altecnic calpro range of expansion vessels for central heating applications

calpro range of expansion vessels for central heating applications

application

Water present in any unvented central heating system is incompressible in nature, therefore any increase in system volume caused by heat expansion must be accommodated in an expansion vessel designed and sized for that purpose.

design

- Factory pre-charge of 1.5 Bar (adjustable)
- Wall mounting option available for 24 litre vessels and smaller.
- Wide range of sizes for small scale central heating applications or larger scale installations.
- Assistance with appropriate sizing available on request.
- Wide range of siting options for ease of installation.

construction details

Body:	Cold Pressed Carbon Steel
Water Connection:	Steel
Membrane:	Synthetic Butyl Rubber

installation

The expansion vessel is ideally sited either on the return leg of a central heating circuit, although installation on the flow is also possible if sited on the suction side of the system circulating pump.

acceptance Factors

$\mathrm{Pi}=$ initial pressure

bar	$\mathbf{0 . 5}$	$\mathbf{1 . 0}$	$\mathbf{1 . 5}$	$\mathbf{2 . 0}$	$\mathbf{2 . 5}$	$\mathbf{3 . 0}$	$\mathbf{3 . 5}$	$\mathbf{4 . 0}$
1	0.25							
1.5	0.40	0.20						
2.0	0.50	0.33	0.16					
2.5	0.58	0.42	0.28	0.14				
3.0	0.62	0.50	0.37	0.25	0.12			
3.5	0.67	0.55	0.44	0.33	0.22			
4.0	0.70	0.60	0.50	0.40	0.30	0.20		
4.5		0.63	0.54	0.45	0.36	0.27	0.18	
5.0			0.58	0.50	0.41	0.33	0.25	0.16
5.5			0.62	0.54	0.47	0.38	0.30	0.23
6.0				0.57	0.50	0.42	0.35	0.28

calpro range of expansion vessels for central heating applications

technical data

Max working temperature system	$99^{\circ} \mathrm{C}$
Minimum Working Temp	$-10^{\circ} \mathrm{C}$

sizing

Although a "reckoner" is available for sizing expansion vessels for smaller domestic systems, there are occasions where a vessel must be sized for larger commercial / industrial sized circuits. The below equation is used in these situations.

degrees $\left({ }^{\circ} \mathbf{C}\right)$	co-efficient (e)
0	0.00013
10	0.00025
20	0.00174
30	0.00426
40	0.00782
50	0.01207
55	0.01450
60	0.01704
70	0.01980
75	0.02269
80	0.02580
85	0.02899
90	0.03240
95	0.03590
100	0.03960
0.04343	
6	

$V=\frac{e \times c}{1-(P i / P f)}$
Where $\mathrm{e}=\mathrm{co}$-efficient of expansion (listed below) (max - min expected values)
$\mathrm{C}=$ total system volume (litres) (as a general approximation, C is between expansion co-efficients 10-20 litres for every $1000 \mathrm{kcal} /$ hour of boiler output)
$\mathrm{Pi}=$ Initial pre-charge of system +1 Bar
$\mathrm{Pf}=$ maximum operating pressure (taking into account any differences in operational pressure level between vessel and Safety Relief Valve +1 Bar)

Note: the required vessel volume will almost certainly not correspond exactly to an existing size, therefore the nearest available size above the value returned for \checkmark must be selected from the wide variety of established vessels in the range.

example calculation

$C=500$ Litres
$\mathrm{Pi}=1.5$ (2.5 Bar atmospheric)
$\mathrm{Pf}=3$ (4 Bar atmospheric)
$\mathrm{e}=0.0324\left(85^{\circ} \mathrm{C}\right)-0.00025\left(10^{\circ} \mathrm{C}\right)=0.03215$
$V=\underline{0.03215 \times 500}$

$$
1-(0.625)
$$

$V=\frac{16.075}{0.375}$
$\mathrm{V}=42.866$ Litres
Therefore the required vessel is a 50 Litre (as listed on the next page)

range	capacity	conn.	\varnothing	height	pre-charge	max pres
Zl-301004	4 litres	3/4"M BSP	225 mm	195mm	1.5 Bar	4 bar
Zl-301008	8 litres	3/4"M BSP	220 mm	295mm	1.5 Bar	4 bar
Zl-301012	12 litres	3/4"M BSP	294mm	281 mm	1.5 Bar	4 bar
Zl-301018	18 litres	3/4"M BSP	290 mm	400mm	1.5 Bar	4 bar
Zl-301024	24 litres	3/4"M BSP	324 mm	415 mm	1.5 Bar	4 bar
ZI-301035.CP	35 litres	3/4"M BSP	404mm	408mm	1.5 Bar	4 bar
Zl-301050.CP	50 litres	$3 / 4 " \mathrm{M} \mathrm{BSP}$	404mm	530 mm	1.5 Bar	4 bar
Zl-301080	80 litres	$3 / 4 " M$ BSP	450mm	608mm	1.5 Bar	5 bar
ZI-302105	105 litres	$3 / 4$ "M BSP	500mm	665mm	1.5 Bar	6 bar
Zl-302150	150 litres	3/4"M BSP	500 mm	897mm	1.5 Bar	6 bar
ZI-302200	200 litres	$3 / 4 " M$ BSP	600 mm	812mm	1.5 Bar	6 bar
ZI-302250	250 litres	$3 / 4$ "M BSP	630mm	957mm	1.5 Bar	6 bar
ZI-302300	300 litres	3/4"M BSP	630 mm	1105mm	1.5 Bar	6 bar
Zl-302400	400 litres	$3 / 4$ "M BSP	630mm	1450mm	1.5 Bar	6 bar
ZI-302500	500 litres	1 "M BSP	750mm	1340 mm	1.5 Bar	6 bar
Zl-302600	600 litres	1 "M BSP	750 mm	1565 mm	1.5 Bar	6 bar
ZI-302700	700 litres	1"M BSP	750mm	1755 mm	1.5 Bar	6 bar

Air conditioning systems, initial pressure is equal to the maximum system pressure, corresponding to the maximum achievable temperature relative to the ambient temperature, which should be fixed at $50^{\circ} \mathrm{C}$ for safety.
The final working pressure is that achieved at minimum temperature of approximately $4^{\circ} \mathrm{C}$ Under these conditions, the vessel sizing is as follows:
$V=\frac{C \times e}{1-(\mathrm{Pf} / \mathrm{Pi})}$

