

Imprint

This e-book is a publication many contributed to, specifically:

Editor Hareem Shafi
Acquisitions Editor Hareem Shafi
German Edition Editor Janina Schweitzer
Translation Lemoine International, Inc.
Copyeditor Tanya Thamkruphat
Cover Design Bastian Illerhaus
Photo Credit Shutterstock: 295387826/©somsak nitimongkolchai
Layout Design Vera Brauner
Production E-Book Kyrsten Coleman
Typesetting E-Book SatzPro, Germany

We hope that y ou liked this e-book. Please share your feedback with us at the e-mail
address: support@rheinwerk-publishing.com.

The Library of Congress Cataloging-in-Publication Control Number
for the printed edition is as follows: 2022945836

ISBN 978-1-4932-2379-4 (print)
ISBN 978-1-4932-2380-0 (e-book)
ISBN 978-1-4932-2381-7 (print and e-book)

1st edition 2023
1st German edition published 2022 by Rheinwerk Verlag

© 2025 by:
Rheinwerk Publishing, Inc.
2 Heritage Drive, Suite 305
Quincy, MA 02171
USA
info@rheinwerk-publishing.com
+1.781.228.5070

Represented in the E.U. by:
Rheinwerk Verlag GmbH
Rheinwerkallee 4
53227 Bonn
Germany
service@rheinwerk-verlag.de
+49 (0) 228 42150-0

371

Chapter 10

Managed Scenario with
Unmanaged Save: Integrating an
Existing Application

In this chapter, we’ll develop a RAP application using an existing standard

SAP application with its data model and API. For this purpose, we’ll use the

managed scenario with unmanaged save. The focus is on the development

of the save sequence with late numbering.

In Chapter 9, the goal was to build a standalone application using the ABAP

RESTful application programming model. This application was not based

on an existing application, but it had its own data model (greenfield

approach). In this chapter, we’ll show you how to build a RAP application

that’s based on the data model of an existing application and integrates it

using its API. To integrate the API, you need to implement the SAVE phase of

the save sequence and late numbering yourself.

The chapter starts with the description of the use case in Section 10.1. We’ll

then build the data model in Section 10.2 to create a behavior definition

based on it in Section 10.3. In Section 10.4, we’ll implement the create pur-

chase order function and, in Section 10.5, we’ll implement the delete pur-

chase order function of the sample application. After that, we’ll continue

with Section 10.6 to expose the previously implemented function via the

OData protocol. In Section 10.7, we’ll implement authorization checks for

read and write accesses. Finally, we’ll create an SAP Fiori elements UI for the

application in Section 10.8.

10.1 Description of the Use Case

This section describes the use case we’ll implement in this chapter using

the ABAP RESTful application programming model and its business re-

quirements. Based on the technical requirements and the general condi-

tions, we’ll develop a suitable solution strategy and implement it step-by-

step.

372

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

Fast entry of a pur-

chase order

We’ll develop an application that provides the fast entry of a purchase

order. Users should be able to order certain materials (e.g., a SAP PRESS

book) on their own without having to know the details of the order creation

process or having to contact their company's purchasing department. The

application will be based on the purchasing module functionality of the

MM-PUR application component, which is available in SAP S/4HANA.

Functional require-

ments

The following list comprises the main functional requirements of the appli-

cation:

� A purchase order can be created by entering a material and the order

quantity.

� In the fast entry mode, purchase orders can have only one item at a time.

� Only materials approved by the purchasing department (valid products)

can be ordered.

� Materials that are released for ordering are stored in a database table for

this purpose.

� Purchase orders for materials that aren’t valid can’t be created.

� The user sees only his or her own purchase orders.

� Purchase orders can be deleted again.

� Deleted purchase orders aren’t displayed in the user interface of the

application.

The application is implemented as SAP Fiori elements list report. In Figure

10.1, you can see the finished application.

Figure 10.1 List Report for Fast Entry of Purchase Orders

Basic conditions An essential technical condition is the runtime environment of the applica-

tion. It determines the technical and functional scope and general condi-

tions or restrictions under which you can develop and operate software.

The development of this application is for SAP S/4HANA 2021 FPS 1 (on-

373

10.1 Description of the Use Case

premise). In the following sections, we’ll elaborate on the impact of this

essential condition on the design of the application.

Warning: Release-Dependent Implementation

Late numbering is included in SAP S/4HANA 2021 FPS 1 as an early develop-

ment (see SAP Note 3060272). This means you can carry out the develop-

ment with this release in the managed scenario with unmanaged save. If

you have a lower release level, you must make the implementation using

the unmanaged scenario.

Since the ABAP RESTful application programming model is also available in

the cloud, see Chapter 12 for details on the technical environment for cloud

applications.

APIs usedIn order to implement the business requirements, you first need a suitable

public interface (API) for read and write access to purchase orders in SAP S/

4HANA. For read access, you can use the CDS views of the virtual data

model (VDM) provided in the standard SAP system.

Business application programming interfaces (BAPIs) are also officially

released APIs under SAP S/4HANA. You can therefore use the BAPI BAPI_PO_
CREATE1 to create a purchase order. The BAPI BAPI_PO_CHANGE enables you to

semantically delete a purchase order by specifying a deletion indicator.

Both of the function modules perform persistent database changes (i.e., not

only changes in the memory during the interaction phase) and bundle

them in a database logical unit of work (LUW). They must therefore be

called in the save sequence.

PersistenceTo avoid duplicate data storage, our application doesn’t implement its own

persistence of purchase orders. Consequently, the purchase orders created

in the standard SAP system represent the sole data source for the applica-

tion. Alternatively, you could also implement persistence yourself so that

purchase orders that are entered quickly are kept separately. This could be

advantageous if, for example, the criteria for such purchase orders were

complex to evaluate, could change foreseeably, or if additional fields could

be necessary for such a process, and aren’t included in the standard pur-

chase order business object. In our example, however, this isn’t the case. In

Section 10.2.3, we’ll describe in more detail the data model used here.

NumberingNumbering is done by the API that’s used, which is included in the save

sequence (i.e., by the BAPI BAPI_PO_CREATE1). You must use late numbering

for this. Details on the implementation for our application can be found in

Section 10.4.1.

374

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

Validations The BAPIs BAPI_PO_CREATE1 and BAPI_PO_CHANGE have a test or simulation

mode. You can use this mode to check the data in the transaction buffer

and, based on the check results, abort the save sequence if necessary. You

include these checks via validations within the RAP transaction (Section

10.4.6 and Section 10.5.2).

Transaction or

update control

Because you’re using BAPIs to create and change the purchase order, trans-

action control lies with the BAPI consumer (BAPI_TRANSACTION_COMMIT or

BAPI_TRANSACTION_ROLLBACK). Here, the changes made will either be posted

to the database or the LUW will be reset. The ABAP RESTful application pro-

gramming model provides for transaction control, as with BAPIs, on the

part of the consumer of the business object (i.e., either the EML consumer

(via COMMIT ENTITIES) or the orchestration framework). So, you can safely use

the mentioned BAPIs in the save sequence. The RAP framework determines

the transaction boundaries. A COMMIT ENTITIES results in a COMMIT WORK being

performed as well (which is behind the BAPI_TRANSACTION_COMMIT), so you

don't have to call a BAPI_TRANSACTION_COMMIT yourself, nor are you allowed

to do so in the behavior pool of a RAP business object. However, in other

projects, you should note that there are exceptions among BAPIs that per-

form transaction control themselves. The integration of the selected BAPIs

within the save sequence is shown in Figure 10.2.

Figure 10.2 BAPI Call in the Save Sequence

Consumer/
Orchestration

Framework

Business
Object

Framework

Save
Handler

FuGrp 2012

COMMIT ENTITIES

Point of
No Return

ADJUST_NUMBERS()

SAVE_MODIFIED()

Validations
on Save

BAPI_PO_CREATE1

Purchase Order
Number, New

BAPI_PO_CHANGE

375

10.2 Building the Data Model

AuthorizationsYou can use CDS entities of the VDM for read access. This allows you to

define your own CDS access controls based on the CDS access controls

defined in the VDM (Section 10.7). For write access, you can query authori-

zation objects that use the BAPIs in the RAP business object.

Draft handlingSince users only need to enter a small amount of data when creating a pur-

chase order, we can do without draft handling in this example, and the

application status can be kept entirely on the client side (that is, typically in

the SAPUI5 application within the web browser).

10.2 Building the Data Model

In the following sections, we’ll describe the CDS data model for our sample

application for the fast entry of a purchase order and show you how to cre-

ate it in ABAP development tools (ADT). We’ll start with an overview of the

logical data model and explain which database tables are necessary in the

ABAP dictionary area.

10.2.1 Overview of the Logical Data Model

Logical data modelIn Figure 10.3, you can see the logical data model of the application as a Uni-

fied Modeling Language (UML) class diagram. The logical data model is ini-

tially independent of the way it’s mapped in the repository using the ABAP

dictionary or core data services.

Figure 10.3 Logical Data Model of the Application

SAP S/4HANA - Business ObjectsABAP RESTful Application - Data Model

ABAP RESTful Business Object

Purchase Order
(Simplified)

Purchase Order Header

Purchase Order Item

Valid Material

Material

1

1

0..*

1

1

IsActive Indicator

Purchase Order Number
Purchase Order Quantity
Unit of Measure

376

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

The UML class “purchase order (simplified)” is central and represents a pur-

chase order whose counterpart in the standard SAP system is the purchase

order item. It is simplified because it’s associated with only one instance of

a purchase order item. As a result, the essential attributes of the class origi-

nate from both the purchase order header (e.g., the purchase order number)

and the purchase order item (e.g., the purchase order quantity and the unit

of measure). You’ll learn more about the other attributes in Section 10.2.3.

The UML class “purchase order (simplified)” is associated with the UML

class “valid material” (i.e., the products that may be procured via the simpli-

fied purchase order). Procurement is only possible if the active indicator

(attribute “IsActive”) is set for the “valid material.”

CDS data model In Figure 10.4, you can see how the data model of the application is mapped

with the development objects of the ABAP dictionary and CDS. On the right,

there are the VDM’s CDM entities, on which the application is based, to

implement the desired functional requirements.

Figure 10.4 CDS Data Model of the Application

CDS root entity for

the purchase order

The functional requirements require read and write access to the standard

SAP business object of the purchase order. Since we a) don’t need all the

fields in the purchase order, b) the purchase orders placed through the

application have only one internal purchase order line item, and c) we need

transactional behavior for the purchase order (create and delete), we must

model a separate CDS root entity named ZI_RAP_PurchaseOrder_M to repre-

sent the simplified purchase order. This is the central entity of the applica-

tion. It’s marked as root so that you can later add behavior via a behavior

definition and use it to define a RAP business object. So you should keep in

SAP HANA - Virtual Data ModelABAP RESTful Application - Data Model

ABAP RESTful Business Object

define root view
ZI_RAP_PurchaseOrder_M

I_PurchaseOrderAPI01

I_PurchaseOrderItemAPI01

define view
ZI_RAP_PO_Material

I_Material

define table
ZRAP_A_PO_MAT

ABAP
Dictionary

CDS

1

1

0..*

1

1

377

10.2 Building the Data Model

mind that, during CDS modeling, you want to implement transactional

behavior and you will need a behavior definition to do so.

Structure of the RAP

business object

There’s no composition tree for the simplified purchase order in this model

(i.e., it has no child entities). Since the RAP part of the application doesn’t

have its own persistence, the simplified purchase order uses the standard

SAP purchase order as a data source, accessing the CDS entity I_PurchaseOr-
derItemAPI01 in read-only mode or the order header I_PurchaseOrderAPI01
from there.

First purchase

order item

In addition, the CDS entity ZI_RAP_PurchaseOrder_M is associated with the

first purchase order item, which is determined by a private CDS view. For

clarity, we have omitted the presentation of this CDS entity in Figure 10.4.

Valid materialsThe valid materials are stored in a separate database table named ZRAP_A_
PO_MAT, which is mapped at the logical level via the CDS entity ZI_RAP_PO_
Material. The simplified purchase order ZI_RAP_PurchaseOrder_M is associ-

ated with the material that’s valid for fast entry ZI_RAP_PO_Material. The

valid material in turn “knows” the material master I_Material by associa-

tion.

Alternative Mapping of the Material Master

Instead of the CDS entity I_Material, you can also use the CDS entity I_
Product to access material master data. I_Product has also been released

for SAP S/4HANA Cloud (see https://api.sap.com/cdsviews/I_PRODUCT).

We’ve used the I_Material entity in the data model of our application

because the business object “Material” is well known from classic ABAP

development for SAP ERP.

Table 10.1 lists all CDS entities of the VDM that you’ll use in this application.

10.2.2 Database Tables

As described, we want to allow the simplified entry of a purchase order only

for certain materials. These materials are supposed to be offered to the

CDS Entity Meaning

I_PurchaseOrderAPI01 Purchase order header

I_PurchaseOrderItemAPI01 Purchase order item

I_Material Material master

I_Supplier Supplier

Table 10.1 Standard CDS Entities for Using the Fast Entry of Purchase Orders

378

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

users via a search help in the user interface. In the implementation of the

RAP business object, the system checks whether the materials are stored as

released.

Structure of the

database table

Our application keeps these materials in a separate database table: ZRAP_A_
PO_MAT. The structure of this database table is shown in Table 10.2.

Creating a

database table

You can create the database table ZRAP_A_PO_MAT in ADT:

1. Select the package of your application in the Project Explorer and use the

shortcut (Ctrl) + (N) to start the creation wizard.

2. In the dialog that opens, you must select the Database Table entry under

ABAP • Dictionary.

3. Assign a name for the database table under Name (here it would be

“ZRAP_A_PO_MAT”) and enter a description in the Description field.

4. Click the Next button and, after selecting the transport request, finish

the process by clicking the Finish button.

Naming Convention for Database Tables

In the ABAP RESTful application programming model, the prefix _A is used

as a naming convention to distinguish database tables for active applica-

tion data from database tables for draft instances (prefix _D).

5. Modify the generated source code to define the database table as shown

in Listing 10.1.

Field Name Meaning Key?

client Client Yes

material Material number Yes

supplier Supplier from whom the material is ordered No

is_active Active indicator; if it’s set, the material can be

ordered

No

created_by Created by No

created_at Time of creation No

last_changed_by Last change by No

last_changed_at Time of last change No

Table 10.2 Structure of Database Table ZRAP_A_PO_MAT

379

10.2 Building the Data Model

@EndUserText.label : 'Valid materials for fast entry'
@AbapCatalog.enhancementCategory : #NOT_EXTENSIBLE
@AbapCatalog.tableCategory : #TRANSPARENT
@AbapCatalog.deliveryClass : #A
@AbapCatalog.dataMaintenance : #RESTRICTED
define table zrap_a_po_mat {
key client : abap.clnt not null;
key material : matnr not null;
supplier : lifnr;
is_active : zrap_po_mat_active;
created_by : abp_creation_user;
created_at : abp_creation_tstmpl;
last_changed_by : abp_lastchange_user;
last_changed_at : abp_lastchange_tstmpl;

}

Listing 10.1 Source Code for the ZRAP_A_PO_MAT Database Table

6. Then, activate the database table. We provide the definition of the data

element ZRAP_PO_MAT_ACTIVE, which is used to type the is_active col-

umn, with the download material for this book at www.sap-press.com/

5642.

10.2.3 CDS Modeling

This section describes the development of the CDS-based data model. We’ll

move from the bottom up along the dependency relationships between

CDS entities. That is, first we’ll create the CDS view for wrapping the data-

base table of the valid material and then we’ll model the simplified order.

Valid Material

CDS view for

material table

We want to logically map the database table ZRAP_A_PO_MAT in a CDS entity.

This entity represents the valid material for fast order entry on a semantic

level.

1. To do this, you need to create a CDS view named ZI_RAP_PO_Material
based on the database table ZRAP_A_PO_MAT. So, you must use the creation

wizard again. Under ABAP • Core Data Services, select Data Definition.

2. Then fill in the dialog shown in Figure 10.5 to create the CDS entity. The

package name (Package input field) may differ in your case from what

we’ve used here.

380

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

Figure 10.5 Creating the ZI_RAP_PO_Material CDS View

3. Use the Define View Entity template and finish the process by clicking

the Finish button.

The data definition language (DDL) source code editor opens with the

source code generated based on the selected template.

Tip: Applying Pretty Printer

You should perform a formatting of the source code using the shortcut

(Ctrl) + (Shift) + (F).

Maintaining

associations with

the VDM

Add the required associations to the CDS entities of the VDM to the source

code as shown in Listing 10.2. To do this, you need to define an association

to the material (association [0..1] to I_Material) and one to the supplier

(association [0..1] to I_Supplier).

@AbapCatalog.viewEnhancementCategory: [#NONE]
@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Gültiges Material für Schnellerfassung'
@Metadata.ignorePropagatedAnnotations: true
@ObjectModel.usageType:{

serviceQuality: #X,
sizeCategory: #S,
dataClass: #MIXED

}
define view entity ZI_RAP_PO_Material
as select from zrap_a_po_mat

381

10.2 Building the Data Model

association [0..1] to I_Material as _Material on
_Material.Material = $projection.Material

association [0..1] to I_Supplier as _Supplier on
_Supplier.Supplier = $projection.Supplier

{
key material as Material,

supplier as Supplier,
is_active as IsActive,
created_by as CreatedBy,
created_at as CreatedAt,
last_changed_by as LastChangedBy,
last_changed_at as LastChangedAt,
_Material,
_Supplier

}

Listing 10.2 CDS Entity for the Valid Material

Help View for Determining the First Purchase Order Item

Determining the

number of the first

purchase order item

In the next step, we need a CDS view that determines the number of the

first purchase order item of each order. To do this, you must create the CDS

view ZP_RAP_PurchaseOrderItemCount. By using the name prefix P_ you com-

municate that this is a private CDS entity and therefore an implementation

detail of the application. You can see the DDL source code of this view in Lis-

ting 10.3.

@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Help view for first purchase order item'
define view entity ZP_RAP_PurchaseOrderItemCount

as select from I_PurchaseOrderItemAPI01
{

PurchaseOrder,
min(PurchaseOrderItem) as FirstPurchaseOrderItem

}
group by

PurchaseOrder
having
count(*) = 1

Listing 10.3 Help View for Determining the First Item Number

The view is based on CDS entity I_PurchaseOrderItemAPI01 to select the

purchase order items stored in the standard SAP system. What’s crucial to

this view is the bold highlighted line with the min aggregate expression to

determine the lowest and therefore first item number of the order. The

382

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

FirstPurchaseOrderItem attribute contains this number. The aggregation

expression count(*) = 1 in the having clause determines the number of pur-

chase order items per purchase order number (group by PurchaseOrder
clause) and selects only purchase orders that have an item.

Testing the

CDS view

The editor of the CDS view enables you to execute the view via the function

key (F8) and thus test the data selection. Alternatively, you can use the con-

text menu of the CDS view and select the Open With • Data Preview menu

item. After running the CDS view, the data preview opens in a new tab

where the result set is displayed (see Figure 10.6).

Figure 10.6 Result Set for the ZP_RAP_PurchaseOrderItemCount

View in Data Preview

Purchase Order with a Purchase Order Item

CDS root entity Next, you can create the CDS entity ZI_RAP_PurchaseOrder_M. You should

proceed in the same way as for the other CDS entities, but use the Define

Root View Entity template. In Listing 10.4, you can see the declaration of the

CDS root entity for our RAP business model with required join conditions.

@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Purchase order with one item'
define root view entity ZI_RAP_PurchaseOrder_M
as select from I_PurchaseOrderItemAPI01 as item

inner join ZP_RAP_PurchaseOrderItemCount as item_cnt
on item.PurchaseOrder = item_cnt.PurchaseOrder

and item.PurchaseOrderItem = item_cnt.FirstPurchaseOrderItem
inner join ZI_RAP_PO_Material as po_mat
on po_mat.Material = item.Material

...

Listing 10.4 CDS Root Entity of the Simplified Purchase Order with Join

Conditions

Join conditions The CDS entity is based on the purchase order item I_PurchaseOrder-
ItemAPI01 of the standard SAP system. The inner join to the previously

383

10.2 Building the Data Model

created help view ZP_RAP_PurchaseOrderItemCount creates the link to the

first purchase order item, while the inner join to the ZI_RAP_PO_Material
view creates the link to the materials valid for the purchase order process.

In this way, you select only first purchase order items that contain a mate-

rial stored as valid. You don’t evaluate the active indicator. This means that

all purchase orders already placed with this material number will be

selected, even if they have been set to inactive in the meantime.

Naming the CDS Entities of a RAP Business Object

The transaction behavior for the fast entry purchase order is represented

through the behavior definition for the CDS root entity ZI_RAP_Pur-
chaseOrder_M, which we’ll create in Section 10.3. We’ll choose the imple-

mentation type managed with unmanaged save. CDS entities of a RAP

business object, whose runtime is managed (at least their interaction

phase), get the suffix _M , according to the naming convention.

AssociationsA series of associations follows in Listing 10.5 to establish the logical link to

the purchase order item (I_PurchaseOrderItemAPI01), to the purchase order

(I_PurchaseOrderAPI01), and to the ordered valid material (ZI_RAP_PO_Mate-
rial).

association [1] to I_PurchaseOrderAPI01 as _PurchaseOrder on
_PurchaseOrder.PurchaseOrder = item.PurchaseOrder

association [1] to I_PurchaseOrderItemAPI01 as
_PurchaseOrderItem on _PurchaseOrderItem.PurchaseOrder =
$projection.PurchaseOrder and
_PurchaseOrderItem.PurchaseOrderItem =
$projection.PurchaseOrderItem

association [1] to ZI_RAP_PO_Material as _POMaterial on
_POMaterial.Material = $projection.Material

{
...

Listing 10.5 Associations within ZI_RAP_PurchaseOrder_M View Definition

Determining

relevant fields

Now, the question arises regarding which fields of the CDS entity are rele-

vant for the respective use case (i.e., which fields are to be accessed from

outside the business object in read and write mode within the create oper-

ation). The CDS entity ZI_RAP_PurchaseOrder_M requires the attributes listed

in Table 10.3 from the business object of the purchase order so that the

described requirements can be implemented (administrative fields are not

shown).

384

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

Denormalizing

the CDS entity

There’s only one CDS entity because we assume that the created purchase

order has only one purchase order item. So, both fields from the purchase

order item and those from the purchase order header data are found on one

level in CDS view ZI_RAP_PurchaseOrder_M. From the 1-to-n relationship

between purchase order and purchase order item, here you declare a 1-to-1

relationship. Thus, the data model is denormalized at this point.

Field declarations Now you need to declare the relevant fields in the selection list of the CDS

entity. You can see the completion of the DDL source code with the selec-

tion list for field declaration (and the publication of the previously declared

Attribute Meaning (Origin) Type of Operation

key PurchaseOrder Purchase order number

(purchase order header);

key field

Read

PurchaseOrderType Purchase order type

(purchase order header)

Read

PurchaseOrderItem Item number (purchase

order item)

Read

PurchaseOrderDate Purchase order date

(purchase order header)

Read

PurchasingOrganization Purchasing organization

(purchase order header)

Read

PurchasingGroup Purchasing group (pur-

chase order header)

Read

Plant Plant (purchase order

item)

Read

Supplier Supplier number (pur-

chase order header)

Read

Materials Material number (pur-

chase order header)

Read and write

OrderQuantity Purchase order quantity Read and write

PurchaseOrderQuantityUnit Unit of measure Read

LastChangeDateTime Timestamp of the last

change; also filled

during creation

Read

Table 10.3 Relevant Fields of ZI_RAP_PurchaseOrder_M CDS Entity

385

10.3 Creating a Behavior Definition

associations) in Listing 10.6. Note that due to the where clause, you only see

purchase order items that haven’t been deleted (item.PurchasingDocument-
DeletionCode <> 'L').

...
{

key item.PurchaseOrder,
_PurchaseOrder.PurchaseOrderType,
_PurchaseOrder.PurchaseOrderDate,
_PurchaseOrder.PurchasingOrganization,
_PurchaseOrder.PurchasingGroup,
_PurchaseOrder.Supplier,
_PurchaseOrder.CreatedByUser,
_PurchaseOrder.CreationDate,
_PurchaseOrder.LastChangeDateTime,
item.PurchaseOrderItem,
item.Material,
item.OrderQuantity,
item.PurchaseOrderQuantityUnit,
item.Plant,
_PurchaseOrder,
_PurchaseOrderItem,
_POMaterial

}
where

item.PurchasingDocumentDeletionCode <> 'L'

Listing 10.6 Selection List and Final where Clause

Key fieldSave and activate the class. The declaration of the key fields with key is

essential for a RAP business object and the CDS entities of its composition

tree. In our example, there’s only one key field, PurchaseOrder, because our

business object is a simplified purchase order. Since the separation

between header and item data has been deliberately removed, the order

number is sufficient as the sole key field. It’s semantically correct and does

not need to be supplemented by the number of the purchase order item.

10.3 Creating a Behavior Definition

In the previous section, you mapped the data model of the application

using the ABAP dictionary and CDS views in the repository. It is thus

already prepared in such a way that you can map the desired transactional

386

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

behavior. First of all, this involves basic declarations in the behavior defini-

tion before you can define the create purchase order and delete purchase

order functions.

Choosing the imple-

mentation type

Before you create the behavior definition, you should choose the imple-

mentation type. Because we decided to use BAPIs for the purchase order, we

don't need our own business logic during the interaction phase and we

don't need to integrate an inventory API there. Accordingly, the interaction

phase can be implemented by the managed business object provider. We

can complement determinations and validations anyway.

Since the RAP business object doesn’t have its own persistence, we don’t

need a fully managed business object that also implements the save

sequence. On the contrary: We want to implement the save sequence our-

selves to implement database changes through the BAPI calls. For these rea-

sons, we opt for a managed with unmanaged save scenario. The interaction

phase is thus managed, whereas the save sequence isn’t. The latter can be

implemented by using it in the behavior pool.

Creating the behav-

ior definition

You can create a behavior definition for CDS root entity ZI_RAP_Purchase-
Order_M as follows:

1. Open the context menu for CDS entity ZI_RAP_PurchaseOrder_M and

select the menu item New Behavior Definition there.

2. In the dialog that opens, keep the default setting managed for the value

of the Implementation Type field and complete the creation process by

clicking the Finish button.

3. Then, the editor with the proposed behavior definition language (BDL)

source code will open.

Customizing the

behavior definition

Customize the BDL source code as shown in Listing 10.7. Declare the save

option with unmanaged save. This eliminates the need to specify a database

table via persistent table, so you can remove the corresponding line from

the generated source code. Assign the PurchaseOrder alias for the entity

behavior definition. You can then use this descriptive name in the behavior

pool.

managed with unmanaged save; // implementation in class zbp_i_rap_
purchaseorder_m unique;

define behavior for ZI_RAP_PURCHASEORDER_M alias PurchaseOrder
lock master
//authorization master (instance)
etag master LastChangeDateTime
{
create;

387

10.4 Implementing the Create Purchase Order Function

internal update;
delete;

}

Listing 10.7 Basic Declarations in the BDL Source Code

Remove the comment in the lock declaration line in the entity behavior

definition so that it is declared as lock master. Then, you should add inter-
nal to the update operation because the RAP business object only provides

the standard create and delete operations externally, even if the deletion

operation is implemented internally via an update of the purchase order

(via the BAPI BAPI_PO_CHANGE). You need the update operation for changing

instances within the behavior implementation.

As etag master, you should name the LastChangeDateTime field because the

RAP business object also provides for a delete operation that might be per-

formed on an outdated dataset. Finally, save and activate the behavior defi-

nition.

10.4 Implementing the Create Purchase Order Function

In this section, you’ll implement the function for creating a purchase order.

You have already taken a first step towards this, because the standard cre-
ate operation has already been declared in the context of the behavior defi-

nition in the previous section.

10.4.1 Declaring Late Numbering

In the context of the create operation of a CDS entity of a RAP business

object, you must always consider numbering and choose one of the options

supported by the ABAP RESTful application programming model (see Chap-

ter 3, Section 3.7).

Selecting the num-

bering option

Since in our example the instance of a purchase order is created, you need

to consider in which way the numbering of the purchase order should be

carried out. In the CDS data model, we’ve declared the order number Pur-
chaseOrder as key. The purchase order numbering is done by the BAPI (we

don’t use a purchase order process in MM-PUR with external numbering

here) and is therefore beyond our control. Thus, the number of the created

purchase order will become available to us in the save sequence after call-

ing the BAPI BAPI_PO_CREATE1. A numbering during the save sequence is

supported by the ABAP RESTful application programming model via the

late numbering option.

388

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

Declaring late num-

bering

Provide the CDS entity ZI_RAP_PurchaseOrder_M with the late numbering

function in the transactional properties of the entity behavior definition

via the BDL keyword late numbering (see Listing 10.8).

managed with unmanaged save; // implementation in class zbp_i_rap_
purchaseorder_m unique;

define behavior for ZI_RAP_PURCHASEORDER_M alias PurchaseOrder
lock master
late numbering
//authorization master (instance)
...

Listing 10.8 Declaring Late Numbering

This allows you to implement late numbering using the ADJUST_NUMBERS
method in the save handler, which we’ll implement in Section 10.4.5.

10.4.2 Setting Field Properties

If a behavior definition is created for a CDS data model, by default all fields

of the contained CDS entities are also open for write accesses. However, this

is often not desired. You should consider for each field whether it may be

open for write access or not.

Tip: Lean Interface

Ensure that the interface of the business object and its operations is as

lean as possible and therefore only allow write access to those fields for

which it is actually necessary.

In relation to our use case of purchase order entry, this means that the

Material and OrderQuantity fields must remain open for write access. For

the remaining fields, only read access is allowed (see also Table 10.3). The

PurchaseOrderQuantityUnit is determined from the base unit of measure of

the material.

Fields for

read access

Thus, you need to provide the fields of CDS entity ZI_RAP_PurchaseOrder_M
with the field (readonly) ... property so that they are protected against

write access from outside the business object (see Listing 10.9).

389

10.4 Implementing the Create Purchase Order Function

...
{

create;
internal update;
delete;

field (readonly)
PurchaseOrder,
PurchaseOrderDate,
PurchasingOrganization,
PurchasingGroup,
Supplier,
PurchaseOrderQuantityUnit,
Plant,
CreatedByUser,
LastChangeDateTime,
CreationDate;

...

Listing 10.9 Defining the readonly Field Property

Setting mandatory

fields

As an additional field property, you can use the field (mandatory) ... addi-

tion to inform the UI level that Material and OrderQuantity are mandatory

fields (see Listing 10.10).

...
CreationDate;

field (mandatory) Material, OrderQuantity;
...

Listing 10.10 Defining a Mandatory Field Property

These fields will now be displayed as mandatory fields in the user interface.

You must check whether they’ve been populated using a validation (Sec-

tion 10.4.6).

Using mandatory:create would be possible as an alternative, but makes it

difficult to add draft handling later. In our example, we assume that a busi-

ness object instance can basically be created without a given material and

without a given quantity in the transaction buffer, even if it can’t be saved

in this inconsistent state.

390

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

Once you’ve declared the basic behavior (the implementation type and

numbering) and the business object interface (e.g., create and delete oper-

ations, field properties), you can define the business-object-internal logic

for implementing the purchase order creation and implement it with ABAP

in the behavior pool.

10.4.3 Creating the Behavior Pool

Adding a behavior

implementation

In this section, we’ll add a behavior implementation to the behavior defini-

tion. To do this, you need to remove the comment character (//) in the first

line of the behavior definition from Listing 10.7 in order to declare the ABAP

class zbp_i_rap_purchaseorder_m already stored there as a behavior pool.

Since the RAP business object consists of only one CDS entity anyway, we’ll

use a behavior pool for the entire behavior definition (see Listing 10.11).

managed with unmanaged save implementation in class zbp_i_rap_
purchaseorder_m unique;

define behavior for ZI_RAP_PurchaseOrder_M alias PurchaseOrder
lock master
...

Listing 10.11 Declaration of the Behavior Pool in the Header of the Behavior Defi-

nition

Creating the

behavior pool

Then, save and activate the behavior definition and create the behavior

pool (i.e., the ABAP class) using ADT’s quick fix function. To do this, you

must position the cursor on the name of the ABAP class in the source code

and use the shortcut (Ctrl) + (1) (see Figure 10.7).

Figure 10.7 Creating the Behavior Pool via the Quick Fix Function

Complete the creation of the class via the dialog. Then, the source code edi-

tor for the created class will open. Based on the already declared behavior

(late numbering and unmanaged save sequence), the save handler is gener-

ated and displayed directly on the Local Types tab (see Listing 10.8).

391

10.4 Implementing the Create Purchase Order Function

Figure 10.8 Creating the Behavior Pool with the Save Handler

10.4.4 Implementing Determinations

Data to be

determined

To create a purchase order via the BAPI, it’s necessary to pass some central

fields of the purchase order. This data is determined during the interaction

phase and stored in the created instances in the transaction buffer. The pur-

pose is to determine the following data:

� Data with organizational reference to the purchase order

The fields with organizational reference are the fields for the purchasing

organization, the purchasing group, and the plant.

� Data with reference to the valid material

These fields include the item number, supplier, and unit of measure of

the valid material.

In this section, we’ll declare and implement two determinations for this

purpose.

Declaring determi-

nations

For this purpose, you should create the determinations initOrgData and

initMaterialRelatedData in the behavior definition, as shown in Listing

10.12. Save and activate the behavior definition afterwards.

...
field (mandatory) Material, OrderQuantity;

determination initOrgData on modify { create; }
determination initMaterialRelatedData on modify { create; }

...

Listing 10.12 Defining Determinations During the Create Operation

392

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

The determinations will be executed in the interaction phase after the cre-
ate operation and require an implementation in the behavior pool.

Then, using ADT’s quick fix feature, you must create the methods for the

two determinations in the behavior pool. In each case, position the cursor

on the determination name in the behavior definition.

Implementing the initOrgData Determination

initOrgData method You’ve created the initOrgData determination to determine organizational

data for the purchase order creation. In Listing 10.13, you can see the signa-

ture of the initOrgData method for this determination in the interaction

handler lhc_PurchaseOrder.

CLASS lhc_PurchaseOrder DEFINITION INHERITING FROM cl_abap_behavior_
handler.
...
PRIVATE SECTION.

METHODS initOrgData FOR DETERMINE ON MODIFY
IMPORTING keys FOR PurchaseOrder~initOrgData.

...

Listing 10.13 Signature of initOrgData Method for Determination

Implement the initOrgData method using EML. You can see the complete

ABAP source code in Listing 10.14.

...
METHOD initOrgData.

DATA(org_data) = read_org_data().
MODIFY ENTITIES OF ZI_RAP_PurchaseOrder_M IN LOCAL MODE
ENTITY PurchaseOrder

UPDATE FROM
VALUE #(FOR k IN keys
(%tky = k-%tky
PurchasingOrganization = org_data-purch_org
PurchasingGroup = org_data-pur_group
Plant = org_data-plant
%control-PurchasingOrganization = if_abap_behv=>mk-on
%control-PurchasingGroup = if_abap_behv=>mk-on
%control-Plant = if_abap_behv=>mk-on)).

ENDMETHOD.

Listing 10.14 Implementation of the initOrgData Determination Method

393

10.4 Implementing the Create Purchase Order Function

Instances created

in the transaction

buffer

Because the interaction phase for this RAP business object is managed by

the programming model, the implementation of the create operation is

handled by the managed business object provider, and the created

instances are available in the transaction buffer at runtime of the initOrg-
Data determination without you needing to program anything for this. As a

trigger condition for the determination, we have declared the create opera-

tion so that the implementing method initOrgData is executed after the

creation of the instance(s) and the created instances are available in the

transaction buffer at this time.

Identifying created

instances with %PID

Since handler methods in the ABAP RESTful application programming

model are multi-instance capable, all key values of the affected (in this case,

created) instance(s) are passed via the import parameter keys. A late num-

bering is declared for CDS entity ZI_RAP_PurchaseOrder_M, which is why the

keys parameter is used to pass preliminary key values (%TKY-%PID) generated

by the RAP framework, which are used to identify the created instances and

are only valid during the RAP transaction.

Running a determi-

nation

Determinations perform calculations. In our example, they determine the

appropriate organizational data to create the purchase order. This calcula-

tion is done using a separate method named read_org_data, which returns

the purchasing organization, plant, and purchasing group independent of

an instance. For this reason, reading concrete instances from the transac-

tion buffer via READ ENTITIES isn’t necessary in this implementation.

The read_org_data method is an implementation detail of our sample appli-

cation and is representative of the "real" determination or calculation. It

would have to be adapted or designed accordingly, depending on the

requirements. For example, organizational data could be determined based

on the user's organizational affiliation or derived from the ordered mate-

rial.

Changing instancesYou must now enter the organizational data determined in the org_data
data object in the instances created within the RAP request. To do this, you

can use the MODIFY ENTITIES statement. Note that you use an update opera-

tion when doing this, since the instances to be changed are already avail-

able in the transaction buffer.

Using a constructor

expression

Iterate over the key values keys of the affected instances in a FOR loop inside

the constructor expression VALUE#(). The constructor expression creates

an internal table that’s passed as an actual parameter to the UPDATE FROM
expression. You only need to provide the PurchasingOrganization, Purchas-
ingGroup and Plant fields with the appropriate values and use the control

structure %CONTROL to indicate that the field contents should be set. You can

394

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

identify the key values of the instances using the key structure of the %TKY
of the transactional key.

Implementing the initMaterialRelatedData Determination

Purpose of the

determination

The initMaterialRelatedData determination ensures that material-relevant

data is determined on the basis of the transferred material number when

an instance of the ZI_RAP_PurchaseOrder_M entity is created and the corre-

sponding instances are updated with this data. The following field contents

are determined for this purpose:

� Item number (PurchaseOrderItem)

The item number is assigned as a fixed value.

� Supplier (Supplier)

The supplier is determined via CDS entity ZI_RAP_PO_Material from the

application table ZRAP_A_PO_MAT.

� Purchase order quantity unit (PurchaseOrderQuantityUnit)

The purchase order quantity unit is determined as the base unit of mea-

sure MaterialBaseUnit from the material master I_Material.

Access to

material data

Let's turn to the program logic for determining the above fields. Before you

implement the determination of the supplier, you should do some prelim-

inary work. The determination of the mentioned fields is based on CDS

entity ZI_RAP_PO_Material and is swapped out to separate methods. In Lis-

ting 10.15, you can see the declarative part of the swapped out methods to

implement the reading of the data from the application table.

CLASS lhc_PurchaseOrder DEFINITION INHERITING FROM cl_abap_behavior_
handler.
...
PUBLIC SECTION.

CLASS-METHODS class_constructor.
...

PRIVATE SECTION.
"! Material data for fast purchase order entry
CLASS-DATA gt_material_cust TYPE TABLE OF ZI_RAP_PO_Material.

...
CLASS-METHODS read_cust_by_material
IMPORTING

VALUE(material) TYPE ZI_RAP_PurchaseOrder_M-Material
EXPORTING

VALUE(material_cust) TYPE ZI_RAP_PO_Material.

CLASS-METHODS read_supplier_by_material
IMPORTING

395

10.4 Implementing the Create Purchase Order Function

VALUE(material) TYPE ZI_RAP_PurchaseOrder_M-Material
RETURNING
VALUE(supplier) TYPE ZI_RAP_PO_Material-Supplier.

...

Listing 10.15 Declarative Part of the Swapped Out Methods for Reading the Valid

Material

Listing 10.16 contains the method implementations.

CLASS lhc_PurchaseOrder IMPLEMENTATION.
METHOD class_constructor.
SELECT * FROM ZI_RAP_PO_Material

INTO TABLE @gt_material_cust.
ENDMETHOD.

METHOD read_supplier_by_material.
read_cust_by_material(

EXPORTING
material = material

IMPORTING
material_cust = DATA(material_cust)).

supplier = material_cust-Supplier.
ENDMETHOD.

METHOD read_cust_by_material.
READ TABLE gt_material_cust

WITH KEY Material = material
INTO material_cust.

ENDMETHOD.
...

Listing 10.16 Method Implementations for Determining the Supplier

We don’t want to go through the coding in detail, since it’s standard ABAP.

However, we’d like to point out that you can access all standard constructs

within ABAP classes in the behavior pool. For example, you can use the

class constructor to read data about the valid material once within the

ABAP session (when loading the class into the memory). This allows you to

access its contents at later points within the RAP transaction. We assume

that the number of records in this table is small so that it can be completely

loaded into the memory. Depending on the application, single record

access to the table may be more advantageous.

initMaterialRelated-

Data method

For further modularization, we’ve implemented two small custom meth-

ods, read_supplier_by_material and read_cust_by_material. The initMate-

396

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

rialRelatedData determination is also called at the time of the create
operation. Accordingly, there are similarities with the implementation of

the initOrgData determination. In the following sections, we’ll therefore

only explain the main differences in the implementation. In Listing 10.17,

you can see the signature of the corresponding method for determining

initMaterialRelatedData.

...
PRIVATE SECTION.

METHODS initOrgData FOR DETERMINE ON MODIFY
IMPORTING keys FOR PurchaseOrder~initOrgData.

METHODS initMaterialRelatedData FOR DETERMINE ON MODIFY
IMPORTING keys FOR PurchaseOrder~initMaterialRelatedData.

Listing 10.17 Method Signature for Determining initMaterialRelatedData

Navigate to the empty method implementation of initMaterialRelated-
Data and begin its implementation based on Listing 10.18.

...
METHOD initMaterialRelatedData.

READ ENTITY IN LOCAL MODE ZI_RAP_PurchaseOrder_M
FIELDS (Material)
WITH CORRESPONDING #(keys)

RESULT DATA(po_headers).
...

Listing 10.18 Reading Instances from the Transaction Buffer via Read Entity

Command

You can use the key values (keys) passed to the method to access the

instances of CDS entity ZI_RAP_PurchaseOrder_M already created in the

transaction buffer via the READ ENTITY short form. With FIELDS (Material),

you only read the material number because only this is necessary for fur-

ther calculation. You can use the constructor expression CORRESPONDING #(
keys) to pass the passed key values of the internal table keys converted to

the READ ENTITY command. This includes relevant key fields such as the pre-

liminary ID %PID during the interaction phase with late numbering.

Changing instances

via MODIFY

ENTITIES

You now need to determine the relevant fields for the transferred instances

and change them using the MODIFY ENTITIES command in the transaction

buffer. Listing 10.19 shows the further implementation of the method.

397

10.4 Implementing the Create Purchase Order Function

METHOD initMaterialRelatedData.
READ ENTITY IN LOCAL MODE
...
RESULT DATA(po_headers).

MODIFY ENTITIES OF ZI_RAP_PurchaseOrder_M IN LOCAL MODE
ENTITY PurchaseOrder
UPDATE FROM
VALUE #(FOR po IN po_headers

(%tky = po-%tky
Supplier =

read_supplier_by_material(material = po-material)
PurchaseOrderItem = '10'
PurchaseOrderQuantityUnit =

read_baseunit_by_material(material = po-material)
%control-Supplier = if_abap_behv=>mk-on
%control-PurchaseOrderItem = if_abap_behv=>mk-on
%control-PurchaseOrderQuantityUnit =
if_abap_behv=>mk-on)).

ENDMETHOD.

Listing 10.19 Changing Instances via Modify Entities Command

The Material field has been declared as a mandatory field in the behavior

definition, which is why you don’t need to consider the case of a material

number that hasn’t been transferred here. Again, you must use a construc-

tor expression (VALUE #(...)) to create the internal table to pass data to the

update operation of MODIFY ENTITIES. In this constructor expression, a row is

created in the internal table for each instance read (FOR po IN po_headers). In

each iteration over po_headers, the previously implemented methods are

called with the material (po-material) as actual parameters to determine

the supplier or the appropriate unit of measure and set it in the internal

table.

Swapping out a Determination

You can also use mass determination of the data to be updated before the

EML statement, MODIFY ENTITIES ... UPDATE and, if necessary, return mes-

sages via the return parameter REPORTED if, for example, the supplier for a

material couldn’t be determined.

The determinations implemented in this way ensure that the appropriate

data for creating the purchase order is stored in the instances to be created.

398

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

You have thus created the starting point on the basis of which you can

implement the save sequence and thus the actual creation of the purchase

order via BAPI. (A short jump back to the interaction phase will still be nec-

essary, however, but more on that in the next section.)

10.4.5 Save Sequence: Implementing the Creation via BAPI

ADJUST_NUMBERS

method

The development of the solution strategy (Section 10.1) has shown that we

need a late numbering for the RAP business object, but the numbering is

carried out by the BAPI BAPI_PO_CREATE1 in the course of the purchase order

creation. To correctly implement the RAP contract for late numbering, you

must implement the purchase order creation in the ADJUST_NUMBERS
method provided for late numbering in the save handler, not in the SAVE_
MODIFIED method. Due to the automatic creation of the behavior pool, this

method has already been declared in the save handler (see Listing 10.20).

CLASS lsc_ZI_RAP_PurchaseOrder_M DEFINITION INHERITING FROM cl_abap_
behavior_saver.
PROTECTED SECTION.

METHODS adjust_numbers REDEFINITION.
...

ENDCLASS.

Listing 10.20 Declaration of the ADJUST_NUMBERS Method in the Save Handler

Reading created

instances from the

transaction buffer

First, you should read the instances created during the interaction phase.

Use the preliminary key values assigned by the RAP framework from the

internal table mapped-purchaseorder, which has been passed to the method

(see Listing 10.21).

CLASS lsc_ZI_RAP_PurchaseOrder_M IMPLEMENTATION.
METHOD adjust_numbers.

" Read purchase orders based on key values from interaction phase
READ ENTITIES OF ZI_RAP_PurchaseOrder_M
ENTITY PurchaseOrder

ALL FIELDS
WITH CORRESPONDING #(mapped-purchaseorder)
RESULT DATA(pos_to_create).

...

Listing 10.21 Reading Created Purchase Order Instances From the Transaction

Buffer

399

10.4 Implementing the Create Purchase Order Function

Now iterate over the read instances and create a purchase order for each

entry via BAPI. We’ve swapped out the BAPI call to a separate method: cre-
ate_purchase_order (see Listing 10.22).

...
LOOP AT pos_to_create INTO DATA(po_to_create).

" Create a new purchase order
lhc_purchaseorder=>create_purchase_order(
EXPORTING

as_test_run = abap_false
po_entity = CORRESPONDING #(po_to_create)

IMPORTING
po_header_created = DATA(po_header_created)
return = DATA(return)).

...
ENDLOOP.

Listing 10.22 Creating a Purchase Order Within the Adjust_Numbers Method

Method for the

BAPI call

For the create_purchase_order method, you need to first create the type

declaration tt_return and the method declaration (see Listing 10.23).

CLASS lhc_PurchaseOrder DEFINITION INHERITING FROM cl_abap_behavior_
handler.

PUBLIC SECTION.
TYPES tt_return TYPE STANDARD TABLE OF bapiret2.
CLASS-METHODS create_purchase_order

IMPORTING
VALUE(po_entity) TYPE ZI_RAP_PurchaseOrder_M
VALUE(as_test_run) TYPE abap_bool DEFAULT abap_true

EXPORTING
VALUE(return) TYPE tt_return
VALUE(po_header_created) TYPE bapimepoheader.

...

Listing 10.23 Signature of the create_purchase_order Method for the Purchase

Order Creation

The method uses CDS root entity ZI_RAP_PurchaseOrder_M as the import

parameter so that the data can be passed according to the type. The as_
test_run flag calls the BAPI in test mode. Implement the method using the

ABAP source code from Listing 10.24:

400

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

METHOD create_purchase_order.
DATA: ls_po_header TYPE bapimepoheader,

ls_x_po_header TYPE bapimepoheaderx,
lt_po_item TYPE STANDARD TABLE OF bapimepoitem,
ls_po_item LIKE LINE OF lt_po_item,
lt_x_po_item TYPE STANDARD TABLE OF bapimepoitemx.

" Header data for the purchase order
ls_po_header = CORRESPONDING #(po_entity MAPPING FROM

ENTITY).

ls_x_po_header-vendor = abap_true.
ls_x_po_header-purch_org = abap_true.
ls_x_po_header-pur_group = abap_true.

" Item data, create only one item
" Map PurchaseOrderItem, Material, Plant, OrderQuantity
ls_po_item = CORRESPONDING #(po_entity MAPPING FROM ENTITY).
ls_po_item-net_price = '1.0'.
APPEND ls_po_item TO lt_po_item.

lt_x_po_item = VALUE #((po_item = ls_po_item-po_item
net_price = abap_true
material = abap_true
plant = abap_true
quantity = abap_true)).

CALL FUNCTION 'BAPI_PO_CREATE1'
EXPORTING
poheader = ls_po_header
poheaderx = ls_x_po_header
testrun = as_test_run

IMPORTING
expheader = po_header_created

TABLES
return = return
poitem = lt_po_item
poitemx = lt_x_po_item.

ENDMETHOD.

Listing 10.24 Implementation of the create_purchase_order Method

This is an ordinary BAPI call that takes the data from the passed instance

(po_entity) and creates a purchase order from it.

401

10.4 Implementing the Create Purchase Order Function

Using field

mappings

In the implementation, we use assignments via the constructor expression

CORRESPONDING #() using field mappings via MAPPING FROM ENTITY. In this way,

the mapping between fields of structured legacy data types (here the data

types of the BAPI) to the respective CDS entity of the RAP business object

can be used for assignments. For this purpose, a corresponding field map-

ping must exist in the behavior definition. Add and activate the two neces-

sary field mappings from Listing 10.25 in the behavior definition.

mapping for bapimepoheader corresponding
{

PurchaseOrder = po_number;
PurchasingOrganization = purch_org;
PurchasingGroup = pur_group;
Supplier = vendor;

}

mapping for bapimepoitem corresponding
{

PurchaseOrderItem = po_item;
Material = material;
OrderQuantity = quantity;

}

Listing 10.25 Declared Field Mappings for the BAPI Data Types

Returning purchase

order numbers

After the BAPI call has been moved to its own method, you can turn your

attention to implementing the ADJUST_NUMBERS method. Report an error sit-

uation via dump and populate the MAPPED parameter (see Listing 10.26).

...
LOOP AT pos_to_create INTO DATA(po_to_create).

" Create a new purchase order
lhc_purchaseorder=>create_purchase_order(
EXPORTING

as_test_run = abap_false
po_entity = CORRESPONDING #(po_to_create)

IMPORTING
po_header_created = DATA(po_header_created)
return = DATA(return)).

READ TABLE return WITH KEY type = 'E'
INTO DATA(return_err).

IF sy-subrc EQ 0.
RAISE SHORTDUMP NEW zcx_rap_purchaseorder(...)).

ENDIF.

402

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

" MAPPED: Return key values
APPEND INITIAL LINE TO mapped-purchaseorder

ASSIGNING FIELD-SYMBOL(<ls_mapped>).
<ls_mapped>-%pid = po_to_create-%pid.
<ls_mapped>-PurchaseOrder = po_header_created-po_number.
...

ENDLOOP.

Listing 10.26 Returning Purchase Order Numbers via the MAPPED Parameter

The essential responsibility of the ADJUST_NUMBERS method is to generate

and return a permanent key value for each %PID. The purchase order cre-

ation returns the created purchase order data including the purchase order

number via the actual parameter po_header_created. This is why we don’t

create the purchase order in the SAVE_MODIFIED method; we create it at this

point. Via a new line in the internal table mapped-purchaseorder, you assign

the corresponding purchase order number from the previously performed

creation process to the currently processed %PID.

Returning messages Complete the implementation of the ADJUST_NUMBERS method with a return

of messages. These are passed in the REPORTED parameter. Listing 10.27 con-

tains the ABAP source code.

LOOP AT pos_to_create INTO DATA(po_to_create).
...
reported-purchaseorder = VALUE #(

BASE reported-purchaseorder
FOR r IN return WHERE (type = 'I' OR type <> 'W')
(%tky = po_to_create-%tky
PurchaseOrder = po_header_created-po_number
%msg = me->new_message(
id = r-id
number = r-number
severity = COND #(

WHEN r-type = 'I'
THEN if_abap_behv_message=>severity-information

WHEN r-type = 'W'
THEN if_abap_behv_message=>severity-warning)

v1 = r-message_v1
v2 = r-message_v2
v3 = r-message_v3
v4 = r-message_v4)
)).

ENDLOOP.

Listing 10.27 Populating the Reported Parameter from the BAPIRET2 Structure

403

10.4 Implementing the Create Purchase Order Function

Note that the ADJUST_NUMBERS method is already executed after the point of

no return within the save sequence and therefore no error messages can be

reported via the REPORTED parameter. If an error does occur at this point, you

must use RAISE SHORTDUMP to create a dump.

10.4.6 Implementing Validations

To ensure that the creation of the purchase order with the given data is pos-

sible, you’ll implement validations in this section that check the data con-

sistency before saving. In our use case, we want to examine the following

issues:

� Have the mandatory fields for the purchase order quantity and material

been filled?

� Is it generally possible to create a purchase order with the given data?

� Is the material number contained in the purchase order item valid?

Declaring

validations

To do this, you need to create two different validations—validatePurchase-
Order and validateMaterial—in the behavior definition for the ZI_RAP_
PurchaseOrder_M entity with the alias name PurchaseOrder (see Listing 10.28).

define behavior for ... alias PurchaseOrder
{

...
validation validatePurchaseOrder on save { create; }
validation validateMaterial on save { create; }

}

Listing 10.28 Declaring Validations for CDS Entity PurchaseOrder

The validatePurchaseOrder validation performs the entire check of the pur-

chase order creation. You can use the test indicator of the BAPI BAPI_PO_
CREATE1 for this. Since we can’t influence the call sequence of the validations

on the part of the RAP framework, we don’t swap out the check for manda-

tory fields to a separate validation, but additionally check the mandatory

fields in the validatePurchaseOrder validation. We call the BAPI only if these

mandatory fields have been filled.

The validateMaterial validation checks whether the specified material is

valid. Since the RAP business object doesn’t support an update operation,

you should use create to store the attachment operation as a trigger condi-

tion for these validations.

Creating a message

class with messages

For the error messages you also create a message class named ZRAP_PO. To

do this, you can use the shortcut (Ctrl) + (N) to open the creation dialog in

ADT and select the Message Class entry under ABAP. Run through the

404

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

creation wizard, providing the message class with the messages listed in

Table 10.4 in the process. Save and close the message class afterwards.

Implementing the validatePurchaseOrder Validation

Declaring a method Generate the method declarations again using the quick fix function for the

validation names in the behavior pool. Since the validatePurchaseOrder val-

idation has the create trigger condition, you can use the keys parameter to

read data about the created instances from the transaction buffer (see Lis-

ting 10.29).

METHOD validatePurchaseOrder.
DATA mandatory_field_missing TYPE abap_bool.
READ ENTITIES OF ZI_RAP_PurchaseOrder_M IN LOCAL MODE

ENTITY PurchaseOrder
ALL FIELDS WITH CORRESPONDING #(keys)

RESULT DATA(pos_to_create).
...

Listing 10.29 Reading Instances to be Checked from the Transaction Buffer

Checking manda-

tory fields

Then, iterate over the instances to be checked, and check whether the man-

datory field of the purchase order quantity OrderQuantity (Section 10.4.2)

has been filled. If that’s not the case, output the validation error via the

FAILED parameter with reference to the respective instance (<po_to_cre-
ate>-%tky), marking the create operation as incorrectly executed. For this

purpose, you should fill the REPORTED parameter with a suitable error mes-

sage and refer to the incorrect field (see Listing 10.30).

...
LOOP AT pos_to_create ASSIGNING FIELD-SYMBOL(<po_to_create>).

CLEAR mandatory_field_missing.

Number Message Text

001 Material &1 is not intended for fast entry.

002 Material &1 is not active.

003 Please enter a purchase order quantity.

004 Please enter a material.

005 No authorization to create purchase orders.

Table 10.4 Messages of the ZRAP_PO Message Class

405

10.4 Implementing the Create Purchase Order Function

" Checking mandatory fields
IF <po_to_create>-OrderQuantity IS INITIAL.
failed-purchaseorder = VALUE #(BASE failed-purchaseorder

(%tky = <po_to_create>-%tky
%create = if_abap_behv=>mk-on)).

reported-purchaseorder = VALUE #(BASE reported-purchaseorder
(%tky = <po_to_create>-%tky
%element-orderquantity = if_abap_behv=>mk-on
%msg = me->new_message(severity =

if_abap_behv_message=>severity-error
id = 'ZRAP_PO'
number = '003'))).

mandatory_field_missing = abap_true.
ENDIF.

Listing 10.30 Checking a Mandatory Field for the Purchase Order Quantity

After that, you want to check if the mandatory field Material is filled by sup-

plying the FAILED or REPORTED parameter, as shown in Listing 10.30. In this

case, the REPORTED parameter receives message 004 of the previously created

message class and refers to the Material field instead of the OrderQuantity
field (see Listing 10.31).

...
IF <po_to_create>-Material IS INITIAL.
failed-purchaseorder = ...
reported-purchaseorder = ...
mandatory_field_missing = abap_true.

ENDIF.

IF mandatory_field_missing = abap_true.
CONTINUE.

ENDIF.
...

Listing 10.31 Checking a Mandatory Field for the Material

The current loop pass will be interrupted by CONTINUE if a mandatory field

hasn’t been filled so that the subsequent BAPI call won’t take place.

Calling the BAPI

for checking

If the mandatory fields Material and OrderQuantity have been filled, you

can call the swapped out method create_purchase_order described in Sec-

tion 10.4.5, but this time for validation purposes in test mode, using the

import parameter as_test_run = abap_true (see Listing 10.32).

406

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

...
create_purchase_order(

EXPORTING
as_test_run = abap_true
po_entity = CORRESPONDING #(<po_to_create>)

IMPORTING
return = DATA(return)).

...

Listing 10.32 Calling the create_purchase_order Method for Validation

Filling FAILED The essential part of this validation is to evaluate the result (here, the

parameter return) and to report possible error situations. In the event of an

error, you can thus ensure that the RAP framework will abort the save

sequence. You must evaluate the result of the BAPI call in the return param-

eter (see Listing 10.33).

...
" Report error situation
READ TABLE return
WITH KEY type = 'E'
TRANSPORTING NO FIELDS.

IF sy-subrc EQ 0.
" Report create operation as failed
failed-purchaseorder = VALUE #(BASE failed-purchaseorder

(%tky = <po_to_create>-%tky
%create = if_abap_behv=>mk-on)).

...

Listing 10.33 Reporting the Create Operation for an Instance as Failed

Filling REPORTED Subsequently, you can still return corresponding messages via the REPORTED
parameter (see Listing 10.34).

...
" Return error messages
reported-purchaseorder = VALUE #(BASE reported-purchaseorder

FOR r IN return WHERE (type = 'E')
(PurchaseOrder = <po_to_create>-PurchaseOrder

%msg = me->new_message(id = r-id
number = r-number
severity = if_abap_behv_message=>severity-error
v1 = r-message_v1
v2 = r-message_v2
v3 = r-message_v3

407

10.4 Implementing the Create Purchase Order Function

v4 = r-message_v4))).
ENDIF.

ENDLOOP.
ENDMETHOD.

Listing 10.34 Returning Messages via the Reported Parameter

Implementing the validateMaterial Validation

The validateMaterial validation checks whether the transferred material is

valid for fast order entry. If that’s not the case, the validation will report an

error.

Declaring a methodOpen the behavior pool and navigate to the implementation class on the

Local Types tab. Start with the implementation of the validateMaterial
method. Again, first use EML to read all instances relevant to the check

from the transaction buffer (see Listing 10.35).

METHOD validateMaterial.
READ ENTITIES OF ZI_RAP_PurchaseOrder_M IN LOCAL MODE
ENTITY PurchaseOrder

ALL FIELDS WITH CORRESPONDING #(keys)
RESULT DATA(pos).

...

Listing 10.35 Reading Instances from the Transaction Buffer for Validation

Then, iterate over the instances you’ve read and perform the data valida-

tion. We assume that only instances with filled material number are to be

checked, since you have already implemented the mandatory field check in

the validatePurchaseOrder validation.

You should first read the validity of the material via the read_cust_by_mate-
rial method so that you can check the material stored in the instances (see

Listing 10.36).

...
LOOP AT pos INTO DATA(po) WHERE NOT Material IS INITIAL.
" Access data from table ZRAP_BO
read_cust_by_material(

EXPORTING
material = po-Material

IMPORTING
material_cust = DATA(material_cust)).

...

Listing 10.36 Reading Data for the Valid Material

408

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

Running the

validation

Now, you need to implement the actual validation of the data. To do so, you

need to check whether the material in the instance is a valid material at all

(that is, whether it has been stored in table ZRAP_A_PO_MAT). In addition, you

must use the IsActive field to check whether the material is active, pro-

vided it has been stored. The data for the valid material is located in the

material_cust data object.

Reporting an error

via REPORTED

You can report error situations via the REPORTED parameter using the previ-

ously created messages in the ZRAP_PO message class. Use the %element-
material field to create a reference between the error message and the

actual field (see Listing 10.37). This mapping can be evaluated by the SAP

Fiori elements UI.

...
IF NOT material_cust IS INITIAL.
IF material_cust-IsActive NE abap_true.

reported-purchaseorder = VALUE #(BASE reported-purchaseorder
(%tky = po-%tky

%element-material = if_abap_behv=>mk-on
%msg = me->new_message(severity =

if_abap_behv_message=>severity-error
id = 'ZRAP_PO'
number = '002'
v1 = |{ po-Material ALPHA = OUT }|))).

ENDIF.
ELSE.
reported-purchaseorder = VALUE #(BASE reported-purchaseorder

(%tky = po-%tky
%element-material = if_abap_behv=>mk-on
%msg = me->new_message(severity =
if_abap_behv_message=>severity-error

id = 'ZRAP_PO'
number = '001'
v1 = |{ po-Material ALPHA = OUT }|))).

ENDIF.
ENDLOOP.

ENDMETHOD.

Listing 10.37 Running the Validation and Returning Error Messages

Now, save and activate the behavior pool. Thus, you have implemented the

necessary behavior to implement the create purchase order function via a

behavior definition and the behavior pool.

409

10.5 Implementing the Delete Purchase Order Function

10.5 Implementing the Delete Purchase Order Function

In this section, we’ll implement the delete purchase order function. To do

this, we implement the SAVE_MODIFIED method of the save handler

“unlocked” by the unmanaged save implementation type. In Section 10.3, you

declared the standard operation delete for CDS root entity ZI_RAP_Pur-
chaseOrder_M and selected the save option with unmanaged save. Both decla-

rations are a prerequisite for implementing the delete purchase order

function now.

10.5.1 Save Sequence: Implementing the Deletion via BAPI

Implementing a

custom locking

behavior

The delete operation acts on an existing instance of a purchase order, so

you have to deal with competing data accesses here as well. For example,

one user may change a purchase order via SAP's own SAP Fiori app or trans-

action, while another user may want to delete the same purchase order via

your RAP application. In this case, deletion may not be possible due to the

lock that has already been set. Although the SAP standard takes care of pro-

cessing the purchase order within the application integrated via BAPIs, this

only takes effect in the save sequence of the RAP transaction model. How-

ever, the lock has already been set by the ABAP RESTful application pro-

gramming model in the interaction phase.

For this reason, you must implement your own lock behavior for the RAP

business object and not use the generic lock behavior through the managed

business object provider. It’s necessary to add the unmanaged keyword to the

lock master declaration in the behavior definition (see Listing 10.38).

define behavior for ZI_RAP_PurchaseOrder_M alias PurchaseOrder
lock master unmanaged
late numbering
...

Listing 10.38 Declaration of an Unmanaged Lock

Implementing a

custom locking

behavior

Create the relevant FOR LOCK handler method using the quick fix function

and then implement it. To do this, you should use the special function

modules for lock management (lock modules) that belong to the purchase

order (see Listing 10.39).

METHOD lock.
LOOP AT keys ASSIGNING FIELD-SYMBOL(<k>).
CALL FUNCTION 'ENQUEUE_EMEKKOS'

EXPORTING

410

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

ebeln = <k>-PurchaseOrder
EXCEPTIONS

foreign_lock = 1
system_failure = 2
OTHERS = 3.

CASE sy-subrc.
WHEN 1. " Purchase order is already locked

failed-purchaseorder = VALUE #(BASE
failed-purchaseorder

(purchaseorder = <k>-PurchaseOrder
%fail-cause = if_abap_behv=>cause-locked

)).
reported-purchaseorder = VALUE #(

BASE reported-purchaseorder
(purchaseorder = <k>-PurchaseOrder
%msg = new_message(
id = sy-msgid
number = sy-msgno
severity = if_abap_behv_message=>severity-

error
v1 = sy-msgv1
v2 = sy-msgv2
v3 = sy-msgv3
v4 = sy-msgv4))).

WHEN OTHERS.
RAISE SHORTDUMP NEW zcx_rap_purchaseorder(...).

ENDCASE.
ENDLOOP.

ENDMETHOD.

Listing 10.39 Implementation of the For Lock Method

If the lock couldn’t be set for the particular <k>-PurchaseOrder order num-

ber, you should populate the FAILED parameter with the corresponding

order number (<k>-PurchaseOrder) and the cause of the error (if_abap_behv=
>cause-locked). In addition, you should return a message for the respective

purchase order via the REPORTED parameter. You can use the helper method

new_message for this purpose. If the lock couldn’t be set for technical rea-

sons, you must trigger a dump (RAISE SHORTDUMP).

Implementing the

delete operation

Having implemented the setting of the lock, you can swap out the deletion

of a purchase order via BAPI to a separate method (as we’ve already done

with the creation of the purchase order). You can declare this method in the

implementation class in the behavior pool (see Listing 10.40).

411

10.5 Implementing the Delete Purchase Order Function

CLASS lhc_PurchaseOrder DEFINITION INHERITING FROM cl_abap_behavior_
handler.

PUBLIC SECTION.
...

CLASS-METHODS delete_purchase_order
IMPORTING
VALUE(po_number) TYPE ZI_RAP_PurchaseOrder_M-PurchaseOrder
VALUE(as_test_run) TYPE abap_bool DEFAULT abap_true

EXPORTING
VALUE(return) TYPE tt_return.

Listing 10.40 Method Declaration for Deleting a Purchase Order

Listing 10.41 contains the implementation of this method.

...
METHOD delete_purchase_order.
DATA: ls_po_header TYPE bapimepoheader,

ls_x_po_header TYPE bapimepoheaderx.
* Delete means to set a deletion indicator in the purchase order
ls_po_header-delete_ind = abap_true.
ls_x_po_header-delete_ind = abap_true.
CALL FUNCTION 'BAPI_PO_CHANGE'
EXPORTING
purchaseorder = po_number
poheader = ls_po_header
poheaderx = ls_x_po_header
testrun = as_test_run

TABLES
return = return.

ENDMETHOD.
...

Listing 10.41 Method Implementation for Deleting a Purchase Order

Warning: Considering the Semantics of the Delete Operation

Even though deleting a purchase order is implemented by means of updat-

ing the purchase order by setting a deletion indicator (delete_ind) in the

BAPI BAPI_PO_CHANGE, the RAP business object will provide the delete oper-

ation. On a logical level, this is a deletion of a purchase order, not an

update. The delete operation occurs external to the business object, while

the implementation of this function occurs internally. The semantics of

the interface and the actual implementation are thus separated from each

other.

412

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

Implementing

SAVE_MODIFIED

Next, you want to implement the SAVE_MODIFIED method in the save han-

dler of the behavior pool. During the creation of the behavior pool, the

method has already been redefined there (see the subsection about imple-

menting the initOrgData determination in Section 10.4.4). You can see the

redefinition in Listing 10.42.

CLASS lsc_ZI_RAP_PurchaseOrder_M DEFINITION INHERITING FROM cl_abap_
behavior_saver.
PROTECTED SECTION.

METHODS adjust_numbers REDEFINITION.
METHODS save_modified REDEFINITION.

ENDCLASS.

Listing 10.42 Redefinition of the SAVE_MODIFIED Method in the Save Handler

You can check the signature of the SAVE_MODIFIED method by placing the

cursor on the method name and pressing the (F2) function key. Then,

you’ll see the signature as shown in Figure 10.9.

Figure 10.9 Signature of the SAVE_MODIFIED Method

You can access the purchase orders to be deleted using the delete parame-

ter with the derived data type for deleting RAP entities (TYPE REQUEST FOR
DELETE). In Listing 10.43, you can see the implementation of the SAVE_MODI-
FIED method. Iterate over the purchase orders marked for deletion in the

transaction buffer (LOOP AT delete-purchaseorder) and call the previously

implemented method delete_purchase_order to delete the respective pur-

chase order.

...
METHOD save_modified.
LOOP AT delete-purchaseorder ASSIGNING FIELD-SYMBOL(<po_to_

delete>).
lhc_purchaseorder=>delete_purchase_order(
EXPORTING

po_number = <po_to_delete>-PurchaseOrder
as_test_run = abap_false

413

10.5 Implementing the Delete Purchase Order Function

IMPORTING
return = DATA(return)).

...

Listing 10.43 Implementation of the SAVE_MODIFIED Method

After that, you can return messages about the saving process via the

REPORTED parameter. Since we’re in the late save sequence (i.e., the point in

time is after the point of no return, as is the case with the ADJUST_NUMBERS
method), no more error messages can be returned here. If an error does

occur at this point, you must create a dump (RAISE SHORTDUMP) (see Listing

10.44).

...
READ TABLE return WITH KEY type = 'E'
INTO DATA(return_err).

IF sy-subrc EQ 0.
RAISE SHORTDUMP NEW zcx_rap_purchaseorder(...).

ENDIF.
...

Listing 10.44 Reporting an Error Situation via Dump After the Point of No Return

Evaluate the return parameter, which contains the messages of the BAPI

call, and return a corresponding message with reference to the respective

purchase order instance (<po_to_delete>-PurchaseOrder) for each entry in

the return parameter. Listing 10.45 contains the ABAP source code for this.

...
" Return messages
reported-purchaseorder = VALUE #(BASE reported-purchaseorder

FOR r IN return WHERE (type = 'I' OR type <> 'W')
(PurchaseOrder = <po_to_delete>-PurchaseOrder
%msg = me->new_message(
id = r-id
number = r-number
severity = COND #(WHEN r-type = 'I' THEN

if_abap_behv_message=>severity-information
WHEN r-type = 'W' THEN

if_abap_behv_message=>severity-warning)
v1 = r-message_v1
v2 = r-message_v2
v3 = r-message_v3
v4 = r-message_v4))).

414

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

ENDLOOP.
ENDMETHOD.

Listing 10.45 Returning Messages in SAVE_MODIFIED via Reported Method

Then, save and activate the behavior pool.

10.5.2 Implementing a Validation

The delete purchase order function also includes a validation that checks

whether a deletion is possible at all. The procedure for implementing this

validation is identical to that for implementing the validatePurchaseOrder
validation from Section 10.4.6.

Declaring the

validateOnDelete

validation

First, you need to declare the validateOnDelete validation in the behavior

definition:

...
validation validateMaterial on save { create; }
validation validateOnDelete on save { delete; }

...

It has the trigger condition delete, so it gets called for instances deleted in

the transaction buffer during the save sequence.

Implementing the

validation

Create and implement an appropriate method in the behavior pool using

the quick fix function. You can see the ABAP source code for this validation

in Listing 10.46.

METHOD validateOnDelete.
LOOP AT keys ASSIGNING FIELD-SYMBOL(<k>).

delete_purchase_order(
EXPORTING

po_number = <k>-PurchaseOrder
as_test_run = abap_true

IMPORTING
return = DATA(return)).

...

Listing 10.46 Checking Whether it is Possible to Delete a Purchase Order

For deletion, only the reference to the respective instance via the key value

is necessary. The key values are available via the keys parameter. Reading

from the transaction buffer via READ ENTITIES is therefore not necessary.

415

10.5 Implementing the Delete Purchase Order Function

FAILED parameterFor this validation, you also report for each purchase order instance to be

deleted via the FAILED parameter whether or not the delete operation can

be performed (see Listing 10.47).

...
" Report error situation
READ TABLE return

WITH KEY type = 'E'
TRANSPORTING NO FIELDS.

IF sy-subrc EQ 0.
" Report delete operation as failed
failed-purchaseorder = VALUE #(BASE

failed-purchaseorder
(PurchaseOrder = <k>-PurchaseOrder
%delete = if_abap_behv=>mk-on)).

...

Listing 10.47 Filling the Failed Parameter for the Delete Operation

After that, you want to pass the error messages from the return parameter

to the REPORTED parameter again (see Listing 10.48). Finally, save and acti-

vate the behavior pool.

...
" Return error messages
reported-purchaseorder = VALUE #(BASE reported-purchaseorder

FOR r IN return WHERE (type = 'E')
(PurchaseOrder = <k>-PurchaseOrder
%msg = me->new_message(id = r-id
number = r-number
severity = if_abap_behv_message=>severity-error
v1 = r-message_v1
v2 = r-message_v2
v3 = r-message_v3
v4 = r-message_v4))).

ENDIF.
ENDLOOP.

ENDMETHOD.
...

Listing 10.48 Filling the Reported Parameter

416

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

10.6 Defining Business Services

My Purchase Orders

application

In the previous sections, you’ve implemented a RAP business object named

ZI_RAP_PurchaseOrder_M with data model and transactional behavior. Now

we want to provide users with an SAP Fiori app called My Purchase Orders,

in which they can view their placed purchase orders based on the RAP busi-

ness object and create new purchase orders. You’ll use the projection layer

to provide a service-specific view of the RAP business object. In turn, you’ll

expose the projection layer artifacts as an OData service via a service defini-

tion and a service binding so that the SAP Fiori app can consume them.

10.6.1 Setting up the Projection Layer for the My Purchase Orders

Application

In the following steps, you’ll create a CDS projection view and a projection

behavior definition to implement the projection layer.

Creating a CDS

projection view

First, you need to create a CDS projection view based on CDS root entity

ZI_RAP_PurchaseOrder_M:

1. Open the context menu of the ZI_RAP_PurchaseOrder_M entity in the Proj-

ect Explorer and select the menu item New Data Definition.

2. The name of the CDS root entity is preset in the Referenced Object field

in the following creation dialog. Name the CDS projection view “ZC_

RAP_PurchaseOrderOwn_M” and enter a description (see Figure 10.10).

Figure 10.10 Creating a CDS Projection View

417

10.6 Defining Business Services

3. In the dialog that follows next, you must select the Define Projection

View template. Complete the process by clicking the Finish button.

Defining the CDS

projection view

The DDL source editor for the CDS projection view will open. Perform a

source code formatting using the shortcut (Ctrl) + (Shift) + (F). Then, add

the root keyword to the CDS entity, as shown in Listing 10.49.

@EndUserText.label: 'My Purchase Orders'
@AccessControl.authorizationCheck: #CHECK
define root view entity ZC_RAP_PurchaseOrderOwn_M

as projection on ZI_RAP_PurchaseOrder_M
{

key PurchaseOrder,
PurchaseOrderType,
...

Listing 10.49 Defining a CDS Projection View as Root Entity

The investment process generates the selection list of the CDS projection

view from the projected CDS entity ZI_RAP_PurchaseOrder_M. Remove the

PurchasingOrganization, PurchasingGroup, Supplier, CreatedByUser and Cre-
ationDate fields from this selection list.

Selecting language-

dependent text

Add another field named MaterialName to the selection list of the CDS pro-

jection view and an annotation named ObjectModel.text.element to pro-

vide the material number with a language-dependent descriptive text (the

material short text) (see Listing 10.50).

...
PurchaseOrderDate,
@ObjectModel.text.element: ['MaterialName']
Material,
_POMaterial._Material._Text.MaterialName as

MaterialName : localized,
OrderQuantity,

...

Listing 10.50 Defining a Descriptive Text for Material Number

The MaterialName field is a text element. The localized keyword is used in

the CDS projection view to resolve the text association depending on the

current logon language.

Adding a filter

criterion

In the My Purchase Orders application, only the purchase orders that the

respective logged-in user has created are relevant. So, you should add the

CreatedByUser = $session.user filter criterion to the CDS projection view via

the where clause:

418

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

...
_PurchaseOrderItem

}
where
CreatedByUser = $session.user

Save and activate the CDS projection view afterwards.

Creating a

projection behavior

definition

Based on the previously created CDS projection view, you can now create a

projection behavior definition so that you can expose the desired transac-

tional behavior. To do this, select New Behavior Definition from the context

menu of CDS projection view ZC_RAP_PurchaseOrderOwn_M. You can option-

ally enter a new description in the creation dialog; the other input fields are

already prefilled and can’t be modified. Go through the dialog and finish

the process by clicking the Finish button.

A generated BDL source code will open; in there, you should add the alias

name PurchaseOrder (see Listing 10.51). Save and activate the projection

behavior definition afterwards.

projection;

define behavior for ZC_RAP_PurchaseOrderOwn_M alias PurchaseOrder
{
use create;
use delete;

}

Listing 10.51 Projection Behavior Definition for the My Purchase Orders Applica-

tion

10.6.2 Creating a Service Definition

Next, you need to create a service definition named ZRAP_PO_Own_M with the

description “Service definition, My Purchase Orders” based on the previ-

ously created CDS projection view ZC_RAP_PurchaseOrderOwn_M. Proceed as

described in Chapter 9, Section 9.4.1. Specify the semantic alias Purchase-
Order for the exposed CDS entity ZC_RAP_PurchaseOrderOwn_M using as. In

Listing 10.52 you can see the complete SDL source code.

@EndUserText.label: 'Service definition, My Purchase Orders'
define service ZRAP_PO_Own_M {
expose ZC_RAP_PurchaseOrderOwn_M as PurchaseOrder;

}

Listing 10.52 Service Definition ZRAP_PO_Own_M

419

10.7 Implementing Authorization Checks

10.6.3 Creating a Service Binding

Then, create a service binding named ZUI_RAP_PO_OWN_M_O2 for service defi-

nition ZRAP_PO_Own_M. Proceed as described in Chapter 9, Section 9.4.2. Use

the value OData V2 - UI as the Binding Type.

Then, publish the service binding using the Publish button. You can see the

already published service binding in Figure 10.11.

Figure 10.11 Published Service Binding for the Purchase Order Entity Set

10.7 Implementing Authorization Checks

In this section, you’ll implement authorization checks for the fast purchase

order entry application.

10.7.1 Access Controls for Read Access

Custom CDS access

control

CDS access controls protect the records of a CDS entity from unauthorized

access. However, this access protection is only effective locally (see Chapter

2, Section 2.5). The CDS projection view ZC_RAP_PurchaseOrderOwn_M created

in Section 10.6.1 uses the CDS view ZI_RAP_PurchaseOrder_M as a data source,

which in turn is based on the standard view I_PurchaseOrderItemAPI01.

Thus, the CDS access control of the same name for the order item in the

VDM does not take effect for our entities, ZI_RAP_PurchaseOrder_M or ZC_
RAP_PurchaseOrder_M. You need your own access control. In contrast, the

respective access controls of the associated CDS entities take effect for read

accesses defined via associations.

Searching for stan-

dard access controls

Since our RAP business object is based on standard CDS entities of the VDM,

you can use the CDS access controls defined there for read accesses. You can

check directly in the system if there’s an access control for the used CDS

entity I_PurchaseOrderItemAPI01:

420

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

1. Open the CDS entity I_PurchaseOrderItemAPI01 in ADT.

2. Run a where-used list using the shortcut (Ctrl) + (Shift) + (G).

3. In the search result, you can see the CDS access control of the same name

I_PurchaseOrderItemAPI01 (Access Control) (see Figure 10.12).

Figure 10.12 Result of Searching for a CDS Access Control for the I_Purchase-

OrderAPI01 CDS Entity

Creating access

control

You can create your own access control for the CDS entity ZI_RAP_Purchase-
Order_M based on this standard access control:

1. Open the context menu of the CDS entity in the Project Explorer and

select the New Access Control entry.

2. In the Name field, you should use the same name as the CDS entity you

want to protect (here, ZI_RAP_PurchaseOrder_M).

3. Your access control should inherit from CDS entity I_PurchaseOrder-
ItemAPI01 (inheriting conditions from entity) so that you can use the

authorization checks defined there directly and don’t need to copy

them. The prerequisite for this is that the fields relevant for the authori-

zation check must be part of the inheriting CDS entity, such as the Plant
field, for example. You can see the data control language (DCL) source

code for your access control in Listing 10.53.

@EndUserText.label: 'CDS access control'
@MappingRole: true
define role ZI_RAP_PurchaseOrder_M {

grant select on ZI_RAP_PurchaseOrder_M
where
inheriting conditions from entity I_PurchaseOrderItemAPI01;

}

Listing 10.53 Access Control for ZI_RAP_PurchaseOrder_M CDS Entity

4. Secure and activate the access control.

Creating access

control for the

projection view

Now, you should create another CDS access control for the CDS projection

view ZC_RAP_PurchaseOrderOwn_M. This access control inherits the authoriza-

tion check of the projected CDS view ZI_RAP_PurchaseOrder_M. You can see

the DCL source code in Listing 10.54. Save and activate this access control as

well.

421

10.7 Implementing Authorization Checks

@EndUserText.label: 'CDS access control'
@MappingRole: true
define role ZC_RAP_PurchaseOrderOwn_M {

grant select on ZC_RAP_PurchaseOrderOwn_M
where
inheriting conditions from entity ZI_RAP_PurchaseOrder_M;

}

Listing 10.54 CDS Access Control for CDS Projection View ZC_RAP_Purchase-

OrderOwn_M

10.7.2 Access Controls for Write Access

Declaring an

authorization check

Now, open the behavior definition of the CDS root entity ZI_RAP_Purchase-
Order_M and add the statement authorization master (instance). This way

you can enable instance-based authorization checking (see Listing 10.55).

Save and activate the behavior definition afterwards.

...
define behavior for ZI_RAP_PURCHASEORDER_M alias PurchaseOrder
lock master
late numbering
authorization master (instance)
etag master LastChangeDateTime
...

Listing 10.55 Declaring Authorization Checks

Method for the

authorization check

In the implementation class in the behavior pool, you can create the

method to run the authorization check using the quick fix function. Listing

10.56 shows the method declaration.

...
METHODS get_instance_authorizations

FOR INSTANCE AUTHORIZATION
IMPORTING keys REQUEST requested_authorizations FOR PurchaseOrder

RESULT result.
...

Listing 10.56 Method Declaration for the Instance-Based Authorization Check

You can determine the authorization objects used with the respective activ-

ities from the BAPI documentation. In our example, these are the following

authorization objects: M_BEST_BSA, M_BEST_EKO, and M_BEST_EKG. Even if the

BAPIs themselves perform authorization checks, you should implement

422

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

these checks in the RAP business object. This way, you can use the capabili-

ties of the RAP framework and ensure, for example, that no other person

can make unauthorized changes to the transaction buffer.

Tip: Using an Authorization Trace

To find out which authorizations are being used, you can also activate an

authorization trace in Transaction STAUTHTRACE and reproduce the

desired behavior in the standard application, for example, creating a pur-

chase order. In the SAP BTP, ABAP environment, an SAP Fiori app is avail-

able for activating and evaluating authorization checks (see Chapter 12).

Authorization for

the delete operation

Now, open the behavior pool and implement the get_instance_authoriza-
tions method to check the specified authorization objects (see Listing

10.57). Then activate the behavior pool.

CLASS lhc_PurchaseOrder IMPLEMENTATION.
...
METHOD get_instance_authorizations.

READ ENTITY ZI_RAP_PurchaseOrder_M
ALL FIELDS

WITH CORRESPONDING #(keys)
RESULT DATA(pos_for_auth_check).

" 02 - Change => Is deletion allowed
LOOP AT pos_for_auth_check ASSIGNING FIELD-SYMBOL(<po_for_auth_

check>).
AUTHORITY-CHECK OBJECT 'M_BEST_EKO'

ID 'EKORG' FIELD <po_for_auth_check>-PurchasingOrganization
ID 'ACTVT' FIELD '02'.

IF sy-subrc <> 0.
APPEND VALUE #(PurchaseOrder = <po_for_auth_check>-

PurchaseOrder
%delete = if_abap_behv=>auth-
unauthorized) TO result.

CONTINUE.
ENDIF.
" ... Check authorization object M_BEST_EKG, M_BEST_BSA

ENDLOOP.
ENDMETHOD.

...

Listing 10.57 Implementation of Instance-Based Authorization Checks

Authorization for

the create operation

In the ABAP RESTful application programming model, you can protect the

create operation from unauthorized access using the global authorization

423

10.7 Implementing Authorization Checks

check. In our use case, however, the check must be dependent on the pur-

chasing organization, and data for the instances is not available in the

global authorization check. For this reason, you can’t use the global autho-

rization check here, but must provide the create operation in the behavior

definition with a precheck and perform the authorization check there (see

Listing 10.58).

define behavior for ZI_RAP_PurchaseOrder_M alias PurchaseOrder
...
{

create (precheck);
internal update;
delete;

...
}

Listing 10.58 Create Operation with the Precheck Option

Implementing the

FOR PRECHECK

method

Now, save and activate the behavior definition and create a FOR PRECHECK
method in the implementation class using the quick fix function. Imple-

ment them as shown in Listing 10.59.

METHOD precheck_create.
DATA(org_data) = read_org_data().
LOOP AT entities ASSIGNING FIELD-SYMBOL(<po>).
AUTHORITY-CHECK OBJECT 'M_BEST_EKO'

ID 'EKORG' FIELD org_data-purch_org
ID 'ACTVT' FIELD '01'.

IF sy-subrc <> 0.
failed-purchaseorder = VALUE #(BASE failed-purchaseorder

(%cid = <po>-%cid
%create = if_abap_behv=>auth-unauthorized)).

reported-purchaseorder = VALUE #(
BASE reported-purchaseorder
(%cid = <po>-%cid
%msg = me->new_message(severity =

if_abap_behv_message=>severity-error
id = 'ZRAP_PO'
number = '005'))).

CONTINUE.
ENDIF.
" Check authorization object M_BEST_EKG

...

424

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

ENDLOOP.
ENDMETHOD.

Listing 10.59 Implementation of the FOR PRECHECK Method for

Authorization Checks

Then, save and activate the behavior pool again.

10.8 Creating an SAP Fiori Elements User Interface

Based on the previously created projection layer and the published service

binding, in this section we’ll create an SAP Fiori elements application that

allows users to select, create, view, and delete their purchase orders.

10.8.1 Creating a Metadata Extension

Allowing metadata

extensions

UI annotations are best placed in a metadata extension to swap out the pre-

sentation layer of the application in the backend into a separate artifact. To

make this possible, you first need to add the annotation @Metadata.allow-
Extensions: true to the CDS projection view (see Listing 10.60). Then, acti-

vate the CDS entity.

@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'My Purchase Orders'
@Metadata.allowExtensions: true
define root view entity ZC_RAP_PurchaseOrderOwn_M
...

Listing 10.60 Allowing Metadata Extensions to the CDS Projection View

Allowing Metadata Extensions

We’d like to point out here that adding this annotation isn’t done only out

of technical necessity, but is done deliberately. By using it, you allow the

addition of a metadata extension to a CDS entity and thus to open this

CDS entity for adaptations “from outside.” If the RAP application is made

available outside the sphere of influence of your organization or organiza-

tional unit, the metadata extension can be used there as well, which is

why you must support the technical contract throughout the application

lifecycle.

Creating the meta-

data extension

Now, you can create a metadata extension for CDS projection view ZC_RAP_
PurchaseOrderOwn_M. Proceed as described in Chapter 9, Section 9.5. You can

425

10.8 Creating an SAP Fiori Elements User Interface

see the CDS source code for the metadata extension with the UI annota-

tions in Listing 10.61.

@Metadata.layer: #CORE
@UI.headerInfo: { typeName: 'My purchase order',

typeNamePlural: 'My purchase order' }
annotate view ZC_RAP_PurchaseOrderOwn_M with
{

@UI.facet: [{ id: 'Identification',
type: #IDENTIFICATION_REFERENCE,
label: 'Bestellung',
position: 10,
purpose: #STANDARD }]

@UI.selectionField: [{ position: 10 }]
@UI.lineItem: [{ position: 10 }]
@UI.identification: [{ position: 10 }]
PurchaseOrder;

@UI.selectionField: [{ position: 20 }]
@UI.lineItem: [{ position: 20 }]
PurchaseOrderDate;

@UI.selectionField: [{ position: 30 }]
@UI.lineItem: [{ position: 30 }]
@UI.identification: [{ position: 20 }]
Material;

@UI.lineItem: [{ position: 40 }]
@UI.identification: [{ position: 40 }]
OrderQuantity;

}

Listing 10.61 Metadata Extension with UI Annotations

Testing the creation

of a purchase order

Then, activate the metadata extension. After that, you can return to the ser-

vice binding and test the UI annotations using the preview function for CDS

entity ZC_RAP_PurchaseOrderOwn_M. You’ll notice when creating a purchase

order using the SAP Fiori elements user interface that there’s no search

help for the Material input field. However, we want to give users the oppor-

tunity to directly select those materials that are valid for fast order entry via

that type of a search help.

Creating a CDS

entity for the search

help

To do this, create a new CDS entity based on CDS entity ZI_RAP_PO_Material,

which will act as a search help for the valid materials. For this purpose, you

426

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

must open the context menu for CDS entity ZI_RAP_PO_Material and select

New Data Definition. Choose “ZI_RAP_PO_MaterialActive_VH” as the

name and assign the description “Valid materials, search help.” You can see

the source code of the search help view in Listing 10.62.

...
define view entity ZI_RAP_PO_MaterialActive_VH
as select from ZI_RAP_PO_Material

{
@ObjectModel.text.association: '_MaterialText'

key Material,
_Material.MaterialBaseUnit as MaterialBaseUnit,
@Consumption.hidden: true
_Material.Material as MaterialForText,
_Material._Text as _MaterialText

}
where
IsActive = 'X'

Listing 10.62 CDS Entity as a Search Help for Valid Materials

The material short text as descriptive text for the material number gets

implemented via the annotation @ObjectModel.text.association: '_Mate-
rialText'. Matching the use case of the search help, the CDS entity selects

only valid materials and also implements the condition IsActive = 'X' in

the where clause. Save and activate the CDS entity created for the search

help.

Including a UI

annotation for the

search help

Include the CDS entity in the metadata extension via the UI annotation

@Consumption.valueHelpDefinition as a search help for the Material field

(see Listing 10.63). This is comparable to the classic search help binding in

structured data types in the ABAP dictionary.

...
@Consumption.valueHelpDefinition: [{ entity: {
name : 'ZI_RAP_PO_MaterialActive_VH',
element: 'Material' },
additionalBinding: [{ element: 'MaterialBaseUnit',

localElement:
'PurchaseOrderQuantityUnit',

usage: #RESULT }] }]
Material;
...

Listing 10.63 Search Help Binding for the Material Field

427

10.8 Creating an SAP Fiori Elements User Interface

Save and activate the metadata extension afterwards. You can now use the

preview function for the PurchaseOrder entity set in the service binding

again to test the search help.

CDS Entity for Search Help in Service Binding

If you open the service binding again, you’ll notice that the CDS entity for

the search help is now also automatically exposed there, without you hav-

ing to add it manually. This is necessary because the user interface must

also display the search help remotely via OData and perform the data

selection.

10.8.2 Generating and Deploying the Application

Now you can create an SAP Fiori elements application based on the pub-

lished service binding using SAP Fiori tools in Visual Studio Code. Proceed

as described in Chapter 9, Section 9.9.

Generating the

application

Open Visual Studio Code and start the application generator. In the course

of the wizard, select the parameters from Table 10.5 for generating the

application. Based on this information, the SAP Fiori tools will generate

your application.

DeploymentDeploying the application in the ABAP backend is also done as described in

Chapter 9, Section 9.9.

Tip: Possible Expansion Stages

If you wish, you can further extend the application you developed in this

chapter. Possible expansion stages could be:

Range • Parameters Value

Floorplan Selection • Floorplan List Report Object Page

Data Source and Service Selection • Service ZUI_RAP_PO_OWN_M_O2

Entity Selection • Main entity PurchaseOrder

Project Attributes • Module name purchaseorderui

Project Attributes • Application title Fast order entry

Deployment Configuration • Name ZPO_OWN_UI

Table 10.5 Values for Generating the SAP Fiori Elements Application

428

10 Managed Scenario with Unmanaged Save: Integrating an Existing Application

� Using draft handling (special feature for late numbering: additional

key field DRAFTUUID in draft table necessary)

� Creating an EML consumer to create purchase orders based on the RAP

business object.

� Representing the valid material as a separate RAP business object and

generating a separate SAP Fiori elements application for this object.

� Inserting another projection layer for the backend administration of

orders, in which, for example, more fields are displayed for agents or in

which there’s an additional “Release purchase order” action.

� Creating a new SAP Fiori elements application based on this projection

layer.

