

Contents

Preface ..., 15
1 Introduction to Modern ABAP

Development 21
1.1 The Role of ABAP in SAP Developmentcccoororcnricnnnnceen. 22
1.2 The New Development Model for ABAPoccoomomricrnnnceens 23
1.3 The ABAP Language Versionccmsnssesssnen 25
1.4 APIs Released via Release Contractscoccccomccrecmnccceuncnnn. 30
1.5 Development Environment ... 32
1.6 Programming Modelmncemoncsessnnncssesssiseen 32
1.7 Usage Scenarios for ABAP Cloudccccccmercomcccmmrcnncnscennnneen 34
1.8 ABAP Releases On-Premise and in the Cloudccccccoccvcvunnee. 37
1.9 Restrictions Depending on the Release and Runtime

ENVIFONMENTooovicetiseesi s esesssesessssssiseeseens 38
110 SUMMALY ..o s sssss s ssssssones 39
2 The Application Scenario 41
2.1 Concept of the Sample Application ..., 41
2.2 Creating Dictionary Objects ..., 45
2.3 Generating an ABAP RESTful Application Programming

Model Applicationcccrceisssseeeceseeeeeiseassssseeee 52

231 Generating an OData Service and a Virtual Data

IMOGEL ..oooor s 53
2.3.2 Generated CDS Entities of the ABAP RESTful
Application Programming Model Applicationcccoeec.... 56

2.3.3 Publishing the OData Servicecneronecenecenscrenecens 64

234 Testingthe Application ... 65
2.4 Creating Associations ... 66

Contents

2.5 Application Scenario from a User’s Perspectivecccooecceeee. 73
2.6 SUMMATY ...oooviriiicecrnecrscnieeeriecsisesiseesisesessseessses s sssessanes 77
3 Handling System Fields and Runtime

Information 79
3.1 System Fields in ABAP Cloudcmmcecomcceemrcnneceeesnennees 80
3.2 Overview of the Available APIs ..., 82
3.3 Access to Time Information ... 83
3.4 AccessSing User Datarceiionneceeminecersninnessssseoessesssanes 90
3.5 Access to Technical Information on the Current Program

EX@CURION ..oooviciceeie s sesnseseeseenes 92
3.6 Accessing MeSSAZEScc.comrrruvemmmrerereerneeeeenes 94
3.7 Accessing System Data ... 95
3.8 SUMMANY ..o 97
4 Table Analysis 99
4.1 Table Analysis Using the Customer Data Browser 100
4.2 Table Analysis Using ABAP Development Toolscccccuueen. 106
4.3 SUMMATYccoirciiecieceieceieesiecsisessesessie s i ssssessesessassesses 110
5 Table Maintenance Using Business

Configuration Maintenance Objects 111
5.1 Overview of the New Table Maintenance Concept 112
5.2 Creating Customizing Tables ..., 114
5.3 Generating the Business Configuration App ..., 124
5.4 Assigning Authorizations ..., 132
5.5 Configuration from a User’s Perspective ... 136
5.6 Settings in the Business Configuration Maintenance Object ... 143

Contents

5.7 Lifecycle Management with Deprecation ... 145
5.8 Documenting Business Configuration Maintenance Objects ... 148
5.9 SUMMAIY .ot sseses i esssseseessines 150
6 Application Logs 151
6.1 Application Log for the Sample Application 152
6.2 Maintaining Application Log Objects and Subobjects 155
6.3 TheBALIAPIcoooeecccreceeeiisssseecceeeeemssssssssesessesssssssas s 159
6.4 Creating @ Logccremionccermioneceesinnesesssessessesssesnene 161

6.41 Adding Free Text MEeSSAgESscccuwmnreenereesneeuneeemereoecees 163

6.4.2 Adding Messages from Message Classes ... 165

6.4.3 Adding Messages from Exception Classes ... 169
6.5 SAVING @ LOE ...oooovrrrreicceriiiccreiiieceesiisesssssessesssssessesssssseseesssssessesssons 172
6.6 DiSplaying LOZSccoocuvummmmerrmrncererinnsesesssinessssssiasessesssesnesssssessnesseens 174
6.7 SUMMATY ..o esss s ssse s sassnes 175
7 Change Documents 177
7.1 Maintaining Change Document Objects in the ABAP

Development TOOIS ... eeenene 178
7.2 Calling the Logging Function via the Generated Class 182
7.3 Change Document Update Using the ABAP RESTful

Application Programming Model ..., 189
7.4 Displaying Change Documentsomomcccmcnnccccemnnnen 195
7.5 SUMMACY ..o ess e ss s 197
8 Lock Objects 199
8.1 Lock Mechanisms in the Database Environment ... 199
8.2 Locks onthe ABAP Platform ... 203
8.3 Using Lock Objectscoooocicncnrceneceeecesesesesesesenenns 204

Contents

8.4 APIfor Lock Objects ... seeeceeseseneeens 206
8.5 Integration into the Sample Application ..., 212
8.6 SUMMANY ... ssssss s sssnssnas 215
9 Number Range Objects 217
9.1 Number Ranges in SAP Systemscccmmnrcecnnencemmeonneeeeons 218
9.2 Maintaining a Number Rangecmnrceonnencernionnecenens 218
9.3 APl for Number Range Objectsccccomrommnrcercnmeecermicnneeeeens 223
9.4 Numbering in the ABAP RESTful Application Programming
MOEL ... sssssseseasae . 226
9.41 Unmanaged Early Numbering ..., 227
9.42 External Early NUMDEIINGcoccmrrmeernecereceineceneceineceisseeseecnes 231
9.43 Managed Early NUMDEIiNGccooccocrimccirncreeineceeireceeareeens 233
9.5 SUMMALY ... 235
10 Background Processing 237
10.1 Developing an EXecution LOGICccoucevumcmmccrmmomcccrernnseccevenee 238
10.2 Creating Application JObs ..., 242
10.2.1 Creating an Application Job Catalog Entryccccoccevvcuunece 243
10.2.2 Creating an Application Job Templateccccomerioncruus 245
10.2.3 Creatingan Application JOb ..., 246
10.3 ChECKS ..o w252
10,4 LOBEING ...oooovrerrccceriirccceeiiirecseeesseesssssassessesssansessssssasna 257
JO.5 SUMMATY ..oiccecrienieceiecsisesieesisesessse s sasessenes 259
11 Email Dispatch 261
11.1 Configuring and Monitoring the Email Dispatch 262
11.2 ABAP Cloud API for the Email Dispatchcccoovenncee. 265

10

Contents

11.3 Integrating the Newsletter Dispatch into the Recipe Portal 271
11.3.1 Creating an Application JOD ... 272
11.3.2 Email with Error Messagecmemeceneeeenernnnee 274
114 SUMMALY ... 278
12 Parallelizing Application Logic 279
12.1 Parallelization on the ABAP Platform ... 280
12.2 The CL_ABAP_PARALLEL ClIasscooooorrvcemmmmmrrescccnreccemmmmamnssesen 281
12.3 Refactoring the Sample Application ..., 285
12.3.1 Implementing the IF_ABAP_PARALLEL Interface 288
12.3.2 Sequence and Debugging of Parallel Processes 294
12,4 SUMMALY ... 297
13 File Upload 299
13.1 Extending the Sample Application to Include a File Upload
OPLION ..o 299
13.2 SUMMANY ... ssss e sssnes 308
14 Using Excel Files 309
14.1 Creatingan Excel File ... 313
14.1.1 Creatingthe Action 313
14.1.2 Creatingthe Excel Document 314
1413 Creating the Workbook 315
1414 Writing the Recipe Data to the Worksheet ... 315
14.1.5 Addition to the Header ... 317
14.1.6 Adding Another Worksheet . 318
14.1.7 Saving the EXCel File ... 320
14.1.8 Testing the Application 321
14.2 Readingan Excel File ... 324
1421 Creating the ACtioncncrreceesecceeseeeeneeecenens 324
14.2.2 Creating the Document Objectccoomermnceuinncreenncceuns 324

11

Contents

14.2.3 Readinga Worksheet ... 325
14.2.4 Readingthe Headerncnecnnne. 326
14.2.5 Reading Data into an Internal Table ... 328
14.2.6 Executing the Mass Changeconccenen. 330
14.2.7 Testingthe Application 332
143 SUMMATY ...oicecceiecreeceiesesisecsieens 333
15 Documenting Development Objects 335
15.1 ABAP DOCooiircccrrrceeeeeimisssecenseseesesmssssssssesssesssasasssssseesee 336
15.2 Knowledge Transfer Document 343
15.2.1 Creating a Knowledge Transfer Documentccccouccuueune. 343
15.2.2 Linking a Knowledge Transfer Document to a
Development ODJECt ... 347
15.3 SUMMANY ..o 350
16 Authorizations 351
16.1 Authorization Checks for Read Operations ..., 352
16.2 Authorization Checks for Change Operations ... 357
16.2.1 Global Authorizations ..., 358
16.2.2 Instance-Dependent Authorizations ... 361
16.2.3 Authorization Precheck 363
16.3 SUMMANY ... 365
17 Using APIs 367
17.1 Findingthe Right APls ... 368
17.1.1 SUCCESSOr ODJECES ...coureeinceirciireciieceireceisecriecrieesssseesesecsissensanes 368
17.1.2 Searching via CDS Entity |_APIsForCloudDevelopment 370
17.1.3 Searching via the Open ABAP Development Object
Dialog BOX .oeuevercrumrrerecrencrinrenineceieens 371
17.1.4 Searching via ABAP Object Search 373
17.1.5 Groupingand Filtering in Project EXplorer ..., 374
17.1.6 External Search Options ... 378

12

Contents

17.2 Calling APIs Based on the ABAP RESTful Application

Programming Model via EMLcocomncceeneneeniinneeseens 381
17.3 SUMMACY ..o sesanes 385
18 Extensions in ABAP Cloud 387
18.1 Key User Extensibility ... 388
18.1.1 Setting Up the Adaptation Transport Organizer 388
18.1.2 CUSTOM FIeldS ooueeieecriceireiieciieceiecieciieceiesssesseeesissesseees 391
18.1.3 Custom Logic 396
18.1.4 Transporting Key User Extensions ... 400
18.1.5 Custom CDS Views 403
18.2 Developer Extensibility ..., 408
18.2.1 Extending Database Tables ... 409
18.2.2 Extending CDS Entitiescocomroneccnncnunne. . 411
18.2.3 Implementing CuStomM LOZICcvveumeveereerecrecrimerieecriseriens 414
18.3 SUMMAIY ...ttt sees i s sasse s saseessanees 417
19 Outlook 419
Appendices 425
A Installing the Sample Application ..., 427
B Naming Conventions for the Sample Application 429
C Installing the ABAP Development Tools for Eclipse 433
D The AULROTS ... sssseens 435
INAEX oottt eree ettt bbbttt 437

13

Chapter 2
The Application Scenario

In this chapter, you’ll get to know the sample application that will accom-
pany you throughout this book. We’ll add new functions to it in each
chapter. This chapter first presents the basic structure of the application.

We've chosen a recipe portal as our application scenario and basis for the
programming examples in this book. It provides various functions. In the
following chapters, we’ll use this application scenario to explain the new
features in ABAP Cloud and demonstrate their use in real-life scenarios.

Section 2.1 begins by describing the technical requirements that are placed
on our recipe portal. Based on these requirements, we then present the
technical framework and implementation. In Section 2.2, we describe how
the domain, data element, and database table repository objects can be cre-
ated, and we explain in Section 2.3 how an initial, simple application based
on the ABAP RESTful application programming model can be generated
from them. In Section 2.4, we expand this application to include associa-
tions that can be used to add ingredients to a recipe and write reviews.
Finally, the recipe portal is presented from a user’s perspective in Section
2.5.

Using the Associated Sample Application

All programming examples used in this book can be found in the down-
load material for this book at www.sap-press.com/6198 and in our Git
repository at http://s-prs.co/v619800. The objects created in this chapter
are located in the DATAMODEL subpackage.

2.1 Concept of the Sample Application

In this section, we present both the functional and the technical concept of
our sample application—a recipe portal.

Figure 2.1 presents the requirements of a recipe portal in the form of a Uni-
fied Modeling Language (UML) use case diagram. This diagram serves to
provide a general overview of the interaction options between all actors
and the system.

Structure of
this chapter

[«

Use case diagram

41

2 The Application Scenario

Recipe Portal

Check Data

Assign

I_ Authorizations

Admin

Send Newsletter
via Email

Import
Users

— Read Recipe

User

Receive Newsletter
via Email

L Write Review

Create Recipe

— Change Recipe

Delete Recipe

Author

Categorize
Recipe

Create Recipes in Bulk
via File Upload

Figure 2.1 Use Case Diagram for the Recipe Portal

In our application scenario, there are three actors:

m User

This is a person who uses the recipe portal for research purposes and for

finding new inspirations for dishes.

= Author

This is a special user who has extended interaction options, such as cre-
ating recipes with ingredient lists.

42

2 The Application Scenario

Admin
This actor takes on technical tasks so that the recipe portal can be oper-
ated.

The user uses the application for the following tasks:

Reading a recipe

The user can read the instructions and ingredients for a dish.

Receiving an email newsletter

The user receives regular notifications about which recipes have been
added.

Writing a review

The user can enter a rating for each recipe in the recipe portal.

The following use cases are assigned to the author:

Creating a recipe

The author can enter a recipe with all the ingredients and a text about
the recipe in the recipe portal.

Changing a recipe

The author can change the ingredients for a recipe, such as varying the
quantity of an ingredient or deleting an ingredient.

Deleting a recipe

The author can delete the recipe. The associated ingredients and reviews
will then be deleted as well.

Categorizing a recipe

The author can assign a recipe to different categories.

Uploading large numbers of recipes via file upload

The author has the option of uploading multiple recipes to the recipe
portal via file upload.

The admin is responsible for the following use cases:

Sending an email newsletter

The admin can determine the recipes that are to be sent in a newsletter.
Importing users

The admin can import large numbers of users.

Checking data

The admin must check the consistency of the data in the database tables.
Assigning authorizations

The admin can assign authorizations to specific users so that they can
use more or different functions than other users.

User

Author

Admin

43

2 The Application Scenario

Datamodel Based on the use case diagram in Figure 2.1, the technical concept for imple-

menting the application scenario gets defined. In Figure 2.2, you can see the

data model for the application scenario.

user
userid
name
1
] > email label
author o+ | tabelid
admin - labeltext
recipe
recipeid
P 0.*
recipetitle
L1 creationdate
0.* . -
recipedescription
7
0.. 1*
review 1
reviewid ingredient
text o ingredientid
assessment quantity
unitofmeasure
ingredientname
Figure 2.2 Data Model for the Recipe Portal

In this data model, we use the following business objects:

User
The user is an actor in the system. It can be a regular user, an author, or
an admin.

Recipe

This central object represents step-by-step instructions on how to pre-
pare a particular dish. In addition to the title of the dish, it also contains
the individual instructions for preparing the dish.

Ingredient

This object represents the components of a recipe that are required to
implement it. The object consists of the number, a unit of measure (e.g.,
0z), and the actual ingredient (e.g., flour).

44

2 The Application Scenario

® Label
This object represents the categorization of recipes. A recipe can be
assigned multiple labels, such as “dessert” and “vegan.”

® Review
This object represents the feedback for a dish. A user can enter rating
texts for a recipe.

The Label Object

We’ll look at the label in more detail in Chapter 5. In the following sections,
we’'ll focus on the installation of the other objects.

2.2 Creating Dictionary Objects

This section describes the technical implementation of the individual
objects of our sample application in the SAP system, based on the business
concept from Section 2.1.

The following framework parameters and naming conventions apply to the
use of the recipe portal:

® QOriginal language of the objects is EN.

® Technical designations are provided in English, but comments and
language-dependent texts are in English.

m All object names in the application example contain the abbreviation
ACB.

Once you've connected our development environment, ABAP develop-
ment tools, to an SAP system, you can create the necessary objects in the
ABAP Dictionary as described next. These objects are used to map the data
model in the system. To do this, you must create domains, data elements,
and database tables as global repository objects. The advantage of those
global repository objects is that they can be used multiple times, while they
need to be created only once. This means that changes to these objects only
have to be made once, and all users can benefit from them.

Before the dictionary objects can be created, you must first create a pack-
age:

1. Select your project in the project explorer, right-click, and choose New -
ABAP Package from the context menu (see Figure 2.3).

[«

Framework
parameters

Creating dictionary
objects

Creating a package

45

2 The Application Scenario

New > [Project...
> Dl [ABAP Repository Tree...
Go Into - .
&% Generate ABAP Repository Objects... A3
o
(1 Folder
Show In Alt+Shift+W > B saLFie
Show in Local Terminal ¥
(& ABAP Class
K Delete bde @ ABAP Function Group
N |+ Alt+ Shift+ Dow o .
Remove from Context Ctrl+Alt+Shift+Down G ABAP Function Module
fw Import. @ ABAP Interface Create an ABAP package
7 Export.. i ABAP Package
Refresh F5 | i ABAP Project...
Close Project Ei ABAP Cloud Project...
Close Unrelated Projects ¥’ ABAP Repository Object... Ctrl+Shift+N
Source > [Example..
Coverage As > [Other. Ctrl+ M

Figure 2.3 Creating a Package

2. In the dialog that opens (see Figure 2.4), you n
properties with the values from Table 2.1.

eed to define the project

&
ABAP Package
(D) Specify awvalue for field 'Project’
Project: ™ Browse...
Mame: * $COOKBOOK
Description:™ ABAP Cookbook
Original Language:
[[J.Add to faworite packages
Superpackage: Browvse,.
L] < Back Text = Einish Cancel
Figure 2.4 Properties of a Package
Field Description Value
Project SAP system This value will be entered
automatically.
Name Name of the package $COOKBOOK
Description Description of the package | Recipe Portal
Package Type | Type of package Development

Table 2.1 Features of Our ABAP Package

46

2 The Application Scenario

3. Confirm the two dialog boxes that open next by clicking on the Next but-
ton. The $ character in the package name identifies our package as a local
package that doesn’t require any transport records.

The $CO0KBOOK package has now been created. It's now important to change
the value in the Default ABAP Language Version field for this package to
ABAP for Cloud Development (see Figure 2.5). This change ensures that all
repository objects within the package must comply with the rules of the
ABAP for cloud development language version setting.

The $COOKBOOK package must now be saved. It doesn’t need to be activated.
Now, we can create the repository objects.

ABAP language
version

Package: $COOKBOOK
General Data Package Properties

Application Component:

]
9

vsE Superpackage: |
Responsible: l:l Package Type: | Development

[] Adding further objects not possible
Default ABAP Language Version: | ABAP for Cloud Development ~

Transport Properties

Transport Layer: Browse

Software Component: | LOCAL Browse

Recerd objects changes in transport requests

PR 2

Browse...

Figure 2.5 Created SCOOKBOOK Package

First, we want to create the domains for the sample application. The
domain dictionary object defines the technical and semantic properties of
data types. At this point, we create a domain for the Recipe business object
as an example. You can proceed in the same way for the other objects pre-
sented in the previous section:

1. Right-click on the package for our application in the ABAP development
tools. In the context menu that opens, select the New - Other ABAP
Repository Object path (see Figure 2.6).

b tlj T OOIED OO NS ARAD Fechboch

E I ey > ABAP Class
ABAP Interface

ABAP Package

£ L? Derive Mew Tree...

®BEQe

L & Generate ABAP Repository Objects..

t =
g [Z Mew Knowledge Transfer Docurent B Other ABAP Repasitary Object

Figure 2.6 Creating a Domain via the Context Menu

2. In the search window that opens, search for the term “Domain”, and
then select it from the list (see Figure 2.7).

Creating a domain

47

2 The Application Scenario

| Domain|

w (= ABAP Dictionary
(7 Damain

@) < Back Mext = Finish

Cancel

Figure 2.7 Selecting ABAP Dictionary Object “Domain”

3. The dialog box shown in Figure 2.8 opens. Enter an appropriate name
and the corresponding description for the domain here. For our exam-

ple, we entered ZACB_RECIPE_ID.

MName: * FACE RECIFE_ID
Desaription; * Redpe Id
3:Eg5nal;anguage: M

Canae

Figure 2.8 Popup Window for Creating a Domain

4. Click on the Next button.

5. The ABAP Dictionary editor opens where you can enter the technical

properties of the domain (see Figure 2.9).

© Domain: ZACB_RECIPE_ID

Format

Data Type: ™ | MUMC Browse..,

Length:* |5

+ Fixed Yalues

Define the single fixed values or interval of walues

[intervals

Output Characteristics

Output Length: 5

Conversion Routine:

S | @ F e @

| type filter text

Fixed Value Description

<Enter ne

Figure 2.9 Properties of the Domain

48

2 The Application Scenario

Enter the following details:

— Data Type: Here, you can choose between 13 different basic data types.
They each represent the way in which numbers (integers and floating
point representations), text fields, or date and time information will
be displayed.

— Length: The length of a field value can either be fixed via the data type
or specified manually for text fields.

The semantic properties described are rudimentary properties. In addi-
tion to these, much more can be specified in the semantic properties of
the domain, for example, that only lowercase letters or only specific val-
ues are allowed. These restrictions can be made using fixed values or by
specifying a table.

6. Once you've made all the necessary entries, the domain still needs to be
saved. To do this, press the [Ctr1]+(s] keyboard shortcut.

7. Finally, the domain must be activated by pressing (ctr1]+(F3].

After creating the domains, you can create the data elements for the appli- Creating a data
cation. A data element is also a repository object and defines the semantic ~ element
meaning of an object. It’s used for database tables or for defining variables.

Here, we create a data element as an example to use it for fields in a data-
base table:

1. Unlike when creating the domain, you must call the context menu for
the Dictionary entry within the package structure (see Figure 2.10). Select
the New -+ Data Element path.

v @ $COOKBOOK_DATAMODEL (51) Data model
i Business Services (2
@ Core Data Services (11)

v |@ Digtiona ~ ~

v @ Data
g7e & Derive New Tree.. O Data Element

New > W ABAP Type Group

Figure 2.10 Creating a Data Element via the Context Menu

2. Inthe dialog that opens next (see Figure 2.11), you must enter a name and
a description for the data element. The name can have a maximum of
30 characters and can consist of letters, numbers, and underscores. It
must be introduced with a letter or a namespace prefix. Click on the Next
button.

49

2 The Application Scenario

Mame: * FACE_RECIFE_ID
Desaiption: = Redpe 1D

Original Language: FN

@ : < [Next = Tish Cance

Figure 2.11 Creating a Data Element

3. Enter the following values in the ABAP Dictionary editor (see Figure 2.12):

— Category: This field is used to specify the data type information.

— Type Name: The name of the data element must be specified here. It
can either be a domain provided by SAP or one that you've previously
created yourself. In our example, we specify the ZACB_RECIPE_ID
domain we created previously.

— Field Labels: This area displays the texts that are displayed in the user
interface (UI) when the data element is output. They are divided into
four levels according to length. For our example, it’s sufficient to
enter the same value everywhere.

= Data Element: ZACB_RECIPE_ID & v -
Data Type Information Field Labels Eder
Specfy the data type of the data element Provide field labels and s2t maximum lengths
Categony: Domain v Short Recipe ID |W?
Type Name: * ZACB_RECIPE_ID Browse... Mediun‘-:. Redipe 1D 20 ¥
Long: I Recipe ID |40 = |
Heading:l Redpe 1D 55 : .
+ Additional Properties

Creating a
database table

Figure 2.12 Technical Properties of a Data Element

4. Save the data element by pressing the (ctr1]+(S] shortcut.
5. In the final step, the data element must be activated ([Ctr1]+[F3]).

Once the domain and the data element have been created, you can create
the database tables for the individual business objects in accordance with
the data model described in the previous section. We’ll show you this here
using the database tables for the recipe as an example:

1. Open the context menu for the Dictionary entry within our project struc-

ture, and select the following entry: New - Database Table (see Figure 2.13).

50

2 The Application Scenario

~ |G Dictionar ~ % s @ ABAP Tyme G
2| L De Larou
v @ Data b W i k
@z7a & Derive New Tree... 5 Data Element
| ® Database Procedure Proxy
Dlezn Show In Alt+Shift+wy >
EZM Database Table

Figure 2.13 Creating a Database Table via the Context Menu

2. Enter a name and a description in the following dialog. Enter “ZACB_
RECIPE” as the name for our database table for the recipes. Once all man-
datory fields have been filled in, click on the Next button (see Figure 2.14).

Nama: * ZACE_RECIPE
Desaription: * Redpe

Original Languaga: EN

& < Back Mext = Firish Caneel

Figure 2.14 Creating a Database Table

3. The ABAP Dictionary editor opens and generates an initial template for
the database table in the form of annotations (see Listing 2.1):

@EndUserText.label : 'Recipes’
@AbapCatalog.enhancement.category : #NOT_EXTENSIBLE
@AbapCatalog.tableCategory : #TRANSPARENT
@AbapCatalog.deliveryClass : #A
@AbapCatalog.dataMaintenance : #RESTRICTED

define table zacb_recipe {

key client : abap.clnt not null;
t

Listing 2.1 Generated Code for a Database Table

The name of the database table can be found in the following line: Properties of the

database table
define table <table name>

In the ABAP Dictionary editor, you can now add all other fields of the data-
base table with the appropriate data element in the following format:
Field : data element

Ifatable field is a key, the Key attribute must also be added. Additional prop-

erties can be defined in the database table header via annotations (see Table
2.2).

51

2 The Application Scenario

Annotation Description

@EndUserText.label Description of the database table

@AbapCatalog.enhancement.category | Whether the table be extended

@AbapCatalog.tableCategory The table category involved

@AbapCatalog.deliveryClass Whether it’s an application or
Customizing table

@AbapCatalog.dataMaintenance How the table can be changed

Table 2.2 Annotations for a Database Table

Once all entries for the table have been made, the ZACB_RECIPE database
table looks like Listing 2.2.

@EndUserText.label : 'Recipes'
@AbapCatalog.enhancement.category : #NOT_EXTENSIBLE
@AbapCatalog.tableCategory : #TRANSPARENT
@AbapCatalog.deliveryClass : #A
@AbapCatalog.dataMaintenance : #RESTRICTED

define table zacb_recipe {

key client : abap.clnt not null;

key recipe_id : zacb_recipe_id not null;
recipe_name : zacb_recipe_name;
recipe_text 1 zacb_recipe_text;

}
Listing 2.2 Database Table ZACB_RECIPE

The database table only needs to be saved ([ctr1]+(S]) and activated
([cer1J+(F3)).

2.3 Generating an ABAP RESTful Application Programming
Model Application

Now that the dictionary objects have been created, you can generate an
ABAP RESTful application programming model application. For this pur-
pose, the data model of the application is exposed via an Open Data Proto-
col (OData) service, on the basis of which an initial simple user UI can
already be output.

52

2 The Application Scenario

Using Generators

The ABAP development tools provide multiple generators that help you
create boilerplate coding and objects by generating code blocks based on
parameters. This allows you to reach your goal much faster for new devel-
opments compared to a manual object creation. However, the generators
can create only entirely new objects. You can’t use them to edit existing
objects. You can’t restart the generation process based on a previous
result. For this reason, you should check the suggested parameter values
carefully to avoid manual reworking. In CDS views and the ABAP RESTful
application programming model in particular, many interdependent or
interrelated objects are used. It's difficult to fundamentally change,
rename, or delete these at a later date.

2.3.1 Generating an OData Service and a Virtual Data Model

You can proceed as follows to generate the OData service and the virtual
data model of your application:

1. Right-click on the ZACB_RECIPE database table you've just created in the
project structure, and select Generate ABAP Repository Objects from the
context menu (see Figure 2.15).

~ (@ Database Tables (1)

[FA ST oS

Mew Database Table

=7 @ MNew Data Definition
=za 0 Mew Table Index
mAA f Mew Extension Index

TEZA @ MNew Customer Data Browser Object

TIA w New Append Structure

= M) N
& Lhomi Duplicate...

@ Source C & Generate ABAP Repository Objedts...

Figure 2.15 Selecting the “Generate ABAP Repository Objects” Item from the
Context Menu

2. Inthe generator that opens next, select the OData Ul Service object type,
and click the Next button (see Figure 2.16).

You'll then receive the error message shown in Figure 2.17, which
informs you that the database table is missing two fields with an admin-
istrative function, which are used to record its last change.

[«

Creating an
OData Ul service

53

2 The Application Scenario

Referenced Ohject: * | ZACE_RECIPE

Browese...

type filter text

w (= ABAP-RESTRul-Anwendungsprogramrmiermodell
OData Ul Service
OData Web APl Service

w [= Business Configuration Management
Maintenance Object

@

< Back

OData Ul Service

An OData Ul service makes it possible to consume a
RAP service with a Fiori Elernents Ul or other Ul clients, It
creates all Ul-specific information that is annotated in
the RAP artifacts in the OData service metadata, 4 Ul
service can be previewed with the Fiori Elements &pp
Prewview in the service binding artifact,

This generatar creates all the development objects that
are relevant for a business object and for a RAP service
on the basis of one database table, The end resultis a
full-blown RAP Ul service,

Specifically, the following objects are created:

CDSwiew entity
CD3 behaviar definition

ABAP implementation class

CDS projection wiew entity

CDS projection behavior definition

Draft database table

Metadata extension

CD3 service definition

Service binding

Finish Cancel

Figure 2.16 Popup Window of the Generator for an OData Ul Service

Select Generator

€3 Required administrative field(s) is missing in the reference table

A>
Dl

Figure 2.17 Error Message When Generating the OData Ul Service

These fields are required within an ABAP REST{ul application program-
ming model application and must be added to all underlying database
tables. If you already have experience with ABAP RESTful application

programming model applications, you can also complete this step

directly when creating the database tables.

In Listing 2.3, we extend the database table with the aforementioned

administration fields.

define table zacb_recipe {

key client
key recipe_id
recipe_name
recipe_text
created_by
created_at

abap.clnt not null;
zacb_recipe_id not null;
zacb_recipe_name;
zacb_recipe_text;
abp_creation_user;
abp_creation_tstmpl;

54

2 The Application Scenario

local_last_changed_by : abp_locinst_lastchange_user;
local_last_changed_at : abp_locinst_lastchange_tstmpl;
last_changed_at : abp_lastchange_tstmpl;
last_changed_by : abp_lastchange_user;

¥
Listing 2.3 Extension of Database Table ZACB_RECIPE

3. Activate the extended database table, and right-click to call the generator
again.

4. In the dialog step that follows, you must specify a package. Select the
package of our sample application, and confirm by clicking the Next but-
ton.

5. The subsequent dialog box (see Figure 2.18) displays the default names of
the various objects in our ABAP RESTful application programming
model application that are created when the OData Ul service is gener-
ated. Check the suggested names on all layers listed in the RAP Layers
section, and continue by clicking the Next button.

5 Generate ABAP Repositary Objects O b4
Configure Generator {>

Specify walues forthe generator, "OData Ul Service’ L
RAP Layers = Behavior

Specify the name of the ABAP behawior
| implermentation class,

| type filker text

v Business Object Irplementation Class: * | ZBP_R_ACE_RECIPE
Data hdodel

Behavior Diraft Table Marme: * ZACE_RECIPE_D

Service Projection
w Business Service
Service Definition
Service Binding

'/?j' < Back Finish Cancel

Figure 2.18 ABAP RESTful Application Programming Model Application Objects
Created by the Generator

6. Enter a transport request in the step that follows. After that, you can start
generating the objects by clicking the Finish button.

55

2 The Application Scenario

[1]

Naming the Objects

Remember to check the names of the generated objects. They should
match the conventions you've chosen. If that’s not the case, you need to
correct the names directly at this point. A subsequent correction can still
be made, but this results in more work.

2.3.2 Generated CDS Entities of the ABAP RESTful Application
Programming Model Application

Generated Table 2.3 lists the individual objects of the ABAP RESTful application pro-
CDS entities gramming model application that are created via the generator.

Object Name Explanation

Base entity ZACB_R_RECIPE This data definition defines the data
model of the root entity.

Basic behavior definition ZACB_R_ This behavior definition describes the

RECIPE standard transactional behavior of the

base entity. The behavior definition can
be used directly in the managed sce-
nario and also implements the draft
concept of the ABAP RESTful application
programming model (see Chapter 1,
Section 1.6).

Behavior class ZBP_ACB_R_RECIPE This ABAP class provides the implemen-
tation of the behavior defined in the
behavior definition.

Draft table ZACB_RECIPE_D This database table is used to temporar-
ily store the draft data at runtime. It's
managed by the ABAP RESTful applica-
tion programming model framework.

Projection entity ZACB_C_RECIPE This data definition is used to define the
projected data model of the entity that
is relevant for the current scenario.

Projection behavior definition ZACB_ | This behavior definition describes the
C_RECIPE behavior of the underlying base entity.

Metadata extension ZACB_C_RECIPE The metadata extension is used to dis-
play the Ul of the application via CDS
annotations.

Table 2.3 Generated Objects Overview: ABAP RESTful Application Programming
Model Application

56

2 The Application Scenario

Object Name Explanation

Service definition ZACB_UI_RECIPE A service definition is used to define the
relevant entity sets for our service and
also to provide aliases if required.

Service binding ZACB_UI_RECIPE_04 | The service binding is used to make the
generated service definition available as
an OData Ul service.

Table 2.3 Generated Objects Overview: ABAP RESTful Application Programming
Model Application (Cont.)

These objects were generated automatically. The relationships between the Relationships
individual objects are illustrated in Figure 2.19. All objects are available tous ~ between the objects
as CDS entities.

Service Binding

SAP Fiori App ZACB_UI_RECIPE_04

Bind to Scenario
and Log

Service Definition
ZACB_UI_RECIPE

Define
Scope

Add
Projection Entity Behavior
ZACB_C_RECIPE

Projection
Behavior Definition
ZACB_C_RECIPE

Metadata
Extension
ZACB_C_RECIPE

Enrich
Information

Add Implement
Draft Table Basic Entity Behavior Behavior ABAP Code

Behavior Definition
ZACB_RECIPE_D ZACB_R_RECIPE ZACB_R_RECIPE ZACB_ACB_RECIPE

Database Table
ZACB_RECIPE

Basic

Figure 2.19 CDS Entity Names of the Generated Objects and Relationship
Diagram

You can now view the individual CDS entities and expand them as required. Base entity
We want to start with the ZACB_R_RECIPE base entity (see Listing 2.4). This

CDS view defines the Recipe business object. A CDS view is a virtual struc-

ture. It can be used to combine complex and calculated data from different

sources and merge them into a single view.

@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Base entity recipe’

57

2 The Application Scenario

Behavior definition
of the base entity

define root view entity ZACB_R_Recipe
as select from zacb_recipe

key recipe_id as Recipeld,

recipe_name as RecipeName,

recipe_text as RecipeText,
@Semantics.user.createdBy: true

created_by as CreatedBy,
@Semantics.systemDateTime.createdAt: true
created_at as CreatedAt,
@Semantics.user.localInstancelastChangedBy: true
local_last_changed_by as LocallastChangedBy,
@Semantics.systemDateTime.locallnstancelastChangedAt: true
local_last_changed_at as LocallastChangedAt,
@Semantics.systemDateTime.lastChangedAt: true
last_changed_at as LastChangedAt,
@Semantics.user.lastChangedBy: true
last_changed_by as LastChangedBy,

}
Listing 2.4 Base Entity ZACB_R_RECIPE

The CDS code contains the following sections: First, the access control to
the CDS view is described, and the label is specified. This is followed by the
definition of a root view entity and access to a database table from which
the data is to be imported (as select from). The last part describes the avail-
able data of the base entity. Here, it’s specified which fields are key fields,
and aliases are assigned for the field identifiers.

Let’s now take a look at the behavior definition for the base entity (see Lis-
ting 2.5). Behavior definitions are a crucial part of CDS data models because
they determine what can be done with our data.

managed implementation in class zbp_acb_r_recipe unique;
strict (2);
with draft;

define behavior for ZACB_R_Recipe alias Recipe
persistent table zacb_recipe

draft table zacb_recipe_d

etag master LocallastChangedAt

total etag LastChangedAt

authorization master (global)

{

58

2 The Application Scenario

field (mandatory : create)
Recipeld;

field (readonly)
CreatedAt,
CreatedBy,
LastChangedAt,
LocallastChangedAt,
LocallastChangedBy;

field (readonly : update)
RecipelD;

create;
update;
delete;

draft action Edit;

draft action Activate optimized;
draft action Discard;

draft action Resume;

draft determine action Prepare;

mapping for zacb_recipe

{
Recipeld = recipe_id;
RecipeName = recipe_name;
RecipeText = recipe_text;
CreatedBy = created_by;
CreatedAt = created_at;

LocallastChangedBy = local_last_changed_by;
LocallastChangedAt = local_last_changed_at;
LastChangedAt = last_changed_at;
LastChangedBy = last_changed_by;

¥
Listing 2.5 Behavior Definition ZACB_R_RECIPE for the Base Entity

In the behavior definition, the behavior is defined using the Behavior Defi-
nition Language (BDL). The behavior definition consists of the following
information:

® Type of scenario
The specification of the scenario determines the automatic availability

Components of the
behavior definition

59

2 The Application Scenario

of operations. In the managed scenario, the method behavior is deter-
mined by the framework and can be supplemented by a custom logic. In
the unmanaged scenario, you must implement the method.

Strict mode

In strict mode, additional syntax checks are applied to behavior defini-
tions. This means that obsolete syntax can’t be used, and implicit opera-
tions must be declared explicitly. The latest mode is always recom-
mended (currently this is strict(2)).

Alias

An alias specifies a descriptive name for the business object so that the
CDS view name doesn’t always have to be used.

Draft mode (with draft)

The draft mode is a function that allows end users to start and pause
their work on the entities and resume it later without having to save this
data directly in the database. Following are the important objects for this
mode:

— DraftTable: Name of the draft table.

— Totaletag: Timestamp for the draft.

- Draftaction: Standard actions for the draft.

Lock

The lock master information is used to lock the instance during a chang-
ing action.

ETag

ETag prevents accidental overwriting when an object is edited concur-
rently. The etag master <field name> specification defines the field in
which a timestamp is to be saved.

Authorization checks

The authorizationmaster (instance) definition calls the corresponding
method in the implementation of the behavior class in which an autho-
rization check is carried out.

Field properties (field)

The field properties define the behavior of a field. The following state-
ments are used for this purpose:

- Field(readonly): Display only

— Field(readonly:update): Only display, except during creation

— Field(mandatory): Required field

- Field(suppress): Don’t display metadata

— Field(numbering:managed): Automatic numbering

60

2 The Application Scenario

® Standard actions
The standard actions to be implemented are specified. Possible actions
are listed here:

— CREATE: Adding a data record
— UPDATE: Updating a data record
— DELETE: Deleting a data record
® Mapping
As part of the mapping action, the field names of the database table are
assigned to those with field names in the CDS entity.

Next, take a look at the draft table (see Listing 2.6). This is a separate data- Draft table
base table for data in the design stage with the structure of the respective
entity, that is, the field names correspond to those from the respective CDS

entity.

@EndUserText.label : 'Draft recipe'
@AbapCatalog.enhancement.category : #EXTENSIBLE_ANY
@AbapCatalog.tableCategory : #TRANSPARENT
@AbapCatalog.deliveryClass : #A
@AbapCatalog.dataMaintenance : #RESTRICTED

define table zacb_recipe_d {

}

key mandt : mandt not null;

key recipeid : zacb_recipe_id not null;
recipename : zacb_recipe_name;

recipetext : zacb_recipe_text;

createdby : abp_creation_user;

createdat : abp_creation_tstmpl;
locallastchangedby : abp_locinst_lastchange_user;
locallastchangedat : abp_locinst_lastchange_tstmpl;
lastchangedat : abp_lastchange_tstmpl;
lastchangedby : abp_locinst_lastchange_user;
"%admin" : include sych_bdl_draft_admin_inc;

Listing 2.6 Draft Table ZACB_RECIPE_D

In addition to the fields of the original database table, the draft table also con-
tains the administration fields of the SYCH_BDL_DRAFT_ADMIN_INC structure.

Furthermore, the ZACB_C_RECIPE projection view was created (see Listing 2.7).
This projection view serves as a link between the ZACB_R_RECIPE base entity
and the application. With the help of such projection entities, the fields and
functions of applications can be further restricted because the full range of

61

Projection entity

2 The Application Scenario

Behavior definition
of the projection
entity

functions of the base entities may not be required for the application. Vari-
ous projection entities can therefore be created from a base entity and
made available to the application level. Compared to the base entity, our
projection entity only contains the following addition:

provider contract transactional_query
as projection on ZACB_R_Recipe

This command is used to indicate that it’s a projection of the ZACB_R_Recipe
base entity. In addition, the behavior of the projection and the behavior of
various functions are defined (provider contract, see Listing 2.7).

@AccessControl.authorizationCheck: #CHECK
@Metadata.allowExtensions: true
@EndUserText.label: 'Projection entity recipe’
@0bjectModel.semanticKey: ['RecipeID’]
define root view entity ZACB_C_Recipe

provider contract transactional_query

as projection on ZACB_R_Recipe
{

key Recipeld,

RecipeName,

RecipeText,

LocallastChangedAt,

}
Listing 2.7 Projection Entity ZACB_C_Recipe

In addition to the base entity with its behavior definition, a ZACB_C_Recipe
behavior definition was also created for the projection entity (see Listing
2.8).

projection;

strict (2);

use draft;

define behavior for ZACB_C_Recipe alias Recipe
use etag

use create;

use update;

use delete;

use action Edit;

use action Activate;
use action Discard;
use action Resume;

62

2 The Application Scenario

use action Prepare;
use association _Ingredient { create; with draft; }
use association _Review { create; with draft; }

}
Listing 2.8 Behavior Definition of the Projection Entity

In addition to the base and projection entities and their behavior defini-
tions, a metadata extension was generated. A metadata extension uses
annotations to map the graphical UL. Among other things, the following UI
annotations can be found here:

® Facets are areas of the Ul that are defined using the @UI.facet annota-
tion. Listing 2.9 shows an example of such an annotation.

@UI.facet: [{

id: 'idIdentification’,

type: #IDENTIFICATION_REFERENCE,
label: 'Recipe’,

position: 10

H]

Listing 2.9 Annotation for a Facet

A special facet is the one for the identification area, which is defined
using the @UI.identification annotation. Fields in this area are intended
to identify the object. This annotation (see Listing 2.10) must be assigned
to all fields that are supposed to be displayed here.

@UI.identification: [{
position: 10 ,
label: *'

bl

Recipeld;

Listing 2.10 Annotation for the Identification Area

® General field annotations can be used in different places. The following
annotations are possible here:
— Hidden: The field isn’t displayed and can’t be added during personal-
ization.
— Position: This specifies the order of the fields.
— Label: This specifies the name of the field in the UL

The service definition (see Listing 2.11), which is also generated, describes
which CDS entities of a data model are to be published. With the help of an
alias name, the technical names for the service can be replaced by more
descriptive names.

Metadata definition

Service definition

63

2 The Application Scenario

Service binding

Manual or auto-
matic publication

[]

@EndUserText.label: 'Recipe’
define service ZACB_UI_RECIPE {
expose ZACB_C_Recipe as Recipe;

}

Listing 2.11 Service Definition

The service binding is generated based on the service definition. You can
also take a closer look at this. Service bindings assign a protocol to the pre-
viously defined services. They can be published directly locally. The follow-
ing binding types can be selected:
m OData 2.0 (V2) or OData 4.0 (V4)
SAP recommends using the OData V4 version, which supports all func-
tions such as the draft function.
= Ul
This transfers the Ul annotations.
= Web API
This creates a web service without Ul annotations.
= [nA-Ul
This is used for analytical data models.
= SQL-Web API
This provides access with ABAP SQL.

2.3.3 Publishing the OData Service

An OData V4 service is made available with the generated service binding.
If it has the Unpublished status, there are two ways to publish it:

® Button click
You can click on the Publish button to publish the service automatically.
® Manual activation via Transaction /IWFND/V4 ADMIN
Depending on the SAP S/4HANA version, automatic publishing may not
yet be supported. If so, a manual activation via Transaction /IWFND/V4
ADMIN is necessary.

OData
Open Data Protocol (OData) is an HTTP-based protocol for the exchange of
data between systems. OData allows you to request and write data to
resources using familiar operations such as GET, POST, PUT, DELETE, and
PATCH.

64

2 The Application Scenario

To publish the OData service manually, follow these steps: Publishing in
Transaction

1. Logontothe SAP system, and call Transaction /IWFND/V4_ADMIN. This /IWEND/V4_ADMIN

transaction enables OData V4 services to be published.
2. Click on the Publish Service Groups button.
3. Search for the service to be published using the System Alias and Service

Group ID fields. You can also use wildcards. Click on the Get Service
Groups button to start the search (see Figure 2.20).

v v (5 Get Service Groups Cancel
Filter
e 1
System Alias | [0
L =l
Service Group ID ZACE"RECIPE*

Not Published Service Groups

@ |la Y| 4B | # | E- Publish Service Groups
Publish Service Groups
Group ID Repository ... Service D

ZACB_UI_RECIPE_O4

Figure 2.20 Search Filters and List of All Service Groups Found

4. As a result, all service groups matching the search criteria will be dis-
played. In our example, this list only contains one entry.

5. Select the entry with the appropriate Group ID, and click on the Publish
Service Groups button.

6. You can change the description of the service group in the dialog box
that opens.

7. In the information window that opens next, click on (Execute), and
then click on the Back button.

At this point, the service has been published in a service group and can be
used.

2.3.4 Testing the Application

Using the preview function of the ABAP development tools, you can now “Published” status
check directly in the development environment whether the publication of

the OData Ul service was successful. To do this, you need to call the service

binding. If the Published status is displayed here in the Local Service End-

point field (see Figure 2.21), you can open a preview of the SAP Fiori app UL

65

2 The Application Scenario

@ Service Binding: ZACE_UI_RECIPE_O4

General Information

This section describes general information about this service binding

OData W4 - LI

Binding Type:

Services

Define services associated with the Service Binding
Default Authorization Values: [<Nat yet created, Activate service binding.»

B &~ e ®

Service Yersion Details
Wiew information on selected service wersion
Service Information
Serwice URL: | fsap/opu/odatadfsap/zach_ui_recipe_od/sredfsap/zach_ui_recipe/0001/

Local Service Endpoint: Fublished Unpublish
e filter text
| type filter text | typ
Entity Set and Assaciation Previe..,,
Service Na., Version APIS. Service Definition Add Service..,
@ Recipe
~ ZACB_ULF
1.00 Mot R... ZACB_UIRECIPE Rernove

Preview of the

Figure 2.21 Publication Status of the Service Endpoint in the Service Binding

Now select the appropriate entity (here, Recipe) in the Service Binding view

SAPFioriapp and click on the Preview button to open the preview. You can see the UI of
the generated SAP Fiori app in preview mode in Figure 2.22.
Standard - @~
Editing Status:
Al v Adapt Filters (1)
~LR
Recipes Create B
I:I Recipe ID Recipe Name Recipe Text ‘
To start, set the relevant filters and choose "Ga'. ‘
Figure 2.22 Preview Mode of the SAP Fiori App
2.4 Creating Associations
Adding more Before we look at the functions of the generated app from the user’s per-
entities

Creating a data
definition

spective in the following section, we need to add the Ingredient and Review
entities and link them to the Recipe root entity. In this section, we’ll show
you how to create an association for the root entity using the Ingredient
entity. You can proceed in the same way for all other associated entities, in
our example for the Review entity.

First, you must create a base entity for the associated entity. To do so, follow
these steps:

1. Open the context menu of the Data Definitions folder (see Figure 2.23),
and select the New Data Definition item.

: |—i Data Definitions (6 @ Mew Data Definition

» (@ Metadata Extensiol
& Dictionary (24)

& Deriva New Tree...

Figure 2.23 Context Menu Item: “New Data Definition”

66

2 The Application Scenario

2. In the dialog that opens, enter a name and description for the data defi-
nition. For our example, enter “ZACB_R INGREDIENT” as the name. In
the Referenced Object field, you must also enter a referenced object; in
our example, this is the database table for the Ingredient object (see
Figure 2.24). Then, click the Next button.

Name: * ZACE_R_INGREDIENT
Desaiption: * Ingredient

Original Language: EN

Referenced Object;l ZACB_ING REDIENTI Browse...

I:’?,J\ < Bade Mext » Finish Cancel

Figure 2.24 Creating the Data Definition

3. In the subsequent step, select a transport request and confirm this by
clicking the Next button.

4. Select a template. In our case, we want to create our own entity and
therefore select defineViewEntity as the template (see Figure 2.25). This
template generates the most important fields for the data definition.

5. Confirm the selection of the template by clicking the Finish button.

&} Mew Data Definition O X
Templates
Select ame of the available templates, .
Use the selected ternplate
MNarme Description
w [Wiew (creation)
@ definetfiewEntity Define Yiew Entity
(] defineRootViewEntity Define Root Wiew Entity
Q defineiewEntitith ToParentlssociation Define View Entity with To-Parent Association
@ defineview Define View {obsolete as of A5 ABAP 7.57)

fitbapCatalog. viewEnhancementCategory @ [#NONE]
fifkccessControl. authorizationCheck: #NOT_REQUIRED
fIEndUserText. label: "${ddl_scurce_description}”
fiMetadata. ignorePropagatedfnnotations: true
@objectModel . usageType:{

serviceQuality: #X,

sizeCategory: #5,

datallass: #MINED

¥

define view entity ${ddl_source_name} as select from ${data_scurce name}

${data_source_elements}¥{curscr}

}

':?3' < Back Mext = Cancel

Figure 2.25 Selecting a Template for the Data Definition

67

2 The Application Scenario

Creating a
projection entity

The CDS coding will then be generated from Listing 2.12 based on the tem-
plate and the referenced object.

define view entity ZACB_R_Ingredient select from zacb_ingredient
{
key recipe_id as Recipeld,
key ingredient_id as IngredientId,
name as Name,
guantity as Quantity,
unit as Unit,
created_by as CreatedBy,
created_at as CreatedAt,
local_last_changed_by as LocallastChangedBy,
local_last_changed_at as LocallastChangedAt,
last_changed_at as LastChangedAt,
last_changed_by as LastChangedBy

}
Listing 2.12 Generated Base Entity ZACB_R_Ingredient

Now you need to repeat steps 1-4 to create a projection entity. However,
this time you don’t select a template (see Figure 2.26), but click directly on
the Finish button.

Templates

Select one of the available termplates, @

[Use the selected template

MName Description

w Wiew {creation)
definewiewE ntity Define Wiew Entity
defineRootyiswEntity Define Root Wiew Entity
defineviewEntityiith ToParentissociation Define Wiewr Entity with To-Parent Association
definetiens Define Wiew {obsolete as of AZABAP 7.57)

Figure 2.26 Don’t Select a Template for the Projection Entity

An empty data definition gets created. You can use the defineProjection-
View pattern to trigger an automatic code generation. For this purpose, you
should enter “defineProje..” in the empty editor window. The quick fix
function of the ABAP development tools will then suggest the appropriate

template (see Figure 2.27).

68

2 The Application Scenario

B 1 definefrels

{E] defineProjectiontiew - Define Projection Yiea

Figure 2.27 Selecting a Code Template for a Projection View

When you select the template, the code will automatically be generated
from Listing 2.13.

@AccessControl.authorizationCheck: #NOT_REQUIRED

@EndUserText.label: 'Ingredient'

@Metadata.ignorePropagatedAnnotations: true

define view entity ZACB_C_Ingredient as projection on
data_source_name

¥
Listing 2.13 Generated Code for the Projection View

Add the name of the base entity here as data_source_name. You can also
specify the fields of the base entity and use key to define which fields are
key fields (see Listing 2.14).

define view entity ZACB_C_Ingredient
as projection on ZACB_R_Ingredient as Ingredient
{
key Recipeld,
key IngredientId,
Name,
Quantity,
Unit,
LocallastChangedAt,
LocallastChangedBy,
LastChangedAt,
LastChangedBy,

¥
Listing 2.14 Completed Code of the Projection Entity

Now, the two base entities must first be linked to each other via an associa-
tion. To do this, we first create a composition from the root entity in the
direction of the linked entity (see Listing 2.15). A composition defines an
existential dependency between two entities, whereby the child entity
can't exist without the parent entity.

Adding entity
names and fields

Linking the
base entities

69

2 The Application Scenario

Linking the
projection entities

define root view entity ZACB_R_Recipe
as select from zacb_recipe
composition [0..*] of ZACB_R_Ingredient as _Ingredient

{

key recipe_id as Recipeld,
recipe_name as RecipeName,

Listing 2.15 Specifying a Composition Link

At the level of the associated entity, you must use association to parent to
add an association to the root entity. This creates an upward relationship
with the root entity (see Listing 2.16).

@EndUserText.label: 'CDS entity Ingredient'
define view entity ZACB_R_Ingredient
as select from zacb_ingredient
association to parent ZACB_R_Recipe as _Recipe
on $projection.Recipeld = _Recipe.RecipelD

{

key recipe_id as Recipeld,
key ingredient_id as IngredientId,

Listing 2.16 Adding “association to parent”

Alink between the two entities must also be created at the level of the pro-
jection entities. In the root entity, you must add the redirected to composi-
tion child expression (see Listing 2.17).

define root view entity ZACB_C_Recipe
provider contract transactional_query
as projection on ZACB_R_Recipe

{

_Ingredient : redirected to composition child
ZACB_C_Ingredient,

}
Listing 2.17 Adding the Link to the Child Entity

A similar link is made from the associated entity to the root entity. Here,
you need to enter the redirected to parent addition (see Listing 2.18). The
relationship defined in this way is used to navigate between the entities in
the service binding.

70

2 The Application Scenario

define view entity ZACB_C_Ingredient
as projection on ZACB_R_Ingredient as Ingredient

{

_Recipe : redirected to parent ZACB_C_Recipe

¥
Listing 2.18 Redirected to Parent

You must define a behavior for each entity. To do this, you want to extend
the behavior definition as shown in Listing 2.19:

® Associations are published in the entities.

®m Data records of associated entities such as the ingredient are created via
the root entity.

®m The behavior of locks and authorizations takes place via the root entity.

managed implementation in class zbp_acb_r_recipe unique;
strict (2);
with draft;

define behavior for ZACB_R_Recipe alias Recipe
association _Ingredient { create; with draft; }

define behavior for ZACB_R_Ingredient alias Ingredient
persistent table zacb_ingredient
lock dependent by _Recipe
authorization dependent by _Recipe
draft table zacb_ingredien_d
{
update;
delete;
field (readonly) Recipeld;
field (readonly) IngredientId;

association _Recipe { with draft; }
mapping for zacb_ingredient

{

¥
Listing 2.19 Link in the Behavior Definition of the Base Entities

Extending the
behavior definition

71

2 The Application Scenario

Extending the
metadata definition

Extending the
service definition

These associations must also be defined in the behavior definition of the
projection entities (see Listing 2.20).

projection;

strict (2);

use draft;

define behavior for ZACB_C_Recipe alias Recipe

use association _Ingredient { create; with draft; }
define behavior for ZACB_C_Ingredient alias Ingredients

use association _Recipe { with draft; }

Listing 2.20 Link in the Behavior Definition of the Projection Entities

To ensure that the linked entities are displayed in the SAP Fiori app, both
the metadata extension of the root entity must be extended and a separate
metadata extension must be created for the child entities. A facet must be
added to the metadata extension of the root entity (see Listing 2.21).

{

id : 'controlSection',
type : HLINEITEM_REFERENCE,
position : 20,

targetElement: '_Ingredient'

b

Listing 2.21 Metadata Extension of the Root Entity

The targetElement annotation is used to indicate that the metadata exten-
sion of the associated entity is supposed to be called and displayed in this
section.

Finally, the association must be specified in the service definition (see Lis-
ting 2.22).

@EndUserText.label: 'Recipe’
define service ZACB_UI_RECIPE {
expose ZACB_C_Recipe as Recipe;
expose ZACB_C_Ingredient as Ingredient;

}
Listing 2.22 Extending the Service Definition

72

2 The Application Scenario

Once all created and modified development artifacts have been success-
fully activated, the link between the two entities can be seen in the service
binding (see Figure 2.28).

Service Yersion Details
Wiews information on selected service version
Service Information
Service URL: | fsapfopufodataddsap/rach_ui_recipe_odfsred/sap/zach_ui_recipe/0001/

| type filter text

Entity Set and Association Previews..,
v @9 Ingredient

3 _Recipe
v e Recipe

“3 _Ingredient

Figure 2.28 Service Binding with Associations

Repeat the steps shown here for all associated entities.

2.5 Application Scenario from a User’s Perspective

We now want to explain the basic functions of our SAP Fiori app. This app
serves as the basis for all the functions we’ll successively add to the applica-
tion in this book. For this purpose, you should display the application using
the Preview function of the service binding.

The recipe portal is displayed as an SAP Fiori app in a browser. The individ- List view of the
ual recipes are displayed in a list view. Our application doesn’t yet contain ~ recipes
any recipes (see Figure 2.29).

Standard - @ v
Editing Status:
Al v Adapt Filters (1)
~LR
Recipes Create B =
) Recipe ID Recipe Hame Recipe Text ‘
To start, set the relevant filters and choose "Go'. ‘

Figure 2.29 Homepage of the Recipe Portal

The Go button is used to import all recipes in the recipe portal from the SAP
backend and display them in the list (see Figure 2.30).

73

2 The Application Scenario

Standard’ -
Recipes (10)

() RecipelD Recipe Name
01 Rice with Meat
O =z Spaghetti Carbonara
0O s Pasta Bake
) 4 Apple Pancakes
0O s Bahmi Goreng
) s Farmer's Breakfast
)z Bernburger Onions
[Simple Cookies
s Meatballs wif Potatoe
) 10 Komar Cookies

Create

Recipe Text

Rice with Meat for 2 people - delicious Like
mom's

Carbonara for 1to 2 people - only authentic with

cream and lots of pepper

Pasta Bake, 3 to 4 servings - don't forget the
nutmeg(l}

Apple Pancakes - 2 pieces - also as Apple
Kaiserschmarrn

Baked Moodles with Meat
A Breakfast Classic
One of my favorite childhood meals.

Quick to make - but guite hard

A dish for when you need something quick - tastes

quite good.

Relatively simple, incredibly sweet but soft

@ v

B & @ v

>

Figure 2.30 Display of All Recipes in the SAP Fiori App

single view of If a specific recipe is selected, the user is taken to the individual view of this

arecipe recipe (see Figure 2.31). Information such as the recipe name and the recipe

text as well as all ingredients and reviews are displayed here in table format.

Recipe m Delete | [v
Recipe ID: Recipe Text:
1 Rice with Meat for 2 people - delicious like mom's
Recipe Name:
Rice with Meat

Ingredients {(10) B @
Ingredient ID Ingredient Name Amount Ingredient ...

1 Rice 150 G >

2 Turkey Schnitzel 2 PC >

3 wegetable broth 3 TS >

4 Qnion 2 PC >

5 Rosemary powder 2 PC >

6 Pepper 1 7S >

7 Salt 1 75 >

8 Olive Qil 2T >

9 Peas 300 G >

10 grated cheese 4T >

Reviews B

uuiD Review Text Name ‘

Mo items available. ‘

Figure 2.31 Single View of a Recipe

74

2 The Application Scenario

To add a new recipe, the user must click on the Create button in the initial
view (refer to Figure 2.30). A popup window appears in which a recipe ID of
up to five digits must be entered (see Figure 2.32).

Create

Recipe [D:*

(e

b |

Figure 2.32 Specifying a Recipe ID

A name (Recipe Name field) and preparation instructions (Recipe Text field)
must then be entered (see Figure 2.33).

Adding a recipe

Recipe ID: Recipe Text:
16 Student type

Recipe Mame:

Pasta with Sauce

Figure 2.33 Entering the Recipe Data

Numbering

An explicit numbering by the user is required in the generated application.
In Chapter 9, we show you how you can improve this using internal num-
bering.

[«

Next, you can add the ingredients for the recipe. To do this, click on the Cre- Adding an
ate button. This opens the creation view for an ingredient (see Figure 2.34). ingredient
There you can enter the required information for the ingredient, such as
the name, quantity, and unit.
Ingredient
Ingredient 1Dz Amount:
1 500
Ingredient Mame: Ingredient Unit:
| Spaghetti g

Figure 2.34 Entering an Ingredient

75

2 The Application Scenario

After confirming your entries by clicking the Apply button, the ingredient
will be added to the recipe but not yet saved in the database. The data gets
saved when you click on the Create button in the Recipe view (see Figure
2.35).

Recipe
Recipe ID: Recipe Text:
16 Student type
Recipe Mame:
Pasta with Sauce
Ingredients (2) Create @ B @
(] Ingredient ID Ingredient Name Amount Ingredient ... ‘
I[] 1 Spaghetti 500 g >
I] 2 Wegetable onion 2 PC > |
Reviews Create @ &
|:| uuID Review Text Hame ‘
Mo items available. ‘

Figure 2.35 Recipe View with Details of All Ingredients

2.6 Summary

In this chapter, we've presented the sample application of a recipe portal
that we’ll use for the examples in this book. We derived the technical con-
cepts of the application from the use case. The repository objects domain,
data element, and database table were then created.

Based on the database table for the recipes, we generated an ABAP RESTful
application programming model application and then described it step-by-
step. Among other things, we discussed the difference between CDS base
entities and projection entities. We've also introduced important compo-
nents of the ABAP RESTful application programming model such as the
behavior and metadata definition, the service definition, and the service
binding.

76

2 The Application Scenario

For a recipe portal, it doesn’t suffice to enter recipe names and recipe texts
because it must also be possible to maintain ingredients. To do this, we've
manually extended the automatically generated application. It's now also
possible to add reviews to a recipe. We've shown you how to build relation-
ships between multiple associated CDS entities and their behavior defini-
tions.

77

Fabian Lupa, Sven Treutler

ABAP Cookbook

Practical Recipes for Modern
Programming

Walk through practical tutorials
using modern ABAP tools and
techniques

Get solutions for simple and complex
programming tasks

Work with ABAP RESTful application
programming model, ABAP Cloud,
business configuration maintenance
objects, and more

@ www.sap-press.com/6198

Fabian Lupa is a senior software engineer and trainer at adesso, where he's
responsible for employee training and ABAP development. Sven Treutler is an
ABAP developer at rku.it GmbH, where he focuses on new technologies and
quality assurance in the ABAP environment.

ISBN 978-1-4932-2777-8 » 444 pages » 12/2025

E-book: $84.99 « Print book: $89.95 - Bundle: $99.99 s Rheinwerk
Publishing

http://www.sap-press.com/6198
http://www.sap-press.com/6198

