimmheitsmaf oder Determinationskoeffizient genannt. Er
isteine statistische Kennzahl, die angibt, wie gut die unabhangigen Features in einem
Regressionsmodell die Varianz der abhangigen Variablen erklaren.

Der Wertebereich liegt in der Regel immer zwischen 0 und 1 bzw. zwischen 0 % und
100 %. Die Extremwerte sind dabei wie folgt zu verstehen:

» R?=0:Das trainierte Modell kann die abhéngige Variable (iberhaupt nicht erklren.
Es gibt keinen linearen Zusammenhang zwischen den unabhangigen Variablen
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und der abhangigen Variable. Wichtig ist hierbei das Wort linearer Zusammen-
hang. Es kann durchaus sein, dass ein Zusammenhang zwischen den Daten be-
steht, dieser aber einfach nicht-linear ist.

» R2=1: Das Modell ist perfekt in der Lage, die gesamte Variabilitdt der abhingigen
Variable zu erklaren. Das ist in der Praxis so gut wie nie der Fall, da es immer Mess-
ungenauigkeiten oder zufallige Fehler gibt —oder weitere unabhangige Variablen,
die nicht im Modell berticksichtigt wurden.

Im Gegenteil ist es so, dass Sie einem sehr hohen Wert mit Vorsicht begegnen sollten,
da er auf ein Overfitting des Modells hinweisen kann.

Wenn der R2-Wert beispielsweise bei 0.75 liegt, kann das so gedeutet werden, dass 75 %
der Streuung der abhangigen Variable durch dieim Modell enthaltenen unabhangigen
Variablen erklart werden kann. Die restlichen 25 % der Streuung sind auf andere, nicht
im Modell beriicksichtigte Faktoren oder zufallige Fehler zuriickzufiihren.

Allgemein gilt, dass ein hoherer R2-Wert eine bessere Anpassung des Modells an die
Daten widerspiegelt.

Extrem wichtig ist an dieser Stelle, dass ein hoher R-Wert nicht zwangslaufig bedeu-
tet, dass es einen kausalen Zusammenhang gibt. Es muss demnach nicht automatisch
gelten, dass die unabhdngigen Variablen kausal die abhdngige Variable beeinflussen.
Es zeigt lediglich einen statistischen Zusammenhang.

Die Berechnung erfolgt mit der Funktion r2 score von sklearn. Wir Ubergeben der
Funktion die echten sowie die vorhergesagten Werte und erhalten einen einzigen
Zahlenwert:

#%% Calculate R-squared
r2 = 12 score(y true=y,

y_pred=y pred)
print(f"R-squared: {r2:.2f}")
R-squared: 0.65

Unser erstes Modell erreicht einen R?-Wert von 0.65. Diesen Wert kdnnten wir nun als
Vergleichsmaf3 heranziehen, um dieses Modell mit anderen Modellen zu vergleichen.

Ob ein R2-Wert als gut oder schlecht einzuschatzen ist, hangt stark von seinem Kon-
text ab. In bestimmten Fillen ist ein R2-Wert von 0.98 als schlecht zu erachten und in
anderen Fillen ein R?-Wert von 0.4 bereits als sehr gut.

Zunachst sind wir aber mit dem Ergebnis zufrieden und wollen unser Modelltraining
weiter verbessern, indem wir Fahigkeiten von PyTorch nutzen, die unseren Code
modularer und damit vielseitiger einsetzbar machen.

Im nachsten Abschnitt werden Sie lernen, wie Sie das Modell in einer eigenen Klasse
definieren konnen und wie der Optimierer in das Training eingebettet werden kann.
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3.

3 Modellklasse und Optimierer

Das Modell in einer eigenen Klasse zu definieren, macht es sehr viel einfacher, den
Code spater anzupassen. Fiir die spatere Nutzung des Modells ist es auch wichtig, dass

es
de

abgespeichert werden und zu einem spateren Zeitpunkt sehr einfach geladen wer-
nkann. Um diese Vorteile nutzen zu konnen, hilft es, das Modell in einer separaten

Klasse zu speichern.

Zunichst importieren wir wieder die erforderlichen Pakete so, wie in Listing 3.12

ge

zeigt:

#%% packages
from DataPrep import X, y

im
im
im
im

port torch

port numpy as np

port seaborn as sns

port matplotlib.pyplot as plt

from sklearn.metrics import r2 score

Listing 3.12 Modellklasse — Paketimport (Quelle: 030_FirstModel Regression\10
ModelClass.py)

Es

giltauch als guter Stil, die konstanten Trainingsparameter, die sogenannten Hyper-

parameter, gebiindelt am Anfang des Skripts zu definieren. Nachdem die Pakete gela-
den wurden, definieren Sie direkt die Hyperparameter.

Hyperparameter

Hyperparameter sind Konstanten, also Variablen, die wahrend des Programmablaufs
nicht verandert werden. Sie werden vor dem Trainingsprozess festgelegt und dazu
genutzt, diesen zu beeinflussen. Sie haben grof3en Einfluss auf das Modelltraining
und werden vom Modellentwickler (uns) manuell, auf Basis bestimmter Optimie-
rungsverfahren oder Best Practices (Erfahrungswerten) festgelegt.

Die Hyperparameter steuern das Verhalten des Lernprozesses und haben einen enor-
men Einfluss auf die spatere Leistungsfahigkeit und Performance des Modells.

Die am haufigsten verwendeten Hyperparameter sind die Lernrate (Learning Rate),
die Batch-GroRe (Batch Size) sowie die Anzahl der Epochen.

Die Parameter hangen stark von den genutzten Daten und dem gewahlten Modell ab.
Daher ist die Hyperparameter-Optimierung ein wichtiger Schritt wahrend des Mo-
delltrainings.

#%% Hyperparameters
EPOCHS = 100
LEARNING RATE = 0.1
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Die Daten miissen in Tensoren umgewandelt werden, da alle Objekte wahrend des
Trainings als Tensoren vorliegen missen. Hierbei ist es ebenfalls wichtig, den Daten-
typ gegebenenfalls anzupassen. Ublicherweise werden wir hier float32 nutzen:

#%% convert to tensor
X tensor = torch.from numpy(X)
y_tensor = torch.from numpy(y.astype(np.float32))

An dieser Stelle kommen wir zur Modellklasse. Das ist eine von uns definierte Klasse,
die von der Klasse torch.nn.Module abstammt.

Die Modellklasse stellt zusammen mit dem Optimierer den Bauplan fiir ein Modell
dar. Auf dieser Basis erstellen wir spater eine Modellinstanz, die dann wahrend des
Trainings genutzt wird.

Die Modellklasse muss zwei Methoden aufweisen: _init () und forward():

» Die init -Funktion wird wahrend der Erstellung einer Modellinstanz einmalig
aufgerufen. Idealerweise wollen wir eine Modellklasse erstellen, die flexibel nutz-
bar ist und sich somit an den Datensatz bzw. weitere Parameter anpassen kann.
Aus diesem Grund ibergeben wir hier der _init ()-Methode die Parameter
input sizeund output size, die es uns ermoglichen, das Modell an die Anzahl der
unabhdngigen Features des Datensatzes sowie an die Anzahl der vorherzusagen-
den Features anzupassen. Ublicherweise werden hier auch die Netzwerkschichten
erstellt, die anschliefend verwendet werden sollen. In unserem Beispiel verwen-
den wir eine lineare Schicht, die direkt die Eingabefeatures mit der nachsten
Schicht - hier der Ausgabeschicht - verbindet.

» In der forward()-Methode wird beschrieben, wie das Netzwerk aufgebaut ist und
wie die Daten durch das Netzwerk flieRen. Neben dem klassenspezifischen Para-
meter self erhidlt diese Funktion auch den Parameter x. Manchmal wird dieser
Parameter auch input oder data genannt. Hierbei steht x fiir das, was ins Modell
hineingegeben wird. Das sind die Daten, die das Modell verarbeiten wird. Im Fol-
genden wird dann innerhalb der Funktion beschrieben, wie diese Daten weiterver-
arbeitet werden, also wie sie von Schicht zu Schicht weitergereicht werden. In die-
sem einfachen Beispiel nutzen wir nur eine lineare Schicht mit self.linear(x).Das
Ergebnis Uiberschreibt dann den Wert von x und wird als Ergebnis der Funktion
zurlckgegeben.

#%% Model class
class LinearRegression(torch.nn.Module):
def __init_ (self, input size, output size):
super(LinearRegression, self ). init ()
self.linear = torch.nn.linear(input size, output size)
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def forward(self, x):
x = self.linear(x)
return x

Listing 3.13 Modellklasse — Definition (Quelle: 030_FirstModel_Regression\10_
ModelClass.py)

Nachdem die Modellklasse erstellt wurde, konnen wir nun eine Instanz der Klasse
erstellen. Hierflr Ubergeben wir die Dimensionen, die sich aus unserem Datensatz
ergeben. Die Anzahl der unabhidngigen Features lasst sich tiber die Anzahl der Spalten
des Datensatzes mit X.shape[1] ermitteln. Da nur eine Zielgrof3e vorhergesagt wer-
den soll, betrigt die output_sizel:

#%% Model instance
model = LinearRegression(input size=X.shape[1],
output_size=1)

Neben der Modellinstanz benotigen wir als weitere wichtige Elemente des Netzwerk-
trainings noch den Optimierer und die Verlustfunktion.

Als Optimierer wird an dieser Stelle Adam verwendet. Die gangigste Verlustfunktion bei
Regressionsaufgaben ist der Mean Squared Error-(MSE-)Verlust, und sie wird tiber
torch.nn.MSELoss () aufgerufen:

#%% Optimizer and Loss Function
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING RATE)
loss fn = torch.nn.MSELoss()

Jetzt haben wir alles vorbereitet und konnen das Training beginnen. Listing 3.14 zeigt,
wie wir zundchst die Verluste loss 1list als leere Liste initialisieren. Wahrend der Ite-
ration Uber die Epochen durchlaufen wir dieselben Schritte wie zuvor:

1. Im Forward Pass werden die Vorhersagen y predict erstellt.

2. Die Verluste loss werden auf Basis der Vorhersagen y predict und der tatsachli-
chen Werte y_tensor ermittelt. Wichtig ist hierbei immer, dass die Dimensionen
der beiden Objekte exakt gleich sind.

3. Im Backward Pass konnen mittels loss.backward() alle Gradienten bestimmt wer-
den.

4. Letztlich werden die Modellgewichte tGber optimizer.step() aktualisiert.

5. Um zu vermeiden, dass die Gradientenberechnung verfalscht wird, miissen sie auf
null zurlickgesetzt werden. Das geschieht mit optimizer.zero grad().

6. (optional) Zur spateren Auswertung, wie das Modelltraining sich kontinuierlich
verbessert, werden die Verluste der aktuellen Epoche loss.item() zur Gesamtliste
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der Verluste hinzugefiigt. Um den tatsachlich berechneten Wert zwischenzuspei-
chern, wird die Methode item() aufgerufen. Diese liefert keinen Tensor, sondern
einen numerischen Wert zurtick.

loss list = []

for epoch in range(EPOCHS):
# 1. Forward pass
y_predict = model(X tensor)

# 2. Calculate loss (MSE)
loss = loss fn(y predict.squeeze(), y tensor)

# 3. Backward pass
loss.backward()

# 4. Update weights and biases
optimizer.step()

# 5. zero gradients
optimizer.zero grad()

# 6. Store loss for plotting
loss list.append(loss.item())

# 7. Print loss for this epoch
print(f"Epoch {epoch}, Loss: {loss.item():.4f}")

Listing 3.14 Modellklasse — Trainingsschleife (Quelle: 030_FirstModel Regression\10_
ModelClass.py)

Nachdem das Modell trainiert wurde, konnen wir uns tiber die Verluste ein Bild davon
machen, wie gut das Modelltraining ablief. Hierzu werden so, wie in Listing 3.15 dar-
gestellt, die Verluste tiber den Epochen geplottet:

#%% plot loss
sns.lineplot(x=range(EPOCHS), y=loss list)
plt.title('Loss over Epochs')
plt.xlabel('Epoch [-]")

plt.ylabel('Loss [-]")

Listing 3.15 Modellklasse — Verluste visualisieren (Quelle: 030_FirstModel_Regression\
10_ModelClass.py)
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Das Ergebnis des Trainings ist in Abbildung 3.6 zu sehen. Die Verluste nehmen
zunichst mit zunehmenden Epochen stark ab, um dann ab circa Epoche 40 abzufla-
chen. Das Modell kann immer noch dazulernen, aber es profitiert immer weniger von
weiteren Durchlaufen, was an dem Abflachen der Verluste zu erkennen ist.
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Abbildung 3.6 Modellklasse und Optimierer — Entwicklung der Verluste

Nachdem wir nun die Modell-Klasse und den Optimierer eingefiihrt haben, konnen
wir unser System noch weiter verbessern. Eine Verbesserung betrifft das Ubergeben
der Trainingsdaten an das Modell wahrend des Trainings. Wenn die Daten nicht kom-
plett, sondern in kleineren Happchen tibergeben werden, nennt man diese Batches,
und damit beschaftigen wir uns ausfiihrlich im folgenden Abschnitt.

3.4 Batches

Batches sind ein integraler Bestandteil jedes Trainings und konnen auch die Perfor-
mance des Trainings beeinflussen.

Sie sind aufierdem auch Hyperparameter fiir das Training. Da auch sie das Ergebnis
beeinflussen konnen, werden oftmals verschiedene Batchgréflen und deren Einfluss
untersucht.

Ich werde im Folgenden erklaren, was Batches sind, welche Vorteile sie bieten und
welche Batchgrofien man verwenden sollte. In Abschnitt 3.4.3 werden Sie an einem
praktischen Beispiel sehen, wie man Batches implementiert.
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3.4.1

Was sind Batches?

Zunachst sollten wir klaren, was Batches genau sind. Das Konzept wird grundlegend
in Abbildung 3.7 verdeutlicht.

Bisher haben wir in jeder Epoche den gesamten Datensatz dem Modell iibergeben.
Beim Training mit Batches wird hingegen der gesamte Datensatz in kleinere »Hépp-

chen« unterteilt und diese einzelnen Happchen werden dem Modell iibergeben.

Datensatz

0 0

Modell Modell

Abbildung 3.7 Batches: links —Situation ohne Batches, rechts — Aufteilung des Datensatzes
in einzelne Batches

Schauen wir uns im nachsten Abschnitt an, warum man Batches verwendet.

3.4.2 Vorteile von Batches

Warum wird das gemacht? Dafiir gibt es einige Grinde, die ich im Kasten ndher
beleuchte.

Vorteile durch Batches

Die Implementierung von Batches macht die Trainingsschleife etwas komplizierter,
bringt aber etliche Vorteile mit sich:

>

Speicher: Oftmals gibt es technische Griinde, die die Nutzung von Batches erfor-
dern. So ist es vielleicht aufgrund der Grol3e des Datensatzes nicht mehr moglich,
den gesamten Datensatz in einem Rutsch zu verarbeiten, weil er nicht komplett
in den Arbeits- oder Grafikkartenspeicher passt. Das ist zum Beispiel haufigim Be-
reich von groRBen Bild- oder Video-Datensatzen der Fall.

Parallelisierung: Das Training kann beschleunigt werden, indem Batches verwen-
detund diese dann parallel auf moderner Hardware wie GPUs ausgefiihrt werden.
Verbessertes Lernen: Beim Training kommt es darauf an, dass das Modell lernt, zu
generalisieren. Das heif8t, dass es nicht nur die »bekannten« Trainingsdaten gut
vorhersagen kann, sondern auch fiir ganzlich unbekannte Daten gute Vorhersagen
trifft. Hierbei konnen kleinere und mittlere BatchgroRen helfen, sodass das Modell
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weniger schnell iberangepasst (overfitted) reagiert. Die starkeren Schwankungen
in den Gradienten konnen das Modell aus lokalen Minima herausholen und so zu
einer besseren Generalisierungsfahigkeit auf unbekannten Daten fiihren.

Gehen wir davon aus, dass wir Batches nutzen wollen. Die sich anschlief3ende Frage
lautet: Welche Batchgrofie sollten wir verwenden?

3.4.3 Die optimale BatchgroRe

Es gibt keine universelle beste Batchgrofie, da sie stark von Parametern wie dem ver-
wendeten Datensatz, dem Modell oder den zur Verfligung stehenden Hardwareres-
sourcen abhingt.

Dennoch gibt es einige Best-Practice Empfehlungen:
» Ublicherweise werden Batchgrofie als Potenz von 2 verwendet, also z. B. 16, 32, 64
USw.

» Als Faustregel kann gelten, dass man mit moderaten Batchgrofien wie 32 oder 64
startet und sie schrittweise erhoht, wenn es die Rechenressourcen zulassen und
dadurch die Modellperformance verbessert werden kann.

» Wenn das Modell bereits komplexer ist, kann das kleinere Batchgrofien erfordern.

» Es gibt Zusammenhidnge zwischen Batchgrofie und Lernrate: Grofiere Batchgro-
Ben kdnnen von hoheren Lernraten profitieren. Wichtig kann es sein, beide Para-
meter zu optimieren.

» Im Bereich Computer-Vision, wie flir das Klassifizieren von Bildern, werden haufig
Batchgroflen zwischen 32 und 512 verwendet.

» Bei der Sprachverarbeitung werden Batchgrofien von 8 bis 256 verwendet. Gerade
bei den hédufig genutzten Transformer-Modellen werden eher kleinere Batches
bevorzugt, da die Modelle selbst einen hohen Speicherbedarf aufweisen.

» Am Ende muss man meist mehrere Batchgrofen testen, um die flir den jeweiligen
Fall optimale Batchgrofle zu ermitteln.

Im ndchsten Abschnitt sehen wir uns an, wie Batches praktisch in das Training einge-
bettet werden konnen.

3.4.4 Coding: Implementierung von Batches

Schauen wir uns in der Praxis an, wie das implementiert werden kann. In Listing 3.16
werden die Pakete sowie die vorbereiteten Daten X, y aus unserem fritheren Skript
DataPrep geladen und danach in die Tensoren X_tensor und y_tensor umgewandelt:
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3.4 Batches

#%% packages

import numpy as np

from sklearn.preprocessing import StandardScaler
import seaborn as sns

import matplotlib.pyplot as plt

import kagglehub

import torch

from sklearn.metrics import r2 score

from DataPrep import X, vy

#%% convert to tensor
X tensor = torch.from numpy(X.astype(np.float32))
y_tensor = torch.from numpy(y.astype(np.float32)) # Ensure y is float32

Listing 3.16 Nutzung von Batches — Datenvorbereitung (Quelle: 030 _FirstModel Regres-
sion\20_Batches.py)

Das Training wird tiber mehrere Hyperparameter beeinflusst. Hierzu gehdren EPOCHS,
LEARNING RATE sowie die neu hinzugekommene BATCH SIZE:

#%% Hyperparameters
EPOCHS = 100
LEARNING RATE = 0.01
BATCH SIZE = 512

Im folgenden Listing 3.17 werden die Modellklasse, der Optimierer sowie die Verlust-
funktion definiert. Hier gibt es keine Anpassungen im Vergleich zu friheren Skripten:

#%% Model class
class LinearRegression(torch.nn.Module):
def __init_ (self, input size, output size):
super(LinearRegression, self). init ()
self.linear = torch.nn.linear(input size, output size)

def forward(self, x):
x = self.linear(x)
return x

#%% Model instance
model = LinearRegression(X.shape[1], 1)

#%% Loss function

criterion = torch.nn.MSELoss()
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3 Unser erstes PyTorch-Modell

#%% Optimizer
optimizer = torch.optim.Adam(model.parameters(), 1lr=LEARNING RATE)

Listing 3.17 Nutzung von Batches — Modellklasse, Verlustfunktion und Optimierer
(Quelle: 030_FirstModel_Regression\20_Batches.py)

In Listing 3.18 ist die Trainingsschleife mit den erforderlichen Anpassungen zur Ver-
arbeitung von Batches dargestellt. Das Entscheidende ist, dass in der Epochenschleife
nun eine zusatzliche Schleife flir die Verarbeitung der einzelnen Batches zu finden ist
(1).In gleichbleibenden Schritten von der Grofie der BATCH SIZE wird durch den Daten-
satz iteriert.

Die weitere Anpassung (2) betrifft die Daten. Wir miissen fiir die jeweiligen Batchpo-
sitionen die entsprechenden unabhingigen Features X _batch und abhéngigen Fea-
turesy batch extrahieren.

Ab hier folgt das Training dem gewohnten Muster.

loss list = []
for epoch in range(EPOCHS):
epoch loss = 0
for 1 in range(0, len(X tensor), BATCH SIZE): # (1)
# get batch (2)
X _batch = X tensor[i:i+BATCH SIZE]
y batch =y tensor[i:i+BATCH SIZE].unsqueeze(1)

# forward pass
y_predict = model(X batch)

# calculate loss
loss = criterion(y predict, y batch)

# backward pass
loss.backward()

# update weights and biases
optimizer.step()

# zero gradients
optimizer.zero grad()

# Store loss for plotting
epoch loss += loss.item()
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# Print loss for this epoch
print(f"Epoch {epoch}, Loss: {epoch loss/len(X tensor):.4f}")
loss list.append(epoch loss)

Listing 3.18 Nutzung von Batches —Trainingsschleife (Quelle: 030_FirstModel_Regression\
20_Batches.py)

Wir haben damit erfolgreich das Konzept der Batches in das Training integriert. Aber es
gibt noch Verbesserungspotenzial. So greifen wir innerhalb der Trainingsschleife direkt
auf die Daten zu und mussen uns »handisch« um das Iterieren in Batches kiimmern.

An dieser Stelle greifen wir auf weitere Hilfsfunktionen zurtck: aufDataset und Data-
Loader. Diesen Konzepten werden wir uns im nachsten Abschnitt widmen.

3.5 Dataset und DatalLoader

In diesem Abschnitt lernen Sie weitere Hilfsfunktionen zum Training kennen: Data-
set und Dataloader. Lassen Sie mich zunachst erklaren, was das genau ist. Dann schau-
en wir uns an, welche Vorteile mit diesen Hilfsfunktionen verbunden sind, und
betrachten anschlief3end, wie diese Konzepte implementiert werden.

3.5.1 Was sind Dataset und Dataloader?

Dataset und Dataloader sind PyTorch-Klassen, die als Abstraktionen der Daten ge-
nutzt werden.

Mithilfe Dataset erhalten Sie eine Schnittstelle, um auf einzelne Daten des Datensat-
zes zuzugreifen. Damit erreichen Sie, dass die Logik zum Laden, Preprocessing (Vor-
verarbeiten) und Abrufen der Daten gekapselt wird.

Damit ist es moglich, die Logik des Datenzugriffs von dem Modelltraining zu trennen.
Und durch diese Trennung der Logik werden unsere Skripte deutlich flexibler und las-
sen sich einfacher an neue Daten anpassen.

3.5.2 Die Vorteile von Dataset und Dataloader

Wie schon erwdhnt, sind der konsistente Zugriff auf die Daten und die Trennung der
Daten von der Modelllogik als Hauptvorteile dieses Konzeptes anzusehen.

Daruber hinaus ist es hiermit moglich, spezifische Datenstrukturen leicht anzupas-
sen. Zur Anpassung konnen auch Transformationen der Daten zahlen wie die Data
Augmentation. Darunter versteht man, die Anzahl und Vielfalt der Trainingsdaten
kinstlich zu erh6hen. Wir kommen in Kapitel 5, »Computer-Visiong, auf dieses The-
ma zurtck.

Werfen wir nun einen Blick darauf, wie diese Klassen implementiert werden.
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3.5.3 Coding: Implementierung mit Dataset und DatalLoader

Wir erweitern das bisher erstellte Skript. Die Klassen Dataset und Dataloader werden
uber torch bereitgestellt. Die weiteren Pakete sind bekannt und werden in Listing 3.19
aufgefuhrt:

#%% packages

import numpy as np

import pandas as pd

import os

import torch

from torch.utils.data import Dataset, Dataloader
from sklearn.metrics import r2 score

from DataPrep import X, vy

import seaborn as sns

#%% Hyperparameters
EPOCHS = 50
LEARNING RATE = 0.1
BATCH SIZE = 512

Listing 3.19 Dataset und DatalLoader — Datenvorbereitung (Quelle: 030_FirstModel_
Regression\30_DatasetDataloaders.py)

Wir implementieren in Listing 3.20 zuerst die eigene Dataset-Klasse AnxietyDataset.
Diese erbt von der Klasse Dataset. In dieser Klasse miissen drei Methoden definiert
werden:

» _ init_ (): Dieser Konstruktor der Klasse wird aufgerufen, wenn eine neue In-
stanz der Klasse erstellt wird. Man nutzt sie, um Dateipfade und Metadaten zu laden,
die fiir einen spateren Zugriff benotigt werden. Hier werden auch Transformatio-
nen auf die Daten angewandt.

» len_ (): Mit dieser Methode wird die Gesamtanzahl an Daten ermittelt. Der
Dataloader nutzt diese Methode, um die Anzahl der Datenpunkte im Dataset zu
ermitteln.

» getitem_ ():Diese Methode ist die wichtigste der drei Methoden. Sie wird aufge-
rufen, um einzelne Datenpunkte anhand eines Indexes abzurufen.

Sehen Sie sich das praktische Beispiel aus Listing 3.20 an. In der _init -Methode
werden die unabhdngigen Features X und das abhangige Feature y tibergeben und die
entsprechenden Properties der Klasse erstellt. Auf diese kann dann tiber self.X und
self.y zugegriffen werden. An dieser Stelle wird der Datentyp von y mittels astype()
in float umgewandelt.
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Die len -Methode wird genutzt, um uber die len-Funktion die Anzahl der Daten-
satze zu ermitteln.

Die getitem -Funktion benoétigt neben dem klasseneigenen Objekt self einen
Index idx, der genutzt wird, um auf einzelne Datenpunkte zuzugreifen. Diese Metho-
de gibt das unabhangige und abhéangige Feature an der Position des Indexes zurtick.

#%% Dataset class
class AnxietyDataset(Dataset):
def __init_ (self, X, y):
self.X = X
self.y = y.astype(np.float32)

def _len_ (self):
return len(self.X)

def _ getitem_ (self, idx):
return self.X[idx], self.y[idx]

Listing 3.20 Dataset und Dataloader — Dataset-Klasse (Quelle: 030_FirstModel _Regres-
sion\30_DatasetDataloaders.py)

Dataset und Dataloader kommen immer paarweise vor. Dataloader ist hierbei der
Partner des Dataset, der dafiir sorgt, dass das Modell immer optimal mit fertigen
Daten versorgt wird.

Der Dataloader kimmert sich um das Batching. Dartiber hinaus kann man leicht die
Daten vor jeder Trainings-Epoche mischen. Dadurch kann man verhindern, dass das
Modell die Daten immer in der gleichen Reihenfolge sieht und sich somit an
bestimmte Muster anpasst, die vielleicht nur durch die Reihenfolge der Daten entste-
hen. Hierdurch kann das Modell robuster werden und eine bessere Generalisierbar-
keit erreichen.

Auflerdem kann der Dataloader so konfiguriert werden, dass die Daten im Hinter-
grund geladen werden. Damit kann sichergestellt werden, dass die schnelle GPU
immer ausgelastet ist. Das Laden und Preprocessing der Daten (z. B. Augmentierung,
Normalisierung, Batch-Zusammenstellung) findet meist auf der langsameren CPU
statt und ist damit oft langsamer als die eigentliche Modellberechnung. Auf diese
Weise kann die CPU zum Flaschenhals werden.

Viele dieser Schritte mussten wir bisher manuell in den Trainingscode integrieren
und konnen sie nun einfach an den Dataloader delegieren.
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Die eigentliche Erstellung der Modellinstanzen unseres Datensatzes ist mit wenig
Aufwand erledigt.

Die Datensatzinstanz dataset wird mit unserer zuvor definierten Klasse AnxietyData-
set erstellt, wie Sie im Folgenden sehen.

Die dataloader-Instanz erhalten Sie mithilfe der Klasse Dataloader, die als wichtigsten
Parameter dataset erhalt. Weitere wichtige Parameter sind die Batchgrofie BATCH SIZE
sowie der Parameter shuffle, der ein Durchmischen der Daten ermoglicht:

#%% Dataloader
dataset = AnxietyDataset(X, y)
dataloader = Dataloader(dataset, batch size=BATCH SIZE, shuffle=True)

Listing 3.21 zeigt die Modellklasse, die Verlustfunktion und den Optimierer. Hier gibt
es keine Uberraschungen oder Anpassungen gegeniiber friheren Implementierun-
gen:

#%% Model class
class LinearRegression(torch.nn.Module):
def _init_ (self, input size, output size):
super(LinearRegression, self). init ()
self.linear = torch.nn.linear(input size, output size)

def forward(self, x):
x = self.linear(x)
return x

#%% Model instance
model = LinearRegression(X.shape[1], 1)

#%% Loss function
loss fun = torch.nn.MSELoss()

#%% Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING RATE)

Listing 3.21 Dataset und DatalLoader — Modellklasse, Verlustfunktion und Optimierer
(Quelle: 030_FirstModel_Regression\30_DatasetDataloaders.py)

In Listing 3.22 sehen Sie die Trainingsschleife und einen der grofen Vorteile der Nut-
zung des Ansatzes mit Dataset und Dataloader: Es gibt nun keinen direkten Zugriff
mehr auf den urspringlichen Datensatz. Stattdessen werden X batch und y batch
direkt aus dem dataloader extrahiert.
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%%
loss list = []
for epoch in range(EPOCHS):
epoch loss = 0
for i, (X batch, y batch) in enumerate(dataloader):
# forward pass
y_predict = model(X batch)

# calculate loss
loss = loss fun(y predict, y batch.reshape(-1, 1))

# backward pass
loss.backward()

# update weights and biases
optimizer.step()

# zero gradients
optimizer.zero grad()

# Store loss for plotting
epoch loss += loss.item()

# Print loss for this epoch
print(f"Epoch {epoch}, Loss: {epoch loss}")
loss_list.append(epoch loss)

Listing 3.22 Dataset und Dataloader — Modelltraining (Quelle: 030_FirstModel Regres-
sion\30_DatasetDataloaders.py)

Dieser Ansatz ist dahingehend vorteilhaft, dass nun bei Anpassungen am Datensatz
keinerlei Anderungen in der Trainingsschleife erforderlich sind. Der hier vorliegende
Code mit der aufSeren Schleife fir die Epochen, der inneren Schleife fir die Batches
sowie den einzelnen Elementen fiir das Modelltraining wird uns in dieser Form sehr
oft wiederbegegnen.

Damit haben Sie die verschiedenen Elemente des Modelltrainings kennengelernt.
Was uns noch fehlt, ist die Fahigkeit, Modelle zu speichern und zu laden.

Wir wollen nicht jedes Mal ein Modell neu trainieren miissen, bevor wir es nutzen
konnen. Stattdessen wollen wir trainierte Netzwerke mit wenig Aufwand laden und
zum Einsatz bringen.
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3.6 Modelle speichern und laden

Um das trainierte Modell zu speichern, miissen wir uns zunachst mit dem Prozess des
Speicherns vertraut machen. Es werden ndamlich nur die Modellgewichte gespeichert.

Abbildung 3.8 verdeutlicht den Prozess anhand einer Analogie. Stellen Sie sich vor,
dass Sie ein Haus gebaut haben und dieses nun an einem anderen Ort wieder aufbau-
en wollen. Sie konnen das Haus nicht komplett an seinen neuen Standort verfrach-
ten. Stattdessen miissen Sie das Haus Stein flr Stein auseinandernehmen und detail-
liert in einem Bauplan beschreiben, wie es wieder aufgebaut werden muss.

EIDDEI
& . guss

O O

Trainiertes Modell Modellklasse Modellparameter
(gebautes Haus) (Bauplan) (Steine)

Abbildung 3.8 Vorgehen beim Speichern und Laden eines Modells

Ganz ahnlich geschieht es beim Speichern und Laden eines Modells. Der Bauplan ist
bekannt — das ist die zuvor erstellte Modellklasse. Den Steinen in unserer Analogie
entsprechen die Modellparameter. Beide werden separat gespeichert und beim Laden
wieder miteinander verbunden.

3.6.1 Modellparameter speichern

Auf die Modellparameter haben wir Zugriff iber die Methode state dict() des
Modells. Wir konnen es uns direkt ausgeben lassen. Hierbei handelt es sich um ein
geordnetes Dictionary, in dem Tupel den jeweiligen Schichtnamen sowie die dazuge-
horigen Modellgewichte widerspiegeln:

model.state dict()

OrderedDict([('linear.weight’,
tensor([[-1.3479e-01, -5.1887e-01, -1.8175e-01, ... ]1)),
('linear.bias', tensor([3.9327]))])

Dieses State Dictionary wird nun mittels torch. save() in einer Datei gespeichert. Ubli-
cherweise wird beim Speichern einer solchen Gewichtsdatei die Dateiendung.pt oder
.pth verwendet.
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3.6 Modelle speichern und laden

Der Code zeigt, wie die Modellgewichte in der Datei Modell.pth gespeichert werden:

#%% save model weights
torch.save(model.state dict(), 'models/Modell.pth")

Nachdem Sie jetzt wissen, wie Modelle gespeichert werden, schauen wir uns an, wie
wir Modelle wiederherstellen kénnen.

3.6.2 Modell laden

Dieser Schritt ist zweistufig. Im ersten Schritt wird eine Instanz der Modellklasse
erstellt und anschlief3end werden die Modellgewichte ins Modell geladen.

Die Modellklasse kann in einer separaten Datei gespeichert werden. Listing 3.23 zeigt,
wie die eigene Modellklasse definiert wird:

#%% packages
import torch

#%% Model class
class LinearRegression(torch.nn.Module):
def init (self, input size, output size):
super(LinearRegression, self). init ()
self.linear = torch.nn.Linear(input size, output size)

def forward(self, x):
x = self.linear(x)
return x

Listing 3.23 Modellkasse (Quelle: 030_FirstModel_Regression\models\Model1.py)

Kommen wir nun zum eigentlichen Skript, das darauf aufbaut. In Listing 3.24 laden
wir erst einmal alle Pakete. Unsere Modellklasse ist in ein Skript models/Modell.py
ausgelagert, sodass wir von dort die Modellklasse LinearRegression laden konnen.
Anschliefiend erstellen wir eine Instanz des Modells:

import torch

from models.Modell import LinearRegression
import seaborn as sns

import matplotlib.pyplot as plt

# %% create model instance

model = LinearRegression(37, 1)

Listing 3.24 Modell laden — Pakete und Modellinstanz (Quelle: 030_FirstModel_Regres-
sion\40_ModellLoading.py)
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Wir wollen Uberpriifen, dass die Modellgewichte erfolgreich geladen wurden. Dazu
erstellen wir eine Funktion show _model parameters, die die Modellgewichte als Histo-
gramm darstellt:

#%% function to show model parameter distribution
def show_model_parameters(model):
params = []
for param in model.parameters():
params.append(param.detach().numpy().flatten())
g = sns.histplot(params, kde=True)
# add title
g.set title('Model Parameter Distribution')
g.set xlabel('Parameter Value')
g.set _ylabel('Frequency")
return g

Listing 3.25 Modell laden — Funktion zur Visualisierung (Quelle: 030 _FirstModel Regres-
sion\40_ModellLoading.py)

Diese Funktion wird jetzt in Abbildung 3.9 genutzt, um die Modellgewichte direkt
nach der Instanziierung des Modells und dann nach dem Laden der Modellgewichte
zu zeigen:

show model parameters(model)

#%% load model weights

model.load state dict(torch.load('models/Modell.pth'))
<All keys matched successfully>

show model parameters(model)

Model Parameter Distribution Model Parameter Distribution
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015 -0.10 -0.05  0.00 0.05 0.10 015 0 1 2 3 4
Parameter Value Parameter Value
a) Zuféllige Modellgewichte b) Modellgewichte nach dem
Laden

Abbildung 3.9 Modellgewichte (links: zuféllige Gewichte; rechts: Gewichte nach dem
Laden)
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3.7 Data Sampling

Links ist der Zustand direkt nach dem Erstellen der Modellinstanz zu sehen. Die
Gewichte liegen alle rund um O. Im rechten Bild sieht man, dass die Modellgewichte
einen viel grofieren Bereich abdecken und dass der Biaswert (Balken ganz rechts) bei
nahezu 4 liegt. Das Laden der Modellparameter hat also funktioniert.

Damit kommen wir nun zur nachsten Erweiterung unseres Trainings, und Sie werden
lernen, wie und warum die Daten aufgeteilt werden.

3.7 Data Sampling

In diesem Abschnitt beschaftigen wir uns mit dem nachsten Konzept, das wichtig fiir
das Modelltraining ist, dem Data Sampling.

Sielernen zunichst, was genau unter diesem Begriff zu verstehen ist und warum man
diesen Ansatz benétigt. Danach lernen Sie, das Data Sampling zu implementieren.

3.71 Was ist Data Sampling?

Data Sampling ist der Prozess der Auswahl von Datenpunkten aus einem grofieren
Datensatz. Anstatt das Modell auf Basis des kompletten Datensatzes zu trainieren, wird
nur ein Teil fiir das Training verwendet und ein anderer Teil fiir die Validierung der
Daten. Das ist das Konzept des Train Test Splits und wird in Abbildung 3.10 dargestellt.

Datensatz

{ A J
Y /

Bestes Training Beste Validierung
- Max! - Max!

Abbildung 3.10 Konzept des »Train Test Splits«

Die urspriinglichen Daten werden in zwei (oder in einigen Féllen auch drei) separate

Teile unterteilt:

» Trainingsdatensatz (Train Dataset): Der grofite Teil der Daten wird verwendet, um
das Modell zu trainieren.

» Validierungsdatensatz (Validation Dataset): Die Validierungsdaten, in der Regel
der kleinere Teil der Daten, dienen dazu, die Leistungsfihigkeit des trainierten
Modells mit Daten zu bewerten, die es noch nicht gesehen hat. So kénnen Sie tiber-
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3 Unser erstes PyTorch-Modell

priifen, wie gut es generalisiert. Das Modell soll ja nicht nur auf den Trainingsdaten
gut funktionieren, sondern vor allem auf neuen, noch unbekannten Daten.

» Testdatensatz (Test Dataset): Manchmal gibt es auch einen dritten Datensatz, den
Testdatensatz. Dieser Datensatz wird erst ganz am Ende verwendet, um die finale,
unvoreingenommene Leistung des trainierten und validierten Modells zu bewer-
ten. Diese Daten darf das Modell wahrend des Trainings und der Validierung nie-
mals »sehen«.

Abbildung 3.10 zeigt auch, dass es vorteilhaft ist, den Trainingsdatensatz so grof3 wie
moglich zu machen. Problematisch wird es, weil dasselbe flir den Test- (oder auch
Validierungsdatensatz) gilt. Wie kann dieser Zielkonflikt iiberwunden und das opti-
male Verhaltnis gefunden werden? Damit befasst sich die folgende Infobox.

Optimales Aufteilungsverhdltnis von Trainings- und Validierungsdaten

Es gibt keine allgemeingtltige »perfekte« Aufteilung, da sie von verschiedenen Fakto-
ren abhangt.

Die genaue Ausgestaltung hangt davon ab, ob es eine Zweiteilung (Trainings- und
Validierungsdaten) oder eine Dreiteilung mit Trainings-/Validierungs-/Testdaten
gibt.

Als groben Anhaltspunkt kénnen Sie eine Aufteilung von 80 % Trainings- und 20 %
Validierungsdaten annehmen. Falls eine Dreiteilung verwendet wird, kénnen Sie 70 %
fir Trainingsdaten, 15 % fiir Validierungsdaten und 15 % fiir Testdaten vorsehen.

Im Folgenden gehen wir von einer Zweiteilung aus.
Einige Faktoren beeinflussen die Aufteilung:

» GroRe des Datensatzes: Ein wichtiger Parameter ist die GroBe des Datensatzes. Je
grofer der Datensatz ist, desto prozentual groBer kann der Trainingsdatensatz
sein, da die absolute Anzahl der Datenpunkte im Validierungsdatensatz immer
noch groB genug ist, um statistisch signifikante Aussagen abzuleiten.

» Modellkomplexitdt: Je komplexer ein Modell ist, desto mehr Trainingsdaten be-
notigt es tendenziell, um ein Overfitting zu vermeiden. Hier sind Validierungsda-
ten sehr wichtig, um die Generalisierungsfahigkeit zu tiberwachen.

» Zeitreihendaten: Eine Besonderheit stellen Zeitreihendaten dar, da sie nicht zufal-
lig aufgeteilt werden durfen, um die zeitliche Reihenfolge zu erhalten. Diesem
Thema widmen wir uns in Kapitel 9.

> Unausgewogene Daten: Bei unausgewogenen Daten (Imbalanced Datasets) han-
delt es sich um Daten bei Klassifizierungsproblemen, in denen bestimmte Klassen
stark unterreprasentiert sind. In diesen Fallen miissen Sie darauf achten, die Klas-
sen in den verschiedenen Datensatzen ahnlich verteilt sind.

Die im nichsten Abschnitt vorgestellte Kreuzvalidierung (Cross-Validation) erdffnet
Ihnen eine Moglichkeit, auf das Data Sampling zu verzichten.
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3.7 Data Sampling

3.7.2 Kreuzvalidierung

Insbesondere bei kleinen Datensatzen ist die Kreuzvalidierung eine sehr empfehlens-
werte Technik. Dieses Verfahren wird hauptsachlich zur Ermittlung einer stabilen
Modell-Performance verwendet und erweitert das zuvor beschriebene Data Sampling:
1. Der gesamte Datensatz wird in gleich grof3e Teile (Folds) mit der Grofie K aufgeteilt.

2. Das Modell wird K-mal trainiert, wobei in jeder Iteration ein anderer Fold als Vali-
dierungsdatensatz verwendet wird und die restlichen K-1Folds als Trainingsdaten-
satz dienen.

3. Die Metriken zur Beurteilung der Modellperformance werden fiir jedes Modell
ermittelt.

4. Die ermittelten Metriken werden gemittelt, um eine robuste Einschatzung der
gesamten Modellleistung zu erhalten.

Der Prozess der Aufteilung der Daten ist in Abbildung 3.11 verdeutlicht.

Validierung Trainingsdaten Modell 1

Modell 2

Modell 3

Modell 4

Modell 5

-

100 200 300 400 500

Abbildung 3.11 Kreuzvalidierung

Ublicherweise werden die Validierungsdaten nicht »am Stlick« festgelegt, sondern
zufdllig ausgewahlt. Sie wurden hier nur vereinfacht so dargestellt, um das Prinzip zu
erklaren.

Ubliche Werte fiir die Anzahl an Folds sind 5 oder 10. Das Verfahren hat den Vorteil,
dass jeder Datenpunkt sowohl zum Trainieren als auch zum Validieren verwendet
wird. Ein Nachteil ist nattrlich, dass der Rechenaufwand stark ansteigt. Wo zuvor nur
ein Modell trainiert und validiert wurde, muss es nun K-mal trainiert und validiert
werden.

Aus diesem letzteren Grund wird die Kreuzvalidierung in diesem Buch nicht weiter
eingesetzt. Aber es ist wichtig, dieses Konzept zu kennen, um es im Zweifelsfall ein-
setzen zu konnen.
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3 Unser erstes PyTorch-Modell

3.7.3 Warum braucht man das?

Man will also die Fahigkeit des Modells zur Generalisierung sicherstellen. Mit ande-
ren Worten: Overfitting (Uberanpassung) soll vermieden werden.

Von Overfitting spricht man, wenn ein Modell die Trainingsdaten zu genau lernt.
Eigentlich soll es ja nur die grundlegenden Zusammenhinge verstehen. Bei einem
Overfitting lernt es auch das Rauschen und andere spezifische Eigenheiten auswendig.

Abbildung 3.12 zeigt Beispiele fiir ein unterangepasstes und ein iberangepasstes
Modell.

Unterangepasstes Modell Uberangepasstes Modell

Abbildung 3.12 Unterangepasstes und liberangepasstes Modell

In Abbildung 3.12 sehen Sie links ein Beispiel flr eine Unteranpassung. Der Einfach-
heit halber handelt es sich um ein Regressionsproblem mit einer unabhéangigen
Variable X und der abhangigen Variable y. Die Punktewolke ist leicht verrauscht, folgt
aber grob einem quadratischen Trend.

Um das linke Teilbild zu erzeugen, wurde ein lineares Modell trainiert, das den
Zusammenhang iiber eine Gerade widerspiegelt. Die Fehler der einzelnen Punkte
sind als vertikale Linien verdeutlicht. Die Fehler sind relativ hoch.

Auf dem rechten Teilbild ist das andere Extrem dargestellt. Hier ist das Modell so an
die Trainingsdaten angepasst, dass versucht wird, wirklich jeden einzelnen Punkt
exakt nachzuvollziehen. Das sieht bei den Trainingsdaten sehr gut aus und der Fehler
zwischen dem Modell (Linie) und dem jeweiligen Datenpunkt ist minimal, aber in der
Praxis zeigt sich, dass das Modell schlecht mit Daten umgehen kann, die es vorher nie
gesehenen hat, und somit sehr schlecht generalisiert.

Man kann sich das wie einen Schiiler vorstellen, der Antworten einfach auswendig
lernt, ohne die zugrunde liegenden Zusammenhange zu verstehen. Der Schiiler kann
alle alten Fragen perfekt beantworten. Aber sobald eine Frage leicht abgewandelt
wird, scheitert er.

Ein gutes Modell findet den Mittelweg zwischen Unter- und Uberanpassung.
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3.7.4 Coding: Aufteilung in Trainings- und Validierungsdaten

Wir erweitern unseren bisherigen Code, um nun auch Trainings- und Validierungsda-
ten zu berticksichtigen.

Listing 3.26 zeigt alle benotigten Pakete, und es werden die Daten aus dem DataPrep-
Skript importiert:

#%% packages

import numpy as np

import pandas as pd

import os

import matplotlib.pyplot as plt

import torch

from torch.utils.data import Dataset, Dataloader
from DataPrep import X, vy

from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2 score

import seaborn as sns

Listing 3.26 Train-Test-Split — Pakete und Datenimport (Quelle: 030 FirstModel Regres-
sion\50_DataSplitting.py)

Die Hyperparameter, die Sie in Listing 3.27 sehen, umfassen die maximale Anzahl an
Epochen EPOCHS, die LEARNING RATE sowie die BATCH SIZE:

#%% Hyperparameters
EPOCHS = 20
LEARNING RATE = 0.1
BATCH SIZE = 512

Listing 3.27 Train-Test-Split — Hyperparameter (Quelle: 030_FirstModel Regression\50
DataSplitting.py)

Nun kommen wir zu dem besprochenen Ansatz des Datensplits. Wir teilen in Listing
3.28 die Daten in Trainingsdaten und Validierungsdaten auf. Hierzu wird die Funktion
train test split verwendet. In unserem Fall werden 80 % fiir die Trainingsdaten
und 20 % fiir die Testdaten verwendet:

#%% split data

X train, X val, y train, y val = train test split(X, vy,
test size=0.2,
random_state=42)

Listing 3.28 Train-Test-Split — Datensplit (Quelle: 030_FirstModel Regression\50
DataSplitting.py)
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3 Unser erstes PyTorch-Modell

Es ist tiblich und fast immer ratsam, die Daten zu skalieren. Listing 3.29 zeigt, wie wir
hierbei vorgehen. Die unabhdngigen Trainingsfeatures X train werden skaliert. In
dem Schritt werden auch die Skalierungsparameter ermittelt und im Objekt scaler
gespeichert.

Ein interessantes Detail ist hierbei, dass man die Validierungsdaten X val auf Basis
der Skalierungsparameter der Trainingsdaten anpasst. Der Hintergrund ist, dass man
davon ausgehen muss, dass nur die Trainingsdaten und deren Parameter bekannt
sind. Wirde man die Skalierung der Validierungsdaten auf den eigenen Verteilungs-
werten vornehmen, hiefle das, dass man implizit Informationen {iber die Validie-
rungsdaten besitzt, die man praktisch nicht haben sollte. Der Einfluss mag in der
Regel klein sein, aber ich empfehle Thnen, dieser Best Practice zu folgen. Sie erhalten
die angepassten Validierungsdaten, indem Sie die transform-Methode des scalers auf
die Daten anwenden:

#%% scale data

scaler = StandardScaler()

X_train = scaler.fit transform(X train)
X val = scaler.transform(X val)

Listing 3.29 Train-Test-Split — Skalierung der Daten (Quelle: 030_FirstModel_Regression\
50_DataSplitting.py)

An der in Listing 3.30 gezeigten Dataset-Klasse gibt es keine Anderungen gegeniiber
friheren Abschnitten:

#%% Dataset class
class AnxietyDataset(Dataset):
def __init_ (self, X, y):
self.X = torch.from numpy(X.astype(np.float32))
self.y = torch.from numpy(y.astype(np.float32))

def _len_ (self):
return len(self.X)

def _getitem (self, idx):
return self.X[idx], self.y[idx]
Listing 3.30 Train-Test-Split — die Dataset-Klasse (Quelle: 030_FirstModel Regression\50
DataSplitting.py)

Spannend wird es jetzt wieder beim Dataloader. Da es zwei Datensatze gibt, werden
auch zwei Dataloader (train_dataloader und val dataloader) instanziiert:
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3.7 Data Sampling

#%% Dataloader
train_dataset = AnxietyDataset(X train, y train)
train dataloader = Dataloader(train dataset,
batch size=BATCH SIZE,
shuffle=True)

val dataset = AnxietyDataset(X val, y val)

val dataloader = Dataloader(val dataset,
batch size=BATCH SIZE,
shuffle=False)

Listing 3.31 Train-Test-Split — Dataloader (Quelle: 030_FirstModel Regression\50
DataSplitting.py)

In Listing 3.32 wird die Modellklasse und damit die Instanz model erstellt:

#%% Model class
class LinearRegression(torch.nn.Module):
def __init_ (self, input size, output size):
super(LinearRegression, self). init ()
self.linear = torch.nn.Linear(input size, output size)

def forward(self, x):
x = self.linear(x)
return x

#%% Model instance
model = LinearRegression(input size=train dataset.X.shape[1],
output_size=1)

Listing 3.32 Train-Test-Split — Modellklasse und Modellinstanz (Quelle: 030_FirstModel
Regression\50_DataSplitting.py)

Wie Sie in Listing 3.33 sehen, verwenden wir die Verlustfunktion MSELoss, und der
Optimizer basiert auf Adam:

#%% Loss function

loss fun = torch.nn.MSELoss()

#%% Optimizer

optimizer = torch.optim.Adam(model.parameters(), 1lr=LEARNING RATE)

Listing 3.33 Train-Test-Split — Verlustfunktion und Optimierer (Quelle: 030_FirstModel
Regression\50 DataSplitting.py)
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Nun kommen wir zum Training des Modells. Die entscheidenden Unterschiede zu
friheren Trainings sind:

1. Denzwei verschiedenen Datensdtzen wird Rechnung getragen, indem ihre Verlus-
te separat getrackt werden. Dafiir werden die Listen epoch loss train und epoch_
loss val erstellt.

2. Am Ende jeder Epoche werden die Verluste der Validierungsdaten ermittelt. Daftir
wird der Scope torch.no_grad() verwendet. In diesem Scope wird mit einem For-
ward-Pass die Vorhersage berechnet und anschlief3end der Verlustwert ermittelt.

1#%%
# (1) Empty lists initialized
loss train list, loss val list = [], []
for epoch in range(EPOCHS):
epoch loss train = 0
epoch loss val = 0
for i, (X train batch, y train batch) in enumerate(train dataloader):
# get batch

# forward pass
y _pred train = model(X train batch)

# calculate loss
loss train = loss fun(y pred train, y train batch.reshape(-
1, 1)).mean()

# backward pass
loss_train.backward()

# update weights and biases
optimizer.step()

# zero gradients
optimizer.zero grad()

# Store loss for plotting
epoch loss train += loss train.item()

# (2) evaluate on test set
with torch.no grad():
for X val batch, y val batch in val dataloader:
y pred val = model(X val batch)
loss val = loss fun(y pred val,
y val batch.reshape(-1, 1)).mean()
epoch loss val += loss val.item()
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# Store the losses for plotting
loss_train list.append(epoch loss train / len(train dataloader))
loss val list.append(epoch loss val / len(val dataloader))

# Print loss for this epoch
print(f"Epoch {epoch}, Train Loss: {epoch loss train}, Test Loss: {loss_
val.item()}")

Listing 3.34 Train-Test-Split — Modelltraining (Quelle: 030_FirstModel Regression\50
DataSplitting.py)

In Listing 3.35 sehen Sie nun die Visualisierung der Verluste auf Basis der Trainings-
und Validierungsverluste. Der Grofiteil des Codes dient zur Skalierung der Daten,
sodass die Verluste jeweils auf den Bereich O bis 1 beschrankt werden. Andernfalls
konnte es sein, dass die Verluste so unterschiedlich hoch sind, dass sie schlecht zu
erkennen sind.

#%% plot loss

# Convert to numpy arrays

loss train arr = np.array(loss train list)
loss val arr = np.array(loss val list)

# Train loss: scale independently

train min = loss train arr.min()

train max = loss train arr.max()

train range = train max - train min if train max > train min else 1
loss train scaled = (loss train arr - train min) / train range

# Val loss: scale independently

val min = loss val arr.min()

val max = loss val arr.max()

val range = val max - val min if val max > val min else 1
loss val scaled = (loss val arr - val min) / val range

sns.lineplot(x=range(EPOCHS), y=loss train scaled, color='blue', label=
'Train')

sns.lineplot(x=range(EPOCHS), y=loss val scaled, color='red', label=
"Validation')

plt.title('Losses over Epochs: Train (blue) vs. Validation (red)")
plt.xlabel('Epoch [-]")

plt.ylabel('Loss [-]")

plt.legend()

plt.show()

Listing 3.35 Train-Test-Split — Trainings- und Validierungsverluste (Quelle: 030_First-
Model_Regression\50 DataSplitting.py)
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Das Ergebnis des Aufwands ist in Abbildung 3.13 zu sehen. Die Trainingsverluste
(blau) und die Validierungsverluste (rot) folgen demselben Trend. Zundchst nehmen
sie sehr stark ab, um dann asymptotisch gegen null zu konvergieren.

Dass beide Kurven nahezu deckungsgleich sind, ist eher untiiblich und liegt an dem
konkreten Datensatz, mit dem das Modell trainiert wurde.
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—— Validation
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Abbildung 3.13 Train-Test-Split — Trainings- und Validierungsverluste

Damit haben wir das Ende dieses Abschnitts erreicht. Sie wissen nun, was Data
Sampling ist und wie Sie es implementieren konnen.

3.8 Zusammenfassung

Dieses Kapitel lieferte einen Einstieg in das Training von Deep-Learning-Modellen
mit PyTorch.

Nachdem Sie in Abschnitt 3.1 gelernt haben, wie die Daten vorzubereiten sind, begann
das eigentliche Training in Abschnitt 3.2 mit dem Datenimport sowie dem Modelltrai-
ning und der Modellevaluierung.

Dieses erste Modelltraining hat ein funktionsfahiges Modell geliefert, aber noch
reichlich Platz fiir Verbesserungen gelassen. Denen haben wir uns in den Nachfolge-
abschnitten gewidmet.

Dazu habe ich zunichst in Abschnitt 3.3 die Modellklasse und den Optimierer einge-
fihrt. Anschliefiend haben Sie in Abschnitt 3.4 gelernt, was Batches sind und warum
und wie sie implementiert werden.
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3.8 Zusammenfassung

Eine weitere Abstraktion habe ich in Abschnitt 3.5 eingefiihrt, in dem Sie Dataset und
Dataloader kennenlernten. Mit diesem Konzept konnen Sie die Daten vom eigent-
lichen Modelltraining separieren, was Ihren Code modularer macht und somit einfa-
cher zu erweitern und zu pflegen.

Da wir iblicherweise Modelle trainieren, um sie danach einzusetzen, mussten Sie ler-
nen, wie Modelle gespeichert und anschlieBend wieder geladen werden konnen. Das
war das Thema von Abschnitt 3.6.

Zu guter Letzt wurden die Daten in Abschnitt 3.7 in Trainings- und Validierungsdaten
aufgeteilt. Dieser Schritt, der Data Sampling genannt wird, stellt sicher, dass das
Modell zu generalisieren lernt, sodass es spater nicht nur gut mit den Trainingsdaten,
sondern auch mit unbekannten Daten funktioniert.

Mit diesem Wissen sind Sie jetzt dafiir geriistet, weitere Modellarchitekturen kennen-
zulernen. Die Konzepte aus diesem Kapitel werden Sie durch den Rest des Buches
begleiten.
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Kapitel 10
Sprachmodelle

»Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.«
— Ludwig Wittgenstein, Philosoph

Unsere Sprache ist nicht nur ein Werkzeug zur Kommunikation, sondern auch das
Medium, durch das wir unser Denken, unsere Wahrnehmung und unser Verstandnis
strukturieren. Wenn uns die Worte fehlen, um etwas zu beschreiben, verengt sich
unsere Sichtweise. Wo wir Sprache erweitern, eréffnen sich automatisch neue Mog-
lichkeiten, die Welt zu begreifen.

Genau an dieser Stelle setzen grofie Sprachmodelle an. Sie werden den Foundation
Models zugerechnet. Dabei handelt es sich um vielseitige Basismodelle, die auf riesi-
gen Datensdtzen trainiert wurden. Sie dienen als Fundament, das fiir eine Vielzahl
verschiedener Aufgaben angepasst werden kann.

Sprachmodelle konnen mehr, als nur Texte erzeugen. Dadurch, dass sie Muster in
Sprache sichtbar machen, erweitern sie unser Ausdrucksspektrum.

Die Frage ist also nicht nur, wie Sprachmodelle funktionieren, sondern auch, wie sie
unsere Welt verdndern.

Grofie Sprachmodelle (Large Language Models, LLMs) haben sich als transformative
Technologie etabliert, die das maschinelle Verstehen und Generieren von Texten
grundlegend neu definiert.

Im Kern handelt es sich bei LLMs um komplexe neuronale Netze, die auf unvorstell-
bar grofien Mengen an Textdaten trainiert wurden. Dadurch sind die Modelle in der
Lage, komplexe sprachliche Muster und Zusammenhénge zu erkennen. Das verleiht
ihnen die Fahigkeit, in sich stimmige und inhaltlich passende Texte zu erstellen, Fra-
gen zu beantworten, Ubersetzungen durchzufithren und kreative Inhalte zu erstellen.

Die bemerkenswerten Fahigkeiten von LLMs beruhen auf Fortschritten in der Modell-
architektur, insbesondere der Transformer-Architektur. Diese spezielle Art von Netz-
werk ermoglicht es, langfristige Abhangigkeiten in Texten effizient zu verarbeiten.

In diesem Kapitel beginnen wir in Abschnitt 10.1 gleich mit einem Sprung ins kalte
Wasser: Dort lernen Sie, wie Sie Sprachmodelle direkt mit Python nutzen konnen.
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Anschlieflend gehe ich in Abschnitt 10.2 auf Modellparameter ein, die Ihnen helfen,
die Modellantwort zu beeinflussen. Sie werden lernen, was es mit Parametern wie der
Temperatur, Top-p oder Top-K auf sich hat.

Heutzutage gibt es eine gewaltige Auswahl an Sprachmodellen. Welche Parameter man
zur Auswahl des richtigen Modells heranziehen kann, beleuchte ich in Abschnitt 10.3.

Um komplexe Workflows abzubilden, empfiehlt es sich, sogenannte Chains zu ver-
wenden, da sie helfen, den Code zu modularisieren und sehr viel Flexibilitat bieten.
Chains sind die grundlegenden Bausteine, um LLMs mit anderen Komponenten wie
Datenquellen oder Werkzeugen zu verbinden. Den Chains widmen wir uns in Ab-
schnitt 10.6. Da sie aber auf Prompt Templates (siehe Abschnitt 10.5) und Messages
(siehe Abschnitt 10.4) beruhen, miissen Sie diese Konzepte zuvor kennenlernen.

Nachdem Sie sich mit Chains vertraut gemacht haben, lernen Sie in Abschnitt 10.7
eine bestimmte Form von Chain kennen, die strukturierte Ergebnisse (Outputs)
zuriickliefert. Das kann ungemein hilfreich sein, wenn das Modellergebnis in einer
Datenbank abgespeichert werden oder als Eingabe fiir einen folgenden Prozess die-
nen soll.

Zum Abschluss des Kapitels werfen wir einen Blick in die zugrunde liegende Architek-
tur von Sprachmodellen. Ohne die Transformer-Architektur waren heutige Sprach-
modelle nicht denkbar. Daher widmen wir uns in einem technischen Deep Dive in
Abschnitt 10.8 diesem bahnbrechenden Netzwerktyp.

Legen wir nun aber direkt los, und sehen wir uns an, wie Sie ein Sprachmodell direkt
aus Python heraus verwenden konnen.

10.1 Nutzung von LLMs mit Python

Aufgrund der Komplexitit und der technischen Anforderungen beim Training von
Sprachmodellen steigen wir auf einer hoheren Abstraktionsebene ein. Sie werden
bereits trainierte Sprachmodelle nutzen und vor allem lernen, wie Sie sie effizient
nutzen kénnen.

Abbildung 10.1 zeigt eine Reihe von beliebten Sprachmodellen und Modellfamilien.
Zu den leistungsfiahigsten Modellen gehoren die Flaggschiffmodelle von OpenAl (z. B.
GPT-5), Google (Gemini 2.5 Pro), Anthropic (Claude Opus 4.1) und X-AlI (Grok 4). Erwéh-
nenswert ist hier Mistral mit LeChat als europaischer Anbieter, der auch DSGVO!-kon-
form arbeitet. Einige Modellanbieter gewdhren nur Zugriff auf ihre proprietdren
Modelle Uber eine API. Im Unterschied dazu gibt es auch Open-Weight- oder Open-
Source-Modelle. Mehr dazu spater.

1 DSGVO steht flir »Datenschutz-Grundverordnung«. Das ist ein EU-Gesetz, das die Verarbeitung
personenbezogener Daten durch Unternehmen und Behdrden europaweit vereinheitlicht und
die Rechte der Biirger auf den Schutz ihrer Daten starkt.
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Abbildung 10.1 Beliebte Sprachmodelle und Modellfamilien

Fur viele Menschen ist das Thema »Sprachmodell« synonym mit ChatGPT. Das liegt
daran, dass OpenAl mit dem Release von ChatGPT Ende 2022 den Stein ins Rollen
gebracht hat und dass seitdem die Modellreihe GPT die berithmteste Modellreihe bei
den Sprachmodellen ist.

Das sind sehr leistungsstarke Modelle, fiir die Sie aber bezahlen miissen. Da es aber
auch andere extrem fahige LLMs gibt, die als Open Source bereitgestellt werden, zeige
ich Ihnen, wie Sie LLMs kostenlos tiber Groq1 nutzen konnen. Sie werden sehen, dass
die Interaktion mit den Modellen dank des Python-Frameworks LangChain sehr ein-
fach ist. Nach diesen beiden Beispielen werden Sie in der Lage sein, sich mit jedem
anderen LLM-Anbieter zu verbinden.

10.1.1 Coding: Nutzung von OpenAl

Um OpenAl nutzen zu konnen, benétigen Sie einen API-Schliissel. Diese Modelle sind
nicht kostenlos, also werden Sie fuir ihre Nutzung zur Kasse gebeten. Die Preise sinken
standig im Laufe der Zeit, und Sie konnen die aktuellen Preise unter https://
openai.com/api/pricing/ nachschauen.

1 Ein entscheidender Unterschied besteht zwischen Grok und Grogq: Bei Groq handelt es sich um
einen Hardwareanbieter, der den Zugriff auf Open-Weight-LLMs bereitstellt, wihrend es sich bei
Grok um ein Sprachmodell von X-Al handelt.
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10 Sprachmodelle

Einen API-Schliissel einrichten

Zuerst mussen Sie einen API-Schliissel einrichten. Wenn Sie einen Webdienst nutzen
mochten, bendtigen Sie normalerweise einen Benutzernamen und ein Passwort, um
auf den Dienst zuzugreifen. Wenn Sie einen Dienst jedoch programmgesteuert nut-
zen mochten, bendtigen Sie einen API-Schliissel. Ein API-Schlissel ist also wie eine
Kombination aus Benutzername und Passwort.

Wie konnen Sie einen API-Schlissel bekommen, wenn Sie noch keinen haben? Folgen
Sie hierzu diesen Schritten:

1. Navigieren Sie zu https://platform.openai.com/.

2. Erstellen Sie einen Account.

3. Aktivieren Sie die Abrechnung und laden etwas Geld auf ihr Konto.
4

. Gehen Sie zum Bereich der API-Schliissel und erstellen Sie einen neuen API-Schlis-
sel. Der Name, den Sie im Web-Frontend angeben, ist nur fiir die spatere Wieder-
erkennung relevant. Praktisch benétigen Sie nur den Schlissel.

5. Kopieren Sie den Schliissel in die Zwischenablage.

6. Fiigen Sie ihn in eine Datei namens .env ein. Sie sollte so aussehen: sk-proj...
Mehr dazu erfahren Sie im nachsten Abschnitt.

Umgebungsvariablen

Es ist generell eine gute Praxis, Code von Anmeldeinformationen zu trennen. Daher
speichern Sie den API-Schliissel in einer separaten Datei. Ein giangiger Ansatz ist, ihn
in einer Datei namens.env zu speichern und diese im Arbeitsordner abzulegen. In die-
ser Datei speichern Sie den API-Schliissel und moglicherweise viele weitere Schliissel,
falls notig. Listing 10.1 zeigt, wie eine Umgebungsdatei aussehen sollte:

OPENAI_API_KEY = sk-proj...

Listing 10.1 Beispielinhalt einer ».env«-Datei

Die API-Schlussel werden als Umgebungsvariablen behandelt. Umgebungsvariablen
sind typischerweise Variablen, die von Threm Betriebssystem verwendet werden.
Unsere Variable heifst OPENAI API KEY.Sie hat einen Wert, der aufder rechten Seite des
Gleichheitszeichens definiert werden muss. Es ist wichtig, im Codeskript denselben
Schliisselnamen zu verwenden.

Wenn Sie zogern, Thre Bankdaten im Internet anzugeben, tiberspringen Sie diese Lek-
tion und gehen zur nichsten, um direkt mit Groq zu arbeiten, das kostenlosen
Zugang zu den Modellen bietet. Verwechseln Sie Groq nicht mit Grok: Groq ist ein KI-
Startup, das sich auf die Entwicklung von Chips fiir schnelle Inferenz von LLMs kon-
zentriert, wahrend Grok ein LLM ist, das als Initiative von Elon Musk ins Leben geru-
fen wurde.
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Coding-Skript

Lassen Sie uns mit unserem Coding-Skript anfangen. Sie finden es im Materialordner
unter 100_LLM/10_model chat_openai.py. Hier ist es eine gute Praxis, alle benotig-
ten Pakete und Funktionen am Anfang der Datei zu platzieren. Lassen Sie uns durch-
gehen, was wir hier brauchen.

Das Paket os wird benétigt, um die Umgebungsvariablen abzurufen und zuladen. Alle
groflen Modellanbieter bieten Pakete zur Integration in LangChain an. Hier verwen-
den wir also langchain _openai. Das Paket dotenv ist erforderlich, um mit der Datei der
Umgebungsvariablen zu arbeiten. Seine Funktion load dotenv() ladt den Inhalt der
.env-Datei und stellt ihn als Umgebungsvariablen zur Verfiigung:

#%% packages

import os

from langchain openai import ChatOpenAl
from dotenv import load dotenv

load dotenv('.env')

Sie konnen ganz einfach tiberprifen, ob der API-Schliissel verfiigbar ist, indem Sie
os.getenv('OPENAI API KEY') ausfihren. Dadurch sollten Sie den API-Schliissel auf
dem Bildschirm angezeigt bekommen.

Jetzt erstellen wir eine Instanz des Modells, das wir verwenden werden, indem wir die
ChatOpenAI-Klasse nutzen. Dafiir brauchen wir einen Modellnamen. Wir wéihlen hier
gpt-40-mini. Ein weiterer wichtiger Parameter ist die Temperatur (mehr zu Modellpa-
rametern lesen Sie in Abschnitt 10.2). Dieser Parameter steuert die Kreativitat des
Modells. Und Sie miissen den API-Schliissel tibergeben, um sich zu authentifizieren
und es OpenAl zu ermdoglichen, die Kosten basierend aufThrer Nutzung zu berechnen.

MODEL_NAME = 'gpt-4o-mini’

model = ChatOpenAI(model name=MODEL NAME,
temperature=0.5,
api_key=os.getenv('OPENAI API KEY'))

Das model-Objekt hat eine sehr wichtige Methode: invoke(). Damit kdnnen Sie das
Modell basierend auf bestimmten Parametern ausfithren. In unserem ersten Beispiel
bitten wir das Modell um Informationen zu »Was ist LangChain?«. Das Ergebnis wird
in einem Objekt gespeichert. Das Ergebnis ist ein Objekt des Typs AIMessage. Wir kon-
nen herausfinden, welche Informationen wir vom Modellaufruf erhalten haben,
indem wir uns die Ausgabe seiner model dump()-Methode anschauen. Die Modellaus-
fuhrung und das erzeugte Ergebnis sehen Sie in Listing 10.2:

res = model.invoke("What is a LangChain?")
res.model dump()
{"'content': 'LangChain is ...",
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'additional kwargs': {'refusal’': None},
‘response_metadata': {'token usage': {'completion tokens': 290,
"prompt_tokens': 13,
"total_tokens': 303,
"completion_tokens details': {'accepted prediction tokens': 0,
'audio_tokens': 0,
'reasoning_tokens': 0,
'‘rejected prediction_tokens': 0},
"prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}},
'model_name': 'gpt-40-mini-2024-07-18',
'system fingerprint': 'fp 560af6e559",
'id"': 'chatcmpl-C50A3wS5xLKygiq66IWHdOWbFigRC',
'service tier': 'default’,
'finish_reason': 'stop’,
"logprobs': None},
type': 'ai',
name': None,
'id': 'run--95a59d13-84a9-4d1b-838a-38fa7b8b0d92-0",

example': False,

tool calls': [],

invalid_tool calls': [],

usage_metadata': {'input_tokens': 13,

‘output_tokens': 290,

"total_tokens': 303,

'input_token details': {'audio': 0, 'cache read': 0},
'output_token details': {'audio': 0, 'reasoning': 0}}}

Listing 10.2 OpenAl-Nutzung

Es gibt eine Menge Informationen, die vom Modell zuriickkommen. Lassen Sie uns
mit dem Wichtigsten anfangen: dem Inhalt content. Diese Eigenschaft enthalt den
tatsachlichen Modellausgabe-Prompt. Von den anderen Eigenschaften mochte ich
nur die response _metadata erwdhnen. Diese enthdlt Informationen zur Token-Nut-
zung. Sie werden fiir Eingabe-Tokens und Ausgabe-Tokens zur Kasse gebeten. Hier
konnen Sie sehen, wie viele Tokens in der Anfrage verwendet wurden.

Sie konnen sich mit den verschiedenen Modellen aus der Modellfamilie von OpenAl
vertraut machen, indem Sie die Modelliibersicht studieren, die Sie unter https://plat-
form.openai.com/docs/models/overview finden. Einige wichtige Funktionen sind un-
ten im Kasten aufgefiihrt.

Sie sind natiirlich nicht auf die OpenAI-Modellfamilie beschrankt. Sie konnen mit vie-
len anderen LLMs arbeiten. Jetzt werden Sie entdecken, wie man mit Open-Source-
LLMs arbeitet, die Sie kostenlos tiber Groq ausfithren konnen.
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Die OpenAl-Modellfamilie

OpenAl hat eine Modellfamilie (https://platform.openai.com/docs/models) geschaf-

fen, die aus mehreren Modellen besteht, die fiir verschiedene Aufgaben geeignet

sind:

» Sprachmodelle wie die GPT-Familie (z. B. GPT-5) konnen Text verarbeiten und er-
zeugen, und einige von ihnen kénnen auch Bilder erzeugen.

» Text-zu-Bild-Generierung: GPT Image 1 und DALL-E 3 sind Modelle, die Bilder ge-
nerieren und bearbeiten kénnen.

» Text-zu-Sprache (TTS): Mehrere Modelle (wie z. B. GPT-40 mini TTS) konnen Text
in natiirliche, gesprochene Audios umwandeln.

> Realtime-Modelle: Mit Realtime-Modellen kénnen Sie Text und Audio-Ein- und
-Ausgaben in Echtzeit erstellen.

» Text-Embeddings: Embeddings sind numerische Darstellungen von Text. Solche
Embeddings sind das Fundament der Verarbeitung natirlicher Sprache.

10.1.2 Coding: Nutzung von Groq

Groq ist ein Unternehmen, das KI-Hardware entwickelt, die schnelle Inferenz ermog-
licht. Fur Entwickler bietet Groq Zugang zu LLMs, insbesondere zu Open-Source-
LLMs. Sie konnen den Service kostenlos nutzen, mussen sich aber mit einem API-
Schliissel authentifizieren. Der erste Schritt ist also, zu https://console.groq.com/ zu
gehen, ein Konto einzurichten und einen API-Schliissel zu erstellen, den Sie in IThrem
Code verwenden konnen.

Bitte kopieren Sie diesen API-Schliissel und speichern Sie ihn in einer Datei namens
.env im Arbeitsordner. Der Inhalt der Datei sollte so aussehen:

GROQ_API KEY = gsk ...

Listing 10.3 Ausschnitt aus der ».env«-Datei

Das Skript, das Sie unter 100 _LLM/20_model _chat_groq.py finden, beginnt damit, die
relevanten Pakete zu laden. Das Hauptpaket ist langchain grog-esist die Schnittstel-
le, um die Modelle aus der Grog-Modellfamilie zu verwenden. Die Pakete os und
dotenv werden verwendet, um Umgebungsvariablen einzurichten und abzurufen, die
den Grog-API-Schlissel enthalten.

#%% packages

import os

from langchain groq import ChatCroq
from dotenv import load dotenv

load dotenv('.env')
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Wir missen nun ein Modell auswiahlen. Details zu spezifischen Modellen finden Sie
in der Ubersicht Gber Grog-Modelle unter https://console.groq.com/docs/models.

Hier wahlen wir jetzt ein Modell aus der Llama-Familie. Das ist ein Open-Source-
Modell, genauer gesagt ein Open-Weight-Modell. Das bedeutet: Das Modell wird der
Offentlichkeit zur kostenlosen Nutzung zur Verfugung gestellt, allerdings sind nicht
alle Details zu den verwendeten Datensatzen und dem Trainingsprozess offentlich
zugianglich.

Nachdem wir uns fiir ein Modell entschieden haben, konnen wir eine Instanz der
ChatGrog-Klasse erstellen. Bei dieser Instanziierung tibergeben wir den Namen des
Modells als Parameter. Wir miissen auch den API-Schliissel ibergeben, den wir zuvor
erstellt haben. Diese beiden Parameter sind Pflicht. Unter vielen anderen verfliigbaren
Parametern setzen wir nur den Temperaturparameter, der die Kreativitdt des Modells
steuert. (Mehr Uber die Modellparameter erfahren Sie in Abschnitt 10.2.) Damit haben
wir alles bereit, um mit dem LLM zu interagieren:

MODEL NAME = 'Ilama-3.3-70b-versatile’

model = ChatGroq(model name=MODEL NAME,
temperature=0.5,
api_key=os.getenv('GROQ API KEY'))

Wir fragen das Modell »What is a Huggingface?« iber die invoke()-Methode:

# %% Run the model
res = model.invoke("What is a Huggingface?")

Mit der in Listing 10.4 gezeigten model dump()-Methode bekommen wir einen Uber-
blick tiber die Ausgabe des Modells:

# %% find out what is in the result
res.model dump()
{"'content': 'Hugging Face is a popular open-source library and platform for
natural language processing (NLP) and machine learning (ML) ...',
'additional_kwargs': {},
'response_metadata': {'token usage': {'completion tokens': 314,
"prompt_tokens': 42,
"total_tokens': 356,
"completion_time': 1.032163328,
"prompt_time': 0.010863083,
'queue_time': 0.085254578,
"total time': 1.043026411},
'model _name': 'llama-3.3-70b-versatile’,
'system fingerprint': 'fp_2ddfbbodao’,
'service tier': 'on_demand’,
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'finish_reason': 'stop’,

"logprobs': None},

"type': 'ai',

"name’: None,

'id': 'run--982093cc-280a-49cc-9568-a9c9e6d37943-0",
"example': False,

"tool calls': [],

'invalid_tool _calls': [],
'usage_metadata': {'input_tokens': 42,
'output_tokens': 314,

"total_tokens': 356}}

Listing 10.4 Grog-Modellausfiihrung und -ergebnis

Der wichtigste Output hier ist wieder der Inhalt. Typischerweise greifen wir auf ihn
direkt Uiber seine Eigenschaft zu:

# %% only print content

print(res.content)

Hugging Face is a popular open-source library and platform for natural language
processing (NLP) and machine learning (ML) tasks. It was founded in 2016 by
Julien Chaumond, Clement Delangue, and Thomas Wolf. Hugging Face is known for its
Transformers library, which provides pre-trained models and a simple interface
for using and fine-tuning transformer-based models for various NLP tasks, such as
text classification, language translation, question answering, and more.

Listing 10.5 Grog-Modellergebnis — nur der Inhalt
(Quelle: 03_LLMs/10_model_chat_groq.py)

Wir haben erfolgreich ein Modell von Groq aufgerufen. Lassen Sie uns jetzt anschau-
en, wo wir mehr Informationen zu den verfiigbaren Modellen finden konnen.

Grog-Modell-Ubersicht

Sie kdnnen alle von Groq bereitgestellten Modelle unter https://console.groq.com/
docs/models finden.

Fir jedes Modell sind die Informationen zur Modell-ID angegeben. Das ist der String,
den Sie in Inrem Skript verwenden miissen. AuBerdem wird der Entwickler angezeigt
sowie ein begrenzender Faktor. Bei LLMs ist das das Kontextfenster, und die maximale
Anzahl an Tokens wird ebenfalls angezeigt. Mehr dazu finden Sie im nachsten Info-
kasten. Wenn Sie tiefer in das Modell eintauchen mochten, konnen Sie sich die
Modellkarte anschauen und werden zur Entwicklerseite des Modells weitergeleitet.

319


https://console.groq.com/docs/models
https://console.groq.com/docs/models

10 Sprachmodelle

Eine Besonderheit sind die Whisper-Modelle, die ein Sprach-zu-Text-Modell bereit-
stellen. Das bedeutet, Sie konnen eine MP3-Datei (bis zu einer bestimmten GréRe)
hochladen und erhalten die dazugehdrige Transkription.

Die meisten verfuigbaren Modelle sind LLMs. Sie sind alle Open-Source- oder Open-
Weight-Modelle.

Prominente Modelle hier sind die Mitglieder der Llama-Familie (von Meta), Gemma-
Modelle (von Google), DeepSeek-Modelle, Kimi (von Moonshot Al) oder Qwen (von Ali-
baba).

Im Modelliiberblick haben Sie vielleicht das Kontextfenster als einen der wichtigsten
Parameter gesehen. Deshalb lege ich in dem folgenden Infokasten den Fokus auf die-
sen Parameter.

Kontextfenster

Der Kontextfenster bezieht sich auf die maximale Anzahl von Eingabe-Tokens, die ein
Modell auf einmal verarbeiten kann. Das ist ein wichtiger Aspekt, denn die Fahigkeit
des Modells, relevante Ausgaben zu generieren, hangt davon ab, welche Informatio-
nen es in einem einzigen Prompt behalten und nutzen kann. Jedes LLM hat eine feste
Grenze, wie viele Tokens es gleichzeitig in seinem Kontextfenster verarbeiten kann.

Was ist aber ein Token genau? Ein LLM zerlegt den Eingabetext in kleinere Einheiten,
die Tokens genannt werden. So ein Token kann ein Wort sein, nurein Teil eines Wortes
oder sogar nur ein Satzzeichen. Beispiel: Der Satz »Sprachmodelle sind sehr leistungs-
fahig.« wird in die Token Sp, rach, model, le, sind, sehr, leistungs, fdhig und . unterteilt.

Ein grofRes Kontextfenster ermoglicht es dem Modell, mehr Informationen zu verar-
beiten, was seine Fahigkeit verbessert, langere Texte zu verstehen oder sich lange
Gesprache zu »merken«. Wenn die GroRe des Kontextfensters zunimmt, steigen aber
auch die bendtigten Rechenressourcen, um den Text zu verarbeiten. AuBerdem
erhoht sich die Latenz des Modells — das heiBt, es dauert langer, bis das Modell eine
Antwort liefert.

Wenn das Kontextfenster tiberschritten wird, »vergisst« das Modell entweder altere
Tokens oder der LLM-Aufruf kann sogar nicht verarbeitet werden. Das hangt von der
Implementierung des Pakets ab.

10.1.3 Multimodale Modelle

In diesem Kapitel werden wir hauptsachlich mit Texteingaben und -ausgaben arbei-
ten und traditionelle grofie Sprachmodelle verwenden. Aber die Nachfrage nach
Modellen, die komplexere und vielfiltigere Informationsformen verstehen und mit
ihnen interagieren konnen, ist gestiegen. Deshalb wurden multimodale Modelle ent-
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wickelt. Diese Modelle sind darauftrainiert, mehrere Arten oder Modalitaten von Ein-
gabe- und Ausgabeformaten zu verstehen und zu generieren. Modalitdten sind typi-
scherweise neben Text auch Bilder, Audio und Video.

Im Gegensatz zu traditionellen LLMs, die in einer einzigen Modalitdt (Text) arbeiten,
konnen diese multimodalen Modelle Informationen in verschiedenen Formaten ver-
arbeiten. Dafiir kombinieren sie Fortschritte in der Verarbeitung natiirlicher Sprache
(NLP, Natural Language Processing) mit Innovationen in der Computer-Vision und
der Audioverarbeitung.

Dadurch konnen diese Modelle

» Bilder in Textform analysieren und beschreiben,

» Bilder basierend auf Textbeschreibungen generieren,

» Audiobeitrage transkribieren und

» Audiobeitrage interpretieren und darauf basierende Antworten geben.

Lassen Sie uns ein paar multimodale Modelle verwenden, damit Sie lernen, wie man
mit ihnen arbeitet.

10.1.4 Coding: Multimodale Modelle

Wir wollen herausfinden, wie wir ein Bild als Eingabe fiir ein Modell verwenden kon-
nen. Dann werden wir mit dem LLM interagieren, um herauszufinden, ob es versteht,
was es im Bild »sieht«.

Abbildung 10.2 stellt ein Flussdiagramm dar, das den Prozess des Trainings eines tie-
fen neuronalen Netzwerks beschreibt, und wir werden dieses Bild an das multimoda-
le Modell weitergeben.

Vortrainiertes Instruction Safety
Modell Model Model

yfoo—'oa — il

‘ Hochwertige = spiegelt menschl. Benchmarks

Modellausgaben + Préferenzen wieder angewandt

Daten Evaluierung

Abbildung 10.2 Trainingsprozess eines Deep-Learning-Netzwerks

321



10 Sprachmodelle

Sie finden den Code filir dieses Skript unter 100 _LLM\30 multimodal py. Er basiert
hauptséchlich auf der Dokumentation von Groq (https://console.groq.com/docs/vision).

In Listing 10.6 beginnen wir mit dem Import der benotigten Pakete:

#%% packages

from grog import Grogq

from dotenv import load dotenv, find dotenv
load dotenv(find dotenv(usecwd=True))
import base64

Listing 10.6 Multimodales Modell —erforderliche Pakete

Esist eine gute Praxis, die Konstanten am Anfang des Skripts zu definieren. Hier legen
wir fest, welches Modell wir wiahlen, wo sich das Bild befindet und was die Eingabe des
Nutzers ist:

MODEL = "meta-llama/llama-4-maverick-17b-128e-instruct”
IMAGE_PATH = "TrainingProcess.png"

USER _PROMPT = "What is shown in this image?

Answer in a paragraph and in German."

Da wir mit einem lokalen Bild arbeiten und es an die API von Groq gesendet werden
muss, muss das Bild geladen und in ein Format umgewandelt werden, damit es als
Text-String gesendet werden kann. Fur diese Funktionalitat definieren wir in Listing
10.7 eine Funktion namens encode _image. Sie 1ddt das Bild und wandelt es direkt in das
baseb4-Format um. (Base64 ist ein Bindr-zu-Text-Codierungsverfahren, das binare
Daten in ein ASCII-String-Format umwandelt.)

#%% Function to encode the image
def encode_image(image path):
with open(image path, "rb") as image file:
return base64.b6dencode(image file.read()).decode('utf-8")

base64 image = encode image(IMAGE PATH)

Listing 10.7 Multimodales Modell — Funktion zur Codierung des Bildes

Jetzt konnen wir eine Grog-Instanz einrichten. Das ist die native Implementierung des
grog-Pakets, also hat die Chat-Anfrage ein anderes Format im Vergleich zur
LangChain-Interaktion mit Modellen. Aber Sie konnen viele Elemente erkennen, wie
zum Beispiel die Nachrichten. Im messages-Objekt definieren wir eine Benutzer-Nach-
richt. Darin ibergeben wir ein Dictionary mit Textinhalt — dem Benutzer-Prompt
sowie dem Bildinhalt — dem Bild, mit dem wir interagieren wollen:
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#%% Getting the base64 string
client = Groq()

chat_completion = client.chat.completions.create(

messages=|
{
"role": "user",
"content": [
{"type": "text", "text": USER_PROMPT},
{

“type": "image url",
"image url": {
"url": f"data:image/jpeg;base64,{base64 image}",
}
}
B

1,
model=MODEL,

)

Wir haben eine Antwort im Objekt chat _completion erhalten, die wir auf dem Bild-
schirm ausgeben konnen:

#%% analyze the output

print(chat_completion.choices[0].message.content)

Das Bild zeigt einen Prozess zur Entwicklung eines Modells, das auf
kiinstlicher Intelligenz basiert. Der Prozess beginnt mit der Datensammlung,
die in Form von drei USB-Sticks dargestellt wird, und fiihrt iiber verschiedene
Stufen wie Pre-Trained Model, Instruction Model und Safety Model schlieRlich
zur Evaluation. Jeder Schritt wird durch eine Zahnradgrafik symbolisiert, die
die Verarbeitung und Verfeinerung des Modells darstellt.

Listing 10.8 Multimodales Modell — Modellantwort
Das Modell kann wertvolle Antworten liefern. Es versteht, was es sieht. Versuchen Sie

doch, die Benutzeranfrage zu dandern, um zu Uberpriifen, ob das Modell detailliertere
Fragen zum Bild beantworten kann.

10.1.5 Coding: Lokales Betreiben von LLMs

Bisher haben wir grofie Sprachmodelle iiber API-Aufrufe von Software-as-a-Service-
(SaaS-)Anbietern genutzt. Manchmal méchten Sie ein Modell jedoch lokal ausfiihren.
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Das kann notwendig sein, wenn die Privatsphare wichtig ist und Sie es vermeiden
mochten, vertrauliche Informationen tiber das Internet zu tbertragen.

In solchen Fillen konnen Sie ein Modell auf IThrem lokalen Computer betreiben. Ide-
alerweise haben Sie hierfiir eine leistungsstarke GPU, die ein ordentlich grofies
Modell ausfithren kann. Aber auch ein kleines Modell kann auf Ihrer CPU laufen.

Eine leistungsstarke Plattform, die diesen Prozess sehr einfach macht, ist Ollama. Mit
Ollama konnen Sie ein LLM auf IThrem Laptop oder Desktop-Rechner betreiben, ohne
dass Sie eine Internetverbindung benoétigen.

Ein alternativer Anbieter ist LM Studio (https://Imstudio.ai/).

Die lokale Nutzung von Sprachmodellen bietet Privatsphare und volle Kontrolle,
indem sie es Ihnen ermaoglicht, direkt auf Ihrer eigenen Hardware mit einem LLM zu
interagieren.

Zunachst missen Sie die Ollama-Software lokal auf Threm Rechner installieren. Dafiir
besuchen Sie, wie in Abbildung 10.3 gezeigt, bitte https://ollama.com/.

2=
)

Cloud models are now available in Ollama

Chat & build with
open models

Available for macOS,
‘Windows, and Linux

Abbildung 10.3 Download der Ollama-Software

Hier konnen Sie die Software herunterladen, die zu Ihrem Betriebssystem passt. Sie
wird von Ollama fiir macOS, Linux und Windows angeboten.

Nachdem Sie das gemacht haben, miissen Sie herausfinden, welches Modell fiir Thre
Hardware und Projektanforderungen geeignet ist. Auf https://ollama.com/library fin-
den Sie eine Liste der verfiigbaren Modelle.

In diesem Abschnitt werden wir mit gemma3 arbeiten. Abbildung 10.4 zeigt die gemma3-
Modellklasse.
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gemma3 ollama run gemma3

&, 12.4M Downloads (9 Updated 3 days ago

The current, most capable model that runs on a single GPU.

vision 270m 1b 4b 12b 27b

Models View all —
Name Size Context Input
gemma3:latest 3.3GB 128K Text, Image
gemma3:270m ) 202MB 32K Text
gemma3:1b 815MB 32K Text
gemma3:4b 3.3GB 128K Text, Image
gemma3:12b 8.1GB 128K Text, Image
gemma3:27b 17GB 128K Text, Image

Abbildung 10.4 Ollama — die verwendete Modellklasse »gemma3«

gemma3 wird von Google bereitgestellt. Es ist ein Modell mit relativ wenigen Modell-
parametern, das aber dennoch sehr leistungsstark ist. Es gibt mehrere verschiedene
Varianten: von einem winzigen 270m- bis hin zu einem grof3en 27b-Modell. Die Zah-
len und Buchstaben beziehen sich auf die Anzahl der Parameter. das heif3t, 270m steht
fiir 270 Millionen Parameter bzw. 27b flir 27 Milliarden (engl. billons) Parameter. Wenn
Sie auf den Namen des Modells klicken, finden Sie weitere Informationen, z. B. die
Dateigrofie und den tatsachlichen Namen des Modells.

Eine Besonderheit bei dieser Modellklasse ist, dass sie auch multimodal sein kann.
Werfen Sie hierzu einen Blick auf die letzte Spalte. Dort wird ersichtlich, dass Modelle
ab 4b sowohl Texte als auch Bilder verarbeiten konnen.

Wir werden nun das Modell mit dem Namen gemma3:4b verwenden.

Listing 10.9 zeigt, wie Sie ein Modell herunterladen konnen, indem Sie es tiber Ollama
abrufen. Bitte fithren Sie in Threm Terminal Folgendes aus:

ollama pull gemma3:4b

pulling manifest

pulling aeda25e63ebd: 100% ([ 3-3 cB
pulling e0a42594d802: 100% | 358 B
pulling ddosac7d92a3: 100% (N s-2 «8
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pulling 3116c5225075: 100% || 77 8

pulling b6aes839783f: 100% | 239 B
verifying sha256 digest

writing manifest
success

Listing 10.9 Ollama — Modelldownload

Das Modell wurde aufThre Festplatte heruntergeladen und ist jetzt verfiigbar. Sie kon-
nen das Uberprifen mit:

ollama list
NAME ID SIZE MODIFIED
gemma3:4b a2af6cc3eb7f 3.3 GB 2 minutes ago

Der letzte Schritt auf Betriebssystemebene ist, das Python-Paket langchain-ollama
hinzuzufiigen. Sie konnen es tiber

uv add langchain-ollama

hinzufiigen oder mittels pip:

pip install langchain-ollama

Damit sind die Vorbereitungen abgeschlossen. Jetzt konnen wir direkt aus einem
Python-Skript mit dem lokalen Modell interagieren.

In unserem Python-Skript, das Sie unter 100 LLMs\40 ollama.py finden, miissen
zuerst die Pakete importiert werden. Wir werden wie im vorherigen Abschnitt das
Modell multimodal nutzen und benotigen das Paket base64 fuir die Codierung des Bil-
des. Auf das Modell wird uber ChatOllama zugegriffen. Die Nutzeranfrage wird als
HumanMessage iibergeben (mehr zu Messages folgt in Abschnitt 10.4).

import base64
from langchain ollama import ChatOllama
from langchain core.messages import HumanMessage

Nun definieren wir zunachst einige Variablen, auf die wir spater zugreifen werden.
Der Modellname MODEL NAME bezieht sich auf gemma3. Die eigentliche Anfrage
besteht aus einer Frage im USER_PROMPT sowie aus dem Bild, das wir mit seinem Pfad
IMAGE_PATH Uibergeben:

MODEL NAME = "gemma3:4b"

USER PROMPT = "Was zeigt dieses Bild?
Antworte in einem Absatz und auf Deutsch."
IMAGE _PATH = "TrainingProcess.png"
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Das Bild kann nicht als Pfad iibergeben werden, sondern muss mit base64 codiert wer-
den. Dafiir benutzen wir die Hilfsfunktion encode image, der wir den Pfad zum Bild
ubergeben und von der wir das codierte Bild zurtickerhalten:

def encode image(image path: str) -> str:
with open(image path, "rb") as image file:
return base64.b6dencode(image file.read()).decode("utf-8")

base64 image = encode image(IMAGE PATH)

Listing 10.10 Ollama — Bildcodierung

Die Interaktion mit dem Modell geschieht tiber eine Modellinstanz model, die wir mit
ChatOllama erstellen:

model = ChatOllama(model=MODEL NAME, temperature=0.2)

Die Anfrage, die aus einem Text und einem Bild besteht, muss iiber ein Message-
Objekt tibergeben werden. Das Objekt erstellen wir mit HumanMessage und es besteht
aus dem Text sowie dem Bild:

message = HumanMessage(
content=[
{"type": "text", "text": USER_PROMPT},
{"type": "image url", "image url": f"data:image/png;base64,{base6s
image}"},
]
)

Listing 10.11 Ollama — Message-Objekt

Es ist alles vorbereitet, sodass wir jetzt die Daten an das Modell ibergeben konnen.
Dazu verwenden wir wieder invoke:

res = model.invoke([message])

Das Schone an den Modellintegrationen tiber LangChain ist, dass sie alle dem glei-
chen Schema folgen. Auf die Modellantwort konnen wir daher wie in vorherigen
Abschnitten uber die Eigenschaft content zugreifen:

res.content

'‘Das Bild stellt einen Prozess zur Bewertung von Sprachmodellen dar. Es
beginnt mit den Daten, die in ein vortrainiertes Modell eingespeist werden.
Dieses Modell erzeugt dann hochwertige Ausgaben, die auf menschliche
Praferenzen abgestimmt sind. AbschlieBend werden diese Ausgaben anhand von
Benchmarks bewertet, um die Qualitdt und Angemessenheit des Modells zu

327



10 Sprachmodelle

beurteilen. Es handelt sich um einen iterativen Prozess, der darauf abzielt,
Modelle zu entwickeln, die nicht nur technisch leistungsfahig, sondern auch
den menschlichen Werten und Erwartungen entsprechen.'’

Istdas nicht grof3artig? Sie konnen ein LLM verwenden, sogar mit vertraulichen Infor-
mationen, ohne irgendwelche Daten iber das Internet preiszugeben.

Fragen Sie sich nun auch, wie Sie das Verhalten des Modells steuern, ja sogar finetu-
nen konnen? Dazu miissen Sie sich zundchst mit den Grundlagen und der Theorie
befassen. Im folgenden Abschnitt werden Sie die wichtigsten Modellparameter ken-
nenlernen.

10.2 Modellparameter

Es gibt einige sehr wichtige Parameter, die Sie anpassen konnen, um die Ausgaben zu
steuern, die ein Modell erzeugt. Parameter wie Temperatur, Top-p und Top-k spielen
eine wichtige Rolle, und mit ihrer Hilfe kénnen Sie die Kreativitat, Zufalligkeit und
den Fokus der erzeugten Ausgaben steuern.

Modelltemperatur

Mit der Modelltemperatur konnen Sie die Zufalligkeit der Ergebnisse steuern. Typi-
sche Werte sind O (niedrige Temperatur) und 1 oder sogar dartiber (hohe Temperatur):

» Niedrige Temperaturen halten das Modell sehr fokussiert: Sie bekommen eher
deterministische Ergebnisse, was bedeutet, dass Sie immer wieder die gleiche Ant-
wort erhalten. Das Modell bevorzugt extrem wahrscheinliche Tokens.

» Hohe Temperaturen hingegen erhohen die Zufilligkeit bei der Token-Auswahl. Es
wird eine breitere Verteilung von Tokens ausgewahlt, was kreativere oder uner-
wartete Ausgaben ermoglicht. Temperaturen sollten normalerweise den Wert 1
nicht tberschreiten, da dies zu chaotischen und inkohdrenten Ausgaben flihren
kann.

Lassen Sie mich das an einem Beispiel verdeutlichen: Stellen Sie sich vor, Sie besitzen
eine Eisdiele. Wenn die (Umgebungs-)Temperatur niedrig ist, kommen weniger Kun-
den, und es konnte eine bessere Geschiftsentscheidung sein, nur die beliebtesten
Sorten anzubieten (siehe Abbildung 10.5). Aber wenn die Temperatur steigt, steigt die
Nachfrage, und es ist eine gute Entscheidung, auch exotischere Sorten anzubieten.

Die Temperatur ist direkt mit der Wahrscheinlichkeitsverteilung der Tokens verbun-
den. Lassen Sie mich erklaren, wie die Temperatur die Wahrscheinlichkeitsverteilung
anhand eines kiinstlichen Beispiels beeinflusst.
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fokussiert kreativ
deterministisch unterschiedlich
0 1
low Temperature high

Analogie: Eiscreme-Shop

nur populare auch exotische
Geschmacker

Geschmacker

Temperature high

Abbildung 10.5 Modellparameter — Temperatur am Beispiel einer Eisdiele erklart

Sie haben den Prompt »Bert mag <MASK>.«, und das Modell hat die Aufgabe, das feh-
lende Wort auszufiillen. Es gibt eine riesige Anzahl moglicher Worter. Zur Vereinfa-
chung verwenden und zeigen wir nur drei Worter: »lesen«, »laufen« und »program-
mierenc.

Das Modell hat eine zugrunde liegende Wahrscheinlichkeit fiir diese Worter, die auf sei-
nen Trainingsdaten basiert. Bei sehr niedrigen Temperaturen verstarkt das Modell die
Unterschiede zwischen den Wahrscheinlichkeiten. Bei sehr hohen Temperaturen ver-
schwinden diese Unterschiede und alle Worter haben die gleiche Wahrscheinlichkeit.

Abbildung 10.6 zeigt die Beispiel-Wahrscheinlichkeitsverteilungen fiir eine gegebene
Benutzeranfrage und verschiedene Temperaturwerte.

T=01 T=05 T=20

p(x)
0.50

p(x)

050 programmieren 0.50

programmieren .
lesen laufen programmieren

0.25 0.25

lesen
laufen
laufen

0.00 0.00

extrem hohe
Temperatur

niedrige Temperatur mittlere Temperatur

Abbildung 10.6 Modellparameter — Temperatur und Wahrscheinlichkeitsverteilung

Niedrige Temperaturen von zum Beispiel 0.1 sind im Diagramm auf der linken Seite
dargestellt. Das mittlere Diagramm zeigt den Einfluss einer mittleren Temperatur auf
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die Wahrscheinlichkeitsverteilung, wihrend das Diagramm auf der rechten Seite eine
extrem hohe Temperatur darstellt.

Konnen Sie sehen, wie die Unterschiede mit steigender Temperatur kleiner werden?
Genau das bewirkt dieser Parameter. Jetzt schauen wir uns zwei weitere Parameter an,
die zusammen mit der Temperatur wirken: Top-p und Top-k.

Top-p und Top-k

Top-p (auch Nucleus Sampling genannt) steuert die Wahrscheinlichkeit, das nachste
Token zu berticksichtigen. Das geschieht, indem die Anzahl der moglichen Tokens,
aus denen das Modell wahlen kann, dynamisch angepasst wird. Nehmen wir ein Bei-
spiel mit top-p = 0.9. In diesem Fall berticksichtigt das Modell eine kumulierte Wahr-
scheinlichkeit von Tokens, die sich auf 90 % summiert, und wiahlt die kleinste Menge
von Tokens innerhalb dieser Grenzen.

Dieser Ansatz balanciert deterministische und kreative Ausgaben. Wenn Sie top-p =1
einstellen, gibt es keine Filterung und effektiv werden alle moglichen Tokens bertick-
sichtigt. Wenn Sie einen kleinen Wert wie top-p < 0.5 definieren, tendieren die Ausga-
ben des Modells dazu, fokussierter und vorhersehbarer zu sein, da nur die besten
Tokens berticksichtigt werden.

Das Top-k Sampling steuert, wie viele der wahrscheinlichsten Tokens berticksichtigt
werden, wenn das nachste Wort generiert wird. Wenn ein Wert von top-k = 1 gewahlt
wird, wird nur das wahrscheinlichste Token ausgewahlt.

So erhalten Sie ein vollig deterministisches Ergebnis. Wenn top-k = 50 ist, sampelt das
Modell aus den 50 wahrscheinlichsten Tokens flr jeden Schritt. Das erhoht die Viel-
falt und ermoglicht kreativere und abwechslungsreichere Ausgaben. Top-k legt eine
feste Anzahl von Tokens fest, aus denen gewdhlt werden kann, unabhéngig von der
kumulierten Wahrscheinlichkeit, die durch die Top-k-Tokens dargestellt wird.

Abbildung 10.7 zeigt ein Beispiel fiir Top-p- und Top-k-Parameter.

Am Abend méchte ich mirein(en) __ ansehen.
Token Film Spiel Restaurant Arzt
Wahrschein- g 03 o 0.01
lichkeit l |
I
Topp=0.9 0.8
Topk=3 Film Spiel Restaurant

Abbildung 10.7 Modellparameter — Top-p- und Top-k-Parameter
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Der Beispielbenutzer-Prompt lautet: »Am Abend mochte ich mir ein(en) <MASK>
ansehen«, wobei die Liicke (oder <MASK>) ausgefiillt werden soll. Es gibt wieder meh-
rere moglichen Tokens.

Basierend auf einer bestimmten Temperatur konnen die Wahrscheinlichkeiten die-
ser Tokens berechnet werden. Die Tokens werden in absteigender Reihenfolge darge-
stellt. Alle Wahrscheinlichkeiten, die zusammen weniger als Top-p ergeben, werden
berticksichtigt. In diesem Fall haben »Film« und »Spiel« eine Wahrscheinlichkeit von
80 %. Wenn das nachste Token »Restaurant« hinzugefiigt wird, wirde die aggregierte
Wahrscheinlichkeit 91 % betragen und damit iiber dem Top-p-Wert liegen.

Top-k ist in diesem Beispiel einfach zu verstehen. Hier ist Top-k auf 3 gesetzt, sodass
die drei wahrscheinlichsten Tokens ausgewahlt werden, aus denen die endgiiltige
Vorhersage zufillig gewahlt wird.

Empfehlungen

Das Gleichgewicht zwischen diesen Parametern hangt vom jeweiligen Einsatzgebiet
oder der zu lésenden Aufgabe ab:

» Beim kreativen Schreiben sollten Sie eine hohere Temperatur (0,8 bis 1,0) wahlen,
kombiniert mit einem moderaten Top-p (0,9 bis 1,0) und Top-k (50 bis 100), um
eine Vielzahl kreativer Ausgaben zu erkunden.

» Bei der Code-Generierung mochten Sie eher zuverldssige Code-Schnipsel erhalten
und wahlen daher eine niedrige Temperatur (0,1 bis 0,3) mit kleinem Top-k (10 bis
20) und Top-p (0,7 bis 0,9), um syntaktisch korrekte Ausgaben sicherzustellen.

» Im Kundenservice oder bei Chatbot-Anwendungen muss die Modellausgabe
zuverladssig, fokussiert und konsistent sein. Eine niedrige Temperatur von 0,2 bis
0,4 sorgt flir vorhersehbare Antworten. Ein Top-p von 0,7 bis 0,9 ermdoglicht es
dem Modell, sehr wahrscheinliche Tokens auszuwéahlen, behilt aber etwas Flexibi-
litat, um die Interaktion natiirlich zu gestalten. Sie mochten ja robotermafiige Ant-
worten vermeiden. Top-k kann im Bereich von 20 bis 50 liegen; damit bleibt das
Modell auf relevante Antworten fokussiert.

In diesem Abschnitt haben Sie gesehen, iiber welche Parameter die Modellantwort
beeinflusst werden kann. Schauen wir uns nun an, auf welche Parameter wir achten
sollten, um das richtige Modell auszuwahlen.

10.3 Modellauswahl

Im vorherigen Abschnitt haben wir unsere ersten Interaktionen mit verschiedenen
LLMs gemacht, und in 10.1 hatte Thnen eine Auswahl der Modelle vorgestellt. Nun fra-
gen Sie sich vielleicht, wie Sie das »richtige« Modell fiir Ihre Aufgabe auswéahlen sollten.
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Je nach Threm Projekt gibt es harte und weiche Kriterien, die zu berticksichtigen sind:

» Wenn Sie lange Eingabeaufforderungen verarbeiten mochten, ist das Kontextfens-
ter (siehe den Infokasten in Abschnitt 10.1.2, »Coding: Nutzung von Groq«) ein ent-
scheidender Faktor.

» Wenn Sie mit einem Modell interagieren mochten, das aktuelle Entwicklungen
und Trends beruicksichtigt, konnte das Modell-Cutoff-Date extrem wichtig sein.

> Weitere wichtige Parameter sind die Kosten, die Latenz und die Leistung.

Lassen Sie uns die Leistung des Modells betrachten und einen genaueren Blick darauf
werfen.

10.3.1 Leistungsfahigkeit

Sie konnen die Leistung verschiedener Modelle in der LMArena (https://Imarena.ai/?
leaderboard) Gberpriifen. Sie erhalten dann ein Ergebnis, das so wie in Abbildung 10.8

aussieht.

Leaderboard Overview

See how leading models stack up across text, image, vision, and beyond. This page gives you a snapshot of

each Arena, you can explore deeper insights in their dedicated tabs. Learn more about it here.
& Text View > B8 WebDev (® 14 days ago
Rank (UB) + Model 11 Score 1 Votes 1l Rank (UB) + Model 1l Score 1 Votes 1
1 @ gpt-5-high 1463 6,548 1 @ GPT-5 (high) 1482 3,651
1 G gemini-2.5-pro 1457 28,986 2 A\ Claude Opus 4.1 (20250805) 1428 1,402
1 A\ claude-opus-4-1-20250805 1447 6,324 2 G Gemini-2.5-Pro 1405 7,085
2 & 03-2025-04-16 1449 34,948 3 @ DeepSeek-R1-0528 1391 4,650
3 @ chatgpt-4o-latest-20250326 144 32,684 4 A\ Claude Opus 4 (20250514) 1382 9,004
4 @ gpt-4.5-preview-2025-02-27 1438 15,271 5 # GLM-4.5 1363 1,256
S @ gpt-5-chat 1427 3,809 6 % Qwen3-Coder 1363 6,408
6 ¥ grok-4-0709 1430 14,609 6 A\ Claude Sonnet 4 (20250514) 1359 8178
[ V% qwen3-235b-a22b-instruct-2507 1426 6,984 6 A\ Claude 3.7 Sonnet (20250218) 1358 7,460
7 & kimi-k2-0711-preview 1421 13,889 6 Z GLM-4.5-Air 1354 1178

View all View all

Abbildung 10.8 Das »LMArena Leaderboard« (Snapshot vom 18. August 2025, Quelle:
https://Imarena.ai/leaderboard)
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10.3 Modellauswahl

Die Modelle sind nach dem Arena-Score sortiert. Aber wie wird dieser Arena-Score
bewertet? Er heiflt nicht umsonst »Arena« (https://Imarena.ai/): In der Arena inter-
agiert der Nutzer mit zwei Modellen — Modell A und Modell B.

Der Nutzer kann einen Prompt definieren und erhilt die Antworten von den beiden
Modellen, die er dann bewerten muss, um herauszufinden, welches Modell besser
abschneidet. So haben wir ein doppelblindes Testsetting, das als Goldstandard in der
Bewertung von Testergebnissen gilt. In Abbildung 10.8 sehen Sie, dass mehrere
Modelle den gleichen Rang teilen. Das liegt daran, dass das 95-%-Konfidenzintervall
berticksichtigt wird. Die Range dndern sich oft, also wird Ihr Ranking wahrscheinlich
ganz anders aussehen, je mehr Zeit vergeht.

Oben werden die Hauptkategorien TEXT und WEBDEV angezeigt. Aber Sie konnen
auch andere Kategorien auswahlen — wie VISION, TEXT-TO-IMAGE, COPILOT oder
SEARCH —und das Ranking tiberpriifen.

Aber die Leistungsfahigkeit ist nicht der einzige relevante Faktor.

10.3.2 Der Wissensstand des Modells

Jedes Modell hat einen »Wissensstichtag« (Knowledge Cutoff Date). Das bedeutet,
dass die Daten, mit denen das Modell trainiert wurde, an einem bestimmten Datum
finalisiert wurden. Deshalb ist es wichtig, das Cutoff-Datum zu kennen: Wenn Sie ein
Modell nach Informationen fragen, wie zum Beispiel nach einem Ereignis oder
einem anderen Fakt, kann das Modell nicht wissen, ob es nach dem Cutoff-Datum
passiert ist.

Fiir Chatbots wird dieser Parameter immer weniger relevant, da diese Modelle immer
haufiger die Fahigkeit haben, im Internet nach aktuellen Informationen zu suchen.
Aber fur Sie als Entwickler oder Entwicklerin von KI-Systemen konnte das ein wichti-
ger Faktor sein, den Sie berticksichtigen wollen.

10.3.3 On-Premises vs. Cloud-Hosting

Ein weiterer wichtiger Aspekt bei der Modellauswahl ist der Datenschutz. Wenn Sie
mit vertraulichen Informationen arbeiten, mochten Sie oder Ihre Kunden vielleicht
nicht, dass die Daten das Unternehmensnetzwerk verlassen. Auflerdem ist es wichtig
zu wissen, mit welchen Daten das Modell trainiert wurde und ob es DSGVO-kompati-
bel ist.

Wenn Sie unter Berticksichtigung dieser Parameter ein lokales Modell gewahlt haben,
konnen Sie es risikolos im eigenen Netzwerk verwenden und kénnen davon ausge-
hen, dass Ihre Daten Ihr Netzwerk nicht verlassen.
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10.3.4 Open-Source-, Open-Weight- und proprietdre Modelle

Es gibt proprietdre Modelle, die den Nutzern Uuber Webanwendungen oder APIs zur
Verfligung gestellt werden. Ein bekannter Vertreter dieser Klasse ist Anthropic. Anth-
ropic bietet tiblicherweise seine Modelle auf diese Weise an.

Google und OpenAl handhaben das anders: Ihre Modelle werden entweder als prop-
rietdre Modelle tiber APIs bereitgestellt, z. B. Gemini oder GPT 5. Aber andere Modell-
klassen wie Gemma oder GPT-OSS werden als Open-Weight-Modelle angeboten.

Um ganz korrekt zu sein, sollten wir zwischen Open Source und Open Weight unter-
scheiden: Wirkliche Open-Source-Modelle werden mit allen Details wie Modellarchi-
tektur oder verwendeten Trainingsdaten bereitgestellt. Das ist meist nicht der Fall. Der
Anbieter verdffentlicht das trainierte Modell mit seinen Gewichten fiir die Offentlich-
keit, aber spezifische Details zu den zugrunde liegenden Daten und Trainingsdetails
bleiben geheim. In so einem Fall spricht man von einem Open-Weight-Modell.

Ein bekanntes Beispiel aus dieser Gruppe ist Meta mit seiner Llama-Modellfamilie.
Diese Modelle sind kostenlos nutzbar, aber das Unternehmen halt die Details der
Trainingsdaten geheim.

10.3.5 Kosten

Die Kosten flir die Nutzung eines LLM-Dienstes konnen ein entscheidender Faktor bei der
Auswahl des Modells sein. Typischerweise werden proprietire Modelle auf Token-Basis
abgerechnet. Um genau zu sein: Es wird zwischen Eingabe-Tokens und Ausgabe-Tokens
unterschieden. Eingabe-Tokens sind normalerweise giinstiger als Ausgabe-Tokens. Die
aktuellen Preise fiir OpenAl-Modelle finden Sie unter https://openai.com/api/pricing/
und fiir Anthropic unter https.//www.anthropic.com/pricing#anthropic-api.

Sie sollten eine Abschatzung vornehmen, wie viele API-Anfragen und wie viele Tokens
verarbeitet werden. Basierend darauf konnen Sie eine Schitzung Ihrer Gesamtkosten
erstellen.

10.3.6 Kontextfenster

Ihr Projekt konnte die Verarbeitung von sehr langen Dokumenten beinhalten, und es
konnte notwendig sein, so viele Informationen wie moglich an das Modell weiterzu-
geben. Daher ist das Kontextfenster ein entscheidender Faktor fiir die beste Wahl des
Modells.

Wenn Sie sich zum Beispiel die Modelle auf Groq (https://console.groq.com/docs/
models) anschauen, finden Sie Modelle mit eher kleinen Kontextfenstern wie LiaVa
1.5 7B mit einem Kontextfenster von 4.096 Tokens oder aber Llama 3.3 70B Versatile
mit einem extrem grofien Kontextfenster von 128.000 Tokens.
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10.4 Nachrichtentypen

10.3.7 Latenz

Einige Anwendungsfalle erfordern sehr schnelle Modellantworten. Es gibt eine Ab-
hangigkeit von der Bereitstellung eines Modells bzw. wie lange es bis zur Bereitstel-
lung der Antwort dauert (Time to First Token).

Wenn Latenz keine Rolle spielt, konnten Sie sogar ein Open-Source-Modell auf einer
CPU laufen lassen. In anderen Fillen konnte die Latenz jedoch der wichtigste Faktor
sein, z. B. wenn Sie ein LLM mit Sprachgenerierung koppeln mochten, um Echtzeit-
Chats zu ermdglichen. In so einer Situation kann ein LLM leicht zum Flaschenhals
werden und die Benutzererfahrung beeintrachtigen, weil es keine »nattirliche« Kon-
versation gibt, wenn der Gesprachspartner lange Antwortzeiten hat.

10.4 Nachrichtentypen

In Abschnitt 10.1 haben Sie Ihre ersten Schritte mit LLMs gemacht. Wir haben die
Modellobjekte aufgerufen, eine einfache Nachricht gesendet und eine Antwort erhal-
ten. In einem realistischeren Chat gibt es verschiedene Arten von Nachrichten. Jede
Nachricht hat eine bestimmte Rolle und einen bestimmten Inhalt. Wir schauen uns
die haufigsten Nachrichtentypen an.

10.4.1 Benutzereingabe (User- bzw. Human Message)

Dieser Nachrichtentyp bezieht sich auf die menschliche Nachricht und stellt die Ein-
gabe des Nutzers dar. Die Effektivitat einer LLM-Antwort hiangt von der Klarheit der
Nutzer-Nachricht ab. Ein ganzer Arbeitsbereich namens Prompt-Engineering beschaf-
tigt sich im Grunde genommen damit, die Nutzer-Nachricht zu optimieren.

10.4.2 Systemnachricht

Neben der Benutzereingabe kann eine Systemnachricht definiert werden. Diese legt

fest, wie das Modell sich verhalten und arbeiten soll, ahnlich wie in einem Rollenspiel.

» Wenn Sie zum Beispiel einen allgemeinen Assistenten einrichten mochten, konn-
te eine typische Systemnachricht so aussehen:

You are a helpful AT assistant designed to provide accurate, concise, and polite
responses. Always ensure that your answers are clear and informative.

» Falls Sie aber mochten, dass Ihr Modell sich wie ein technischer Support-Assistent
verhilt, konnten Sie das Modell mit der folgenden Systemnachricht anweisen:
You are a technical support Al assistant specializing in troubleshooting and exp-
laining software-related issues. Respond with clear, step-by-step instructions,
avolding technical jargon whenever possible.
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Mit der Systemnachricht definieren Sie also die Rolle des Modells, seinen Ton und
spezifische Ziele, bevor die Interaktion mit dem Nutzer beginnt. Die Systemnachricht
ist entscheidend, um die Grenzen und Erwartungen des Modells festzulegen. Sie hilft
dabei, es so zu lenken, dass es sich im Einklang mit den Anforderungen des Nutzers
verhalt.

Systemnachrichten haben jedoch ihre Grenzen. Wahrend sie das anfiangliche Verhal-
ten prigen konnen, konnen sie nicht durchgehend die strikte Einhaltung wéhrend
des Gesprachs durchsetzen. Das bedeutet, dass Modelle in ihrem Ton oder Verhalten
»abdriften« konnen, wenn sie mit unvorhergesehenen Eingaben des Nutzers kon-
frontiert werden.

Auflerdem konnen Systemnachrichten allein keine feingranulare Kontrolle tiber die
Genauigkeit der Inhalte oder ethische Uberlegungen durchsetzen, ohne ergianzende
Leitplanken oder Moderation.

10.4.3 Assistant

Der Nachrichtentyp assistant entspricht der Antwort des Modells. Die Haupteigen-
schaft ist der Inhalt, der die Ausgabe des Modells enthalt.

Auflerdem gibt es eine Eigenschaft namens response_metadata. Diese Eigenschaft ent-
halt einige modellspezifische Ausgaben. Typischerweise werden hier die Token-Nut-
zung sowie die Dauer der Abfrage angezeigt.

Damit kennen Sie die verfiigbaren Nachrichtentypen. Lassen Sie uns nun herausfin-
den, wie sie in Prompts verwendet werden konnen. LangChain bietet eine sehr flexi-
ble Schnittstelle, um Prompts einzurichten: die Prompt-Templates.

10.5 Prompt-Templates

Bevor wir das LLM aufrufen und eine Anfrage senden, richten wir einen Prompt aufeine
einheitliche und strukturierte Weise ein, indem wir die Prompt-Vorlagen (Prompt-Tem-
plates) des Frameworks LangChain verwenden. So kdnnen wir das Modell anleiten, wie
es handeln soll. Aufierdem kann das Modell mithilfe der Prompt-Vorlagen den Nutzer
und dessen Absichten besser verstehen.

10.5.1 Coding: ChatPromptTemplates

Die flexibelste Moglichkeit ist die Verwendung von ChatPromptTemplates, was es
Thnen erlaubt, eine Liste von Nachrichten zu iibergeben. In Listing 10.12 sehen Sie ein
Beispiel fiir den Code, um eine Prompt-Vorlage einzurichten.
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Wirbeginnen mit einem einfachen Beispiel, das die Idee veranschaulicht. Zuerst mis-
sen wir die Klasse ChatPromptTemplate importieren. Im nachsten Schritt erstellen wir
eine Instanz dieser Klasse, indem wir die Methode from messages() aufrufen. Diese
Nachrichten sind eine Liste von Tupeln. Jedes Tupel hat die Form ( "Nachrichtentyp",
"Inhalt"). So definieren wir eine Systemnachricht, die dem Modell sagt, wie es sich
verhalten soll, gefolgt von einer menschlichen Nachricht, die die eigentliche Benut-
zeranfrage enthalt. Wichtig ist hier, wie wir Variablen definieren, die als Platzhalter
eingerichtet und spater befillt werden. In unserem Beispiel sind die Variablen in den
Benutzer- oder Menschennachrichten in geschweifte Klammern {} gesetzt. Wir rich-
ten input und target language als Variablen ein.

Obwohl es ein bisschen wie ein Python-f-String aussieht, ist es nicht dasselbe: In
einem f-String werden vordefinierte Variablen tibergeben und durch die String-Dar-
stellung der Variablen ersetzt. Hier haben wir jedoch keine Variable input oder tar-
get language im Voraus vordefiniert.

Im letzten Schritt rufen wir die Prompt-Vorlage auf, und in diesem Schritt werden die
Variablen durch den tatsachlichen Inhalt ersetzt. Dafiir miissen wir einfach die invo-
ke()-Methode des prompt template-Objekts aufrufen. Als Parameter wird ein Dictio-
nary Uibergeben, das Schliissel verwendet, die den Variablen entsprechen; und die
Werte entsprechen dem Inhalt, der verwendet werden soll.

Schliellich wird, da wir den Invoke-Prompt nicht in einer neuen Variablen speichern,
die Ausgabe einfach im Terminal angezeigt. Die Prompt-Vorlage wurde in ein Chat-
PromptValue-Objekt umgewandelt, das eine SystemMessage und HumanMessage enthalt:

#%% packages
from langchain core.prompts import ChatPromptTemplate

#%% set up prompt template

prompt_template = ChatPromptTemplate.from messages([
("system", "You are an AI assistant that translates English into another language."),
("user", "Translate this sentence: '{input}' into {target language}"),

)

#2% invoke prompt template
prompt_template.invoke({"input": "I love programming.", "target language": "German"})
ChatPromptValue(messages=[

SystemMessage(content="You are an AI assistant that translates English into another
language. '),

HumanMessage(content="Translate this sentence: 'I love programming.' into German")])

Listing 10.12 Prompt-Template — Nutzung
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Was ist der Zweck dieses Ansatzes? Mit der Prompt-Vorlage haben wir eine flexible
erste Komponente, die an ein Modell tibergeben werden kann, um eine Antwort zu
erhalten. Der Ansatz »Prompt an das LLM schicken« ist eine einfache Abfolge von
Schritten.

Wir werden uns im nachsten Abschnitt mit LangChain-Ketten beschaftigen.

Aber vorher lassen Sie uns die Weisheit der Menge nutzen, um einen guten Prompt
zu entwickeln. LangChain hat ein Okosystem geschaffen, das es Nutzern erméglicht,
Prompts mit dem LangChain Hub zu teilen und zu erkunden.

10.5.2 Coding: Verbesserung eines Prompts mit dem LangChain Hub

Sie finden den LangChain Hub unter https://smith.langchain.com/hub. Dort kdnnen
Sie sich Prompts anschauen, die von anderen fiir verschiedene Zwecke erstellt wur-
den. Von dort holen wir uns Hilfe bei der Erstellung eines Prompts.

Wenn Sie nach »prompt maker« suchen, werden Sie den Prompt hardkothari/prompt-
maker finden. Dieser Prompt wurde erstellt, um einen detaillierteren Prompt zu gene-
rieren. In unserem Beispiel werden Sie herausfinden, wie das funktioniert.

Der Code in Listing 10.13 entspricht der Datei 100 LLM\60 prompt_hub.py.

Wir mussen die bendtigten Pakete laden. Der Neuling hier ist hub aus dem langchain-
Paket:

from langchain import hub

from langchain openai import ChatOpenAl

from langchain core.output parsers import StrOutputParser
from dotenv import load dotenv

load dotenv('.env')

from pprint import pprint

Listing 10.13 Prompt Hub — erforderliche Pakete
Um die Erstellung von Prompts zu nutzen, miissen wir die pul1l-Methode von hub auf-
rufen:

#%% fetch prompt
prompt = hub.pull("hardkothari/prompt-maker")

Es gibt einige Eingangsvariablen, die tiber die Eigenschaft input variables zugdnglich
sind:

#%% get input variables
prompt.input variables
['lazy prompt', 'task']
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Nun erstellen wir einen verbesserten Prompt. Wir miissen nur ein Modell einrichten
und es in einer Kette ausfilhren. Das geht schon auf das Wissen des nachsten
Abschnitts ein, haben Sie also noch etwas Geduld: Wir werden uns mit Ketten aus-
fihrlicher beschaftigen. Nehmen Sie das fiir den Moment bitte einfach so hin:

# %% model instance

model = ChatOpenAI(model="gpt-40-mini",
temperature=0)

# %% chain

chain = prompt | model | StrOutputParser()

Listing 10.14 Prompt Hub — Setup der Chain

Wir rufen die Kette in Listing 10.15 auf und ibergeben die relevanten Parameter lazy
prompt und task, um einen verbesserten Prompt zu erhalten:

# %% invoke chain

lazy prompt = "summer, vacation, beach"

task = "Shakespeare poem"

improved prompt = chain.invoke({"lazy prompt": lazy prompt, "task": task})
print(improved prompt)

As a skilled poet in the style of William Shakespeare, compose a sonnet that
captures the essence of summer, vacation, and the beach. ### Instructions:
Your poem should reflect the beauty and joy of a summer getaway, using rich
imagery and evocative language typical of Shakespearean verse. Aim for 14
lines, adhering to the traditional iambic pentameter and ABABCDCDEFEFGG rhyme
scheme. #i# Context: Incorporate themes of nature, leisure, and the fleeting
nature of time, while evoking a sense of nostalgia and warmth. Use metaphors
and similes to enhance the emotional depth of the poem, and consider including
references to the sun, sea, and the carefree spirit of summer. #i## Desired
Outcome: The final piece should resonate with readers, transporting them to a
sun-drenched beach, filled with laughter and the gentle sound of waves, while
also reflecting on the transient beauty of such moments.

Listing 10.15 Prompt Hub — Chain-Ausfiihrung

Dieser verbesserte Prompt beschreibt die Rolle des Modells viel detaillierter und gibt
umfassende Anweisungen zur Aufgabe sowie eine Beschreibung des gewiinschten
Ergebnisses. Lassen Sie uns in Listing 10.16 das Modell mit dem verbesserten Prompt
ausfihren:

res = model.invoke(improved prompt)
print(res.content)
Upon the golden sands where sunbeams play,
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The azure waves do kiss the shore with glee,
In summer’s arms, we cast our cares away,
As laughter dances on the breeze so free.

The sun, a sovereign in the heavens high,
Doth paint the sky with hues of rose and gold,
While seagulls wheel and cry, as if to vie
For joy that in this fleeting time we hold.

0, let us linger in this warm embrace,

Where time, like grains of sand, slips through our hands,
Each moment savored, sweet as summer’s grace,

A tapestry of dreams upon the strands.

Yet, as the twilight calls the day to rest,
We cherish memories, our hearts possessed.

Listing 10.16 Prompt Hub — Chain-Ergebnis fiir den verbesserten Prompt

Ich Uiberlasse es Ihnen, das Modell nur basierend auf dem lazy prompt und der Aufga-
be task auszufithren und die beiden Ergebnisse zu vergleichen. Im Skript finden Sie
meine Beispiellosung.

Damit haben Sie ein kleines Beispiel gesehen, wie eine Kette verschiedene Bausteine
kombiniert. Dieses Konzept ist sehr machtig aufgrund seiner Struktur, wie Sie im
nachsten Abschnitt sehen werden.

10.6 Chains

Verkettungen (Chains) sind ein so wichtiges Konzept, dass sie Teil des Pakets namens
LangChain sind. Da der englische Begriff geldufiger ist, werde ich im Folgenden das
Wort »Chain« anstelle von »Verkettung« nutzen. Eine Chain bezieht sich auf eine
Abfolge von Prozessschritten, die miteinander verbunden sind, um eine Aufgabe zu
erfilllen. Typischerweise bestehen sie aus mehreren Komponenten.

Wir beginnen mit der kleinsten und einfachsten Kette.

10.6.1 Eine einfache sequenzielle Chain

Die einfachste Chain konnte eine »Prompt zu LLM«-Chain sein, wie sie in Abbildung
10.9 dargestellt ist: Eine Benutzereingabe wird an eine Prompt-Vorlage weitergege-
ben. Die Prompt-Vorlage selbst gibt ihre Ausgabe an einen LLM-Schritt weiter. Und
schliefilich erzeugt der LLM-Schritt eine Modellausgabe.
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Nutzer- Modell-

(S J
Y

Kette

Abbildung 10.9 Einfache LangChain-Verkettung

Aber Sie sind nicht auf eine sequenzielle Chain beschrankt. Sie konnen auch komple-
xere Strukturen wie parallel laufende Chains oder Router-Chains nutzen. Diese Kon-
zepte sind in Abbildung 10.10 dargestellt.

PromptA > LIMA PromptA > LLMA
U . ~ J u v J
ser Chain A User Chain A
Input |nput

PromptB | LLMB PromptB |—» LLMB

. v J . v J
ChainB ChainB
a) Parallele Verkettung b) Verkettung mit Router

Abbildung 10.10 Komplexere Verkettungen (links: parallel, rechts: Router)

10.6.2 Coding: Eine einfache sequenzielle Chain

Wir werden eine Chain einrichten, die aus einem Prompt-Template besteht. Das
Prompt-Template wird an ein LLM Ubergeben. Nachdem das Modell eine Ausgabe
erstellt hat, wird die Ausgabe an einen StrOutputParser weitergegeben. Den entspre-
chenden Code finden Sie in 100 _LLM/70_simple_chain.py.

In Listing 10.17 beginnen wir damit, relevante Pakete und API-Schlissel zu importie-
ren. Als LLM-Provider verwenden wir OpenAl Der API-Schliissel wird tiber dotenv
geladen. Bitte stellen Sie sicher, dass eine.env-Datei im Arbeitsordner gespeichert ist,
die einen Eintrag fiir OPENAI API KEY enthalt.

from langchain openai import ChatOpenAl

from langchain core.prompts import ChatPromptTemplate
from dotenv import load dotenv

from langchain core.output parsers import StrOutputParser
load dotenv('.env')

Listing 10.17 Sequenzielle Chain — erforderliche Pakete
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Wir erweitern in Listing 10.18 die Prompt-Vorlage aus Abschnitt 10.5 und erstellen ein
ChatPromptTemplate, das auf einer System- und User-Message basiert. Die Aufgabe
besteht darin, einen Eingabetext input in eine Zielsprache target language zu tber-
setzen:

#%% set up prompt template
prompt_template = ChatPromptTemplate.from messages([
("system", "You are an AI assistant that translates English into another
language."),
("user", "Translate this sentence: '{input}' into {target language}"),

D
Listing 10.18 Sequenzielle Chain — Prompt-Template-Erstellung

Die niachste Komponente, die wir anwenden, ist ein LLM. Wir verwenden GPT-40-mini
und erstellen die Modellinstanz model mit ChatOpenAI:

model = ChatOpenAI(model="gpt-40-mini",
temperature=0)

Das Verbinden der Chain-Elemente kann nicht einfacher sein. Wir miissen nur den
Pipe-Operator | anwenden. Die Komponenten werden durch | getrennt. In unserem
Beispiel ist der Prompt die erste Komponente in der Kette, gefolgt vom Modell, und
anschlieflend wird die Modellausgabe an den StrOutputParser Ubergeben, der die
Modellausgabe in den wahrscheinlichsten String parst:

# %% chain
chain = prompt template | model | StrOutputParser()

Alles ist vorbereitet, damit wir die Kette mit Eingabeparametern aufrufen konnen.
Dadurch erhalten wir das endgtltige Ergebnis:

# %% invoke chain

res = chain.invoke({"input": "I love programming.",
"target language": "German"})

res

Jetzt, da Sie wissen, wie Sie eine einfache sequenzielle Chain verwenden, konnten Sie
sich hohere Ziele setzen und deutlich komplexere Konstrukte wie Router oder parel-
lele Chains aufbauen. Das iberlasse ich Thnen zum Selbststudium. Stattdessen will ich
auf eine Fahigkeit der Sprachmodelle eingehen, die extrem wertvoll ist: auf die struk-
turierten Ausgaben.
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10.7 Strukturierte Outputs

10.7.1 Was sind strukturierte Outputs?

Sprachmodelle sind sehr gut darin, freien Text zu generieren, und das ist toll fiir kre-
ative Geschichten, E-Mails oder auch fiir die Code-Generierung. Manchmal ist jedoch
ein bestimmtes Format erforderlich, etwa fir die Datenerfassung, die Automatisie-
rung von Prozessen oder fir die Integration in andere Systemen - also eigentlich
immer dann, wenn das Sprachmodell nicht am Ende des Prozesses steht, sondern die
Ausgabe des Sprachmodells von anderen Tools oder Systemen weiterverwendet wer-
den soll. Genau an dieser Stelle kommen strukturierte Outputs ins Spiel.

Ein strukturierter Output ist eine Modellantwort, die nicht als freier Text, sondern in
einem bestimmten, maschinenlesbaren Format ausgegeben wird. Die gdngigsten
Formate sind JSON oder XML, aber auch CSV oder einfache Listen.

Die groflen Vorteile von strukturierten Outputs sind:

» die nahtlose Kommunikation zwischen Sprachmodellen und anderen Software-
Systemen

» Mit strukturierten Outputs lassen sich Workflows automatisieren. Zum Beispiel
konnte ein LLM Produktdetails aus einem freien Text extrahieren und sie dann in
ein E-Commerce-System einspeisen.

» Durch strukturierte Outputs lassen sich Mehrdeutigkeiten vermeiden, die bei
freiem Text auftreten konnten. Da das Modell gezwungen wird, sich an ein klar
definiertes Schema zu halten, werden die Ergebnisse konsistenter.

Schauen wir uns an, wie wir strukturierte Outputs implementieren konnen.

10.7.2 Coding: Strukturierte Outputs

Waren Sie schon einmal in der Situation, dass Ihnen zwar die Handlung eines Films
einfallt, aber Sie sich beim besten Willen nicht an den Titel oder die Darsteller erin-
nern konnen? Fiir dieses Problem bauen wir uns nun eine Chain, wie sie in Abbildung
10.11 zu sehen ist.

Prompt- Strukturierter
Template LM Parser Output

Beispiel:

{'title': 'The Martiang,
‘main_character': 'Mark Watneys,
'director': 'Ridley Scottg,
'release_year': '2015'}

{'plot': 'mars,botanik'}

Abbildung 10.11 Chain fiir strukturierten Output
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Der Nutzer ibergibt die Rahmenhandlung an die Chain, die aus einem Prompt-Tem-
plate, einem Modell und einem Output-Parser besteht. Als Ergebnis erhalten wir den
strukturierten Output im JSON-Format.

Ein solcher Workflow ldsst sich einfach implementieren. Dafiir nutzen wir den Code
aus I100_LLM\80_structured_outputs.py.

Wir laden zundchst in Listing 10.19 die benétigten Pakete. Die entscheidende neue
Funktionalitdt kommt tiber den Parser, der das Ergebnis des Modells nachbearbeitet.
Dazu nutzen wir PydanticOutputParser. Hiermit in Verbindung steht das Paket pydan-
tic, aus dem wir die Klasse BaseModel laden:

from langchain core.prompts import ChatPromptTemplate

from langchain groq import ChatCroq

from dotenv import load dotenv, find dotenv

load_dotenv(find dotenv(usecwd=True))

from langchain core.output parsers import PydanticOutputParser
from pydantic import BaseModel

Listing 10.19 Strukturierte Outputs — erforderliche Pakete

Bei der Ausgabe erwarten wir ein ganz bestimmtes Format, das wir tiber eine eigene
Klasse MyMovieOutput definieren. Diese Klasse erbt von BaseModel, und in dieser Klasse
definieren wir die Keys und den Datentyp der Values des JSON-Objektes, das uns
zurlickgegeben werden soll. So wird beispielsweise festgelegt, dass der Titel title als
String erwartet wird:

#%% pydantic model

class MyMovieOutput(BaseModel):
title: str
main character: str
director: str
release year: str

Dieses Ausgabeformat wird nun dem PydanticOutputParser Uibergeben. Damit kon-
nen wir dem Modell klare Anweisungen hinsichtlich des Outputs geben:

# %% prompt
parser = PydanticOutputParser(pydantic_object=MyMovieOutput)

In den Nachrichten wird das Modellverhalten {iber den system-Prompt festgelegt.
Hier werden auch die Formatanweisungen tibergeben. Im user-Prompt wird dann die
eigentliche Benutzeranfrage hinterlegt:

messages = [
("system", "Du bist ein Filmexperte. {format instructions}"),
("user", "Handlung: {plot}")
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Kommen wir jetzt zum ersten Modul unserer Chain —dem prompt_template.Basierend
auf den messages wird das Prompt-Template erstellt. Neu ist hier die Methode parti-
al(), die den Zweck hat, dem Prompt-Template bereits den Parameter format inst-
ructions zu Uibergeben. Wir miissen die Formatanweisungen nicht selbst schreiben,
sondern konnen direkt auf die Anweisungen des parser zuriickgreifen:

prompt template = ChatPromptTemplate.from messages(messages).partial(
format_instructions=parser.get format instructions()

)

Die Modellinstanz wird ganz klassisch mit ChatGroq erzeugt. Sinnvoll ist es, dem
Modell eine niedrige Temperatur mitzugeben.

Temperatur bei strukturierten Outputs

Ein wichtiger Hinweis an dieser Stelle: Bei strukturierten Outputs soll das Modell
wenig kreativ sein, sondern eher deterministisch arbeiten. Daher sollte die Tempera-
tur gering eingestellt werden, zum Beispiel auf O bis 0.3.

MODEL NAME = "meta-1llama/llama-4-scout-17b-16e-instruct"
model = ChatGroq(model=MODEL NAME, temperature=0.2)

Jetzt konnen wir die chain erstellen, die aus einer Sequenz aus prompt template, model
und parser besteht:

chain = prompt template | model | parser

Damit ist alles fiir unseren ersten Test vorbereitet. Die Eingabe wird im Objekt chain
inputs als Dictionary definiert und der chain mittels invoke ibergeben:

chain inputs = {"plot": "mars, botanik"}
res = chain.invoke(chain inputs)

Das Ergebnis konnen wir in Listing 10.20 tiber die Methode model dump() abgreifen:

res.model dump()
{'title': 'The Martian',
'main_character': 'Mark Watney',

'director': 'Ridley Scott',
'release_year': '2015'}

Listing 10.20 Strukturierte Outputs — Modellergebnis

Das Ergebnis ist wie gewtlinscht ein JSON-Objekt mit den genannten Keys und den
korrekten Werten.
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Es gédbe noch unendlich mehr zum Thema »Sprachmodelle und allgemeine generati-
ve KI« zu berichten. An dieser Stelle m6chte ich daher auf mein Buch »Generative KI
mit Python« verweisen, das sich diesen Themen sehr ausfiihrlich widmet.

Das Thema der grofden Sprachmodelle ist technologisch untrennbar mit der Transfor-
mer-Architektur verbunden. Im folgenden Abschnitt wagen wir einen technischen
Deep Dive in diese Technologie.

10.8 Deep Dive: Wie funktionieren Transformer?

Abbildung 10.12 verdeutlicht den grundsitzlichen Aufbau eines Transformer-Mo-
dells. Ein Transformer-Modell besteht aus einigen fundamentalen Bausteinen, die Sie
besser verstehen miussen.

v K Attention

Positional Encoding

Word Embeddings

Token-ID

<CLS> PyTorch macht SpaR <EOS> Token

Abbildung 10.12 Aufbau eines Transformer-Modells

Auf der untersten Ebene steht der Text, der dem Modell iibergeben wird. In unserem
Beispiel wird der Satz »PyTorch macht Spaf3« an das Modell ibergeben. Dabei wird der
Text zundchst tokenisiert, also in einzelne Teile zerlegt (mehr dazu erfahren Sie in
Abschnitt 10.8.1).

Der Einfachheit halber nehmen wir an dieser Stelle an, dass der Text in einzelne Wor-
ter zerlegt wurde. Die Worter werden durch ein erstes Netzwerkmodul geleitet, das
Word Embeddings ermittelt. Diese Word Embeddings sind Vektoren, die fiir jedes
Wort die inhaltliche Bedeutung widerspiegeln. Weitere Details hierzu lesen Sie in
Abschnitt 10.8.2.

Der néchste Schritt ist das Positional Encoding. Stellen Sie sich den Satz »Die Katze
fangt die Maus« vor. Dass die Reihenfolge der Worter eine Rolle spielt, zeigt der Satz:
»Die Maus fangt die Katze«. Es werden exakt die gleichen Worter verwendet, aber die

346



10.8 Deep Dive: Wie funktionieren Transformer?

Bedeutung hat sich durch die geanderte Position der Worter komplett verandert. Mit
dem Positional Encoding bekommt das Modell die Information, welches Wort an wel-
cher Stelle zu finden ist.

Im ndchsten Schritt werden die Daten in ein Modul gefiihrt, das sich Attention nennt.
Das ist das eigentliche Kernsttick des Modells. Hier lernt das Modell die innere Struk-
tur des Satzes und welches Wort mit welchem anderen Wort zusammenhangt. Mit
diesem Konzept werden wir uns in Abschnitt 10.8.4 ndher beschaftigen.

10.8.1 Tokenisierung

Tokenisierung bedeutet einfach nur, dass der Text in kleinere Einheiten, sogenannte
Tokens, zerlegt wird. Die Tokens konnen einzelne Worter, Satzteile oder sogar einzelne
Zeichen sein. Das hangt von der verwendeten Tokenisierungsmethode ab. Bei heutzu-
tage Uiblichen Sprachmodellen kommt eine Subword-Tokenisierung zum Einsatz.

Jedes Token wird dann einem eindeutigen numerischen Wert, der sogenannten
Token-ID, zugewiesen. Diese ID ist so eine Art Worterbucheintrag, wobei dieses Wor-
terbuch eine Zuordnung zwischen menschlichen Wértern und zugeordneten Zahlen-
werten ermoglicht.

Abbildung 10.13 zeigt die Funktionsweise des Tokenizers. Er verarbeitet eine Textein-
gabe des Nutzers, extrahiert die einzelnen Tokens und liefert die Tokens mit ihren
dazugehorigen Token-IDs zuriick.

i| 37863 | | 162709 || 25048 || 36568 || s9262 || 13 |iToken-ID
I I
§| Py | | Torch || macht || grolRen || Spafd || . | i Tokens
f
| PyTorch macht grofRen SpaR. | Nutzereingabe

Abbildung 10.13 Tokenisierung

Im Beispiel wurde der Tokenizer von GPT-40 und GPT-40 mini verwendet. Sie kdnnen
das selbst mit anderen Eingaben testen, wenn Sie den Tokenizer von OpenAl unter
https://platform.openai.com/tokenizer verwenden.

Wie Sie sehen, beruht dieser Tokenizer auf Subword Tokenization. Das ist daran zu
erkennen, dass das Wort »PyTorch« in die beiden Tokens »Py« und »Torch« zerlegt
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wurde. Auflerdem ist es wichtig zu wissen, dass auch fiir Sonderzeichen separate
Tokens erstellt werden. In unserem Beispiel wurde der Punkt als eigenes Token codiert.

In der Praxis wird immer von »Tokens« gesprochen, wobei fiir uns eher das Konzept
»Wort« verstandlicher ist. Es ist flir mich einfach, die Worter in diesem Kapitel zahlen
zu lassen, aber wie vielen Tokens entspricht das? Damit befassen wir uns im folgen-
den Infokasten.

Umrechnung von Wortern in Tokens

Die Umrechnung von Wortern in Tokens ist keine exakte Wissenschaft, da sie von
mehreren Faktoren abhangt.

Es gibt aber gute Heuristiken, die man heranziehen kann. Sie unterscheiden sich von

Sprache zu Sprache:

» Im Englischen ist die gédngige Faustformel, dass 1 Token ungefahr % eines Wortes
entspricht. Vereinfacht gesagt bedeutet das, dass 75 Worter durch 100 Tokens be-
schrieben werden konnen.

» Im Deutschen ist das Verhaltnis unglinstiger. Eine Faustformel lautet, dass 1 Wort
im Durchschnitt in 2.1 Token umgesetzt wird. Das liegt an Eigenheiten der deut-
schen Sprache, zum Beispiel daran, dass viele Wérter zusammengesetzte Worter
sind. Es liegt aber auch daran, dass die meisten Sprachmodelle sich am englischen
Sprachschatz orientieren, was dazu flihrt, dass viele gangige englische Worter als
einzelne Tokens behandelt werden.

Es gibt nicht nur ein solches »Worterbuch«. Stattdessen miissen Sie als Entwickler
bzw. Entwicklerin daraufachten, dass der zum Modell passende Tokenizer verwendet
wird. Haufig wird dieser Schritt vor dem Nutzer verborgen, sodass er sich nicht darum
kiimmern muss, aber das ist nicht immer der Fall.

Da Deep-Learning-Modelle nur mit Tensoren und allgemeiner mit numerischen Wer-
ten arbeiten konnen, findet dieser Schritt bei allen Sprachmodellen statt. Die Nutzer-
eingabe wird tokenisiert, vom Modell verarbeitet, und die Modellausgabe wird wieder
in menschliche Sprache zurtickgewandelt.

Kommen wir nun zum néchsten wichtigen Aspekt des Transformer-Modells: den
Word Embeddings.

10.8.2 Word Embeddings

Wenn Sie an Thren Mathematikunterricht zurtickdenken, erinnern Sie sich vielleicht,
was ein Vektor ist — die Linie mit einem Pfeil, die Sie in ein Koordinatensystem zeich-
nen mussten. Damals mussten Sie diese Linien zeichnen, die durch zwei Zahlen dar-
gestellt werden konnten.
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Ein ganz einfaches Beispiel sehen Sie in Abbildung 10.14. Dieses Diagramm zeigt Lebe-
wesen und ihre Position in einem zweidimensionalen Diagramm, in dem die beiden
Dimensionen die Anzahl der Beine und die Korpergrofie darstellen. Indem wir die
Informationen auf diese Weise darstellen, lernen wir etwas uber die Welt und die
semantische Bedeutung von Wortern, zum Beispiel, dass sich Katzen und Hunde in
Bezug auf diese beiden Eigenschaften ziemlich dhnlich sind.

Korpergrolle
[m]

A
3 ](J;@ Elefant

o)
2 % Mensch
/

WHund

05 . t?Huhn \
. @ Schlange @ Katze
0 | >4 Schnecke

0 2 4 Anzahl der
Beine [-]

Abbildung 10.14 Beispiel fiir einen vereinfachten Vektorraum

Wir Menschen konnen uns einen Punkt in einem zweidimensionalen Raum vorstel-
len (wie im Beispiel gezeigt) oder in einem dreidimensionalen Raum. Stellen Sie sich
vor, wir fligen eine dritte Dimension wie Intelligenz in dieses Diagramm ein.

Aber wir konnen uns keinen 1536- oder 3072-dimensionalen Raum vorstellen. Com-
puter konnen das problemlos. Und das ist hilfreich, denn die semantische Bedeutung
von Wortern, Bildern, Gerduschen oder jeder anderen Art von Informationen kann in
einer hoheren Dimension dargestellt werden. Der entscheidende Aspekt hier ist, dass
ahnliche Konzepte naher beieinander liegen als Konzepte, die sehr unterschiedlich
sind. Wie in unserem Beispiel, in dem wir sehen kénnen, dass Katzen und Hunde oder
Schlange und Schnecke vergleichbar sind - je nach den Eigenschaften, die wir ausge-
wahlt haben. Mit jeder zusatzlichen Dimension lernt der Computeralgorithmus, die
Bedeutung eines Wortes besser zu verstehen.

Wir verwenden Sprachen wie Englisch oder Deutsch, um zu kommunizieren und ein
Konzept zu klaren. Computer arbeiten nicht direkt mit unseren Sprachen, sondern
mit ihrem Aquivalent - numerischen, sogenannten Einbettungsvektoren (Embedding
Vectors).
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10 Sprachmodelle

In unserem Beispiel wird fiir den Computeralgorithmus z. B. ein Hund durch [4, 1]
definiert, eine Katze durch [4, 0.5] und ein Mensch durch [4, 2]. Eine Beispielzu-
ordnung ist in Tabelle 10.1 dargestellt.

Menschliches Konzept Einbettungsvektor
Hund [4,1]

Katze [4,0.5]

Mensch [4, 2]

Elefant [4, 3]

Schlange [0, 0.5]

Schnecke [0,0.1]

Tabelle 10.1 Menschliche Konzepte und ihre Computer-Entsprechung

Und der Prozess, menschliche Texte in Vektoren zu Ubersetzen, wird Embedding
genannt. Es gibt verschiedene Arten der Embeddings. Es konnen einzelne Worter, aber
auch ganze Textpassagen durch jeweils einen Embedding-Vektor reprasentiert werden.

Zum jetzigen Zeitpunkt versteht das Transformer-Modell bereits einzelne Worter,
aber was passiert, wenn sich die Position der Worter verandert? Hier kommt das Posi-
tional Encoding ins Spiel.

10.8.3 Positional Encoding

Eine entscheidende Technik, um die Reihenfolge der Worter zu erhalten, ist das Posi-
tional Encoding.

In der Praxis wird den Word Embeddings ein weiterer Vektor hinzugefligt, der die
Informationen Uber die absolute oder relative Position des Tokens in der Eingabese-
quenz beinhaltet.

Die mathematische Implementierung verwendet trigonometrische Funktionen wie
Sinus- oder Kosinus. Dies ermoglicht es dem Modell, unabhangig von der Lange der
Eingabesequenz konsistente Positionsmuster zu erkennen und die Positionsinfor-
mationen auch auf Sequenzen zu Ubertragen, die viel langer sind als die im Training
verwendeten.

10.8.4 Attention

Attention wird hier am Beispiel der Self-Attention erlautert. Die Self-Attention berech-
net die Ahnlichkeit der Word Embeddings zwischen allen Wértern und sich selbst.
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10.8 Deep Dive: Wie funktionieren Transformer?

Abbildung 10.15 zeigt den Prozess am Beispiel des Satzes »The man ate the pizza
because it smelled delicious«. Wenn wir uns hier nur auf das Wort »it« konzentrieren
- worauf bezieht es sich? Mit einem gewissen Grundverstandnis von Sprache konnte
man einem Algorithmus beibringen, dass es sich auf ein Substantiv bezieht. Aber in
diesem Fall konnte es sich auf »man« oder »pizza« beziehen. Genau hier kommt das
Konzept der Self-Attention zum Tragen. Damit ist es einem Modell moglich, den
Zusammenhang zwischen Wortern zu »verstehen«. Wenn es auf gentigend Daten
trainiert wurde, sollte es dem Modell deutlich werden, dass sich »it« sehr viel wahr-
scheinlicher auf »pizza« bezieht.

CLhe man ate the pizza because|it|smelled delicious

Abbildung 10.15 Der Self-Attention-Prozess

Diese Funktionsweise schauen wir uns an einem praktischen Beispiel an und tiber-
prifen sie anhand des Skriptes unter 100_LLM\self attention.py.

Wir laden zu Beginn des Skriptes in Listing 10.21 die erforderlichen Pakete. Zur Verar-
beitung der Modelle brauchen wir torch bzw. AutoTokenizer und AutoModel. Die Ergeb-
nisse werden mit matplotlib und seaborn visualisiert:

#%% packages

import torch

from transformers import AutoTokenizer, AutoModel
import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Listing 10.21 Self-Attention — Paketimport

In Listing 10.22 Ubergeben wir den Beispieltext sample sentence an das Modell, nach-
dem zuvor der Tokenizer erstellt wurde. Wie schon erwahnt muss der Tokenizer zum
Modell passen. Hier werden das Modell (und der Tokenizer) bert-base-uncased ver-
wendet. Die inputs sind die Token-IDs, die mit dem Tokenizer erstellt wurden. Die
Word Embeddings ergeben sich hingegen aus der letzten versteckten Schicht namens
output.last hidden state:

#%% test
sample sentence = "the man ate the pizza because it smelled delicious"
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10 Sprachmodelle

#%% Get word encodings and attention weights from BERT
tokenizer = AutoTokenizer.from pretrained("bert-base-uncased")
model = AutoModel.from pretrained("bert-base-uncased", output attentions=True)
inputs = tokenizer(sample sentence, return tensors="pt",
padding=True, truncation=True)

with torch.no grad():
outputs = model(**inputs)
word encodings = outputs.last hidden state
tokens = tokenizer.convert ids to tokens(inputs['input ids'][0])

Listing 10.22 Self-Attention — Erstellung der Word Embeddings und Tokens

Nun konnen die Attention-Gewichte ebenso aus den Modellergebnissen extrahiert
werden. Die durchschnittliche Attention avg_attention wird ermittelt:

#%% Get attention weights from all layers and heads
attention weights = outputs.attentions

last layer attention = attention weights[-1][0]

avg attention = last layer attention.mean(dim=0)

Abbildung 10.16 zeigt das Ergebnis des Modells. Die Zahlen reprasentieren die Atten-
tion-Gewichte ausgehend vom Wort »it«.

The man ate the pizza because| it | smelled delicious
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Abbildung 10.16 Self-Attention von »it« in Bezug auf »man« und »pizza«

Es wird deutlich, dass sich »it« am ehesten auf »pizza« bezieht.
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10.9 Zusammenfassung

In einem realen Transformer gibt es nicht nur ein Attention-Modul (man spricht in
der Regel von einem Attention-Head), sondern Multi-Head Attention.

Bei der Multi-Head Attention fokussiert sich jeder Head auf verschiedene Aspekte
von Zusammenhangen zwischen den Wortern. So kann es zum Beispiel sein, dass sich
ein Head auf den Zusammenhang zwischen Verb und Substantiven oder ein anderer
Head auf Adjektive und Substantive fokussiert.

10.9 Zusammenfassung

In diesem Kapitel haben Sie die Grundlagen von Sprachmodellen kennengelernt: von
ihrer einfachen Nutzung mit Python iber die Bedeutung von Modellparametern bis
hin zu verschiedenen Kriterien der Modellauswahl — darunter Leistung, Cutoff-Date,
Hosting- und Deployment-Optionen.

Wir haben uns mit Nachrichtentypen, Prompt-Templates und Chains befasst, um
effektive Interaktionen zu gestalten.

Ein besonderer Fokus lag auf strukturierten Outputs, die es uns ermoglichen, spezifi-
sche und vorhersehbare Ergebnisse zu erhalten.

Abschlieflend erhielten Sie einen tieferen Einblick in die Transformer-Architektur,
der Thnen ein besseres Verstandnis der Funktionsweise dieser machtigen Modelle
vermittelt hat. Mit diesem Wissen sind Sie nun bestens geriistet, um Sprachmodelle
in Ihren eigenen Projekten zu verwenden.
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