
EnRoute 3.0
February 15, 2016

EnRoute

2

Copyright © 2016 InPress Systems AB.

This manual and the software described in it are provided under licence and may only be used subject to the terms of this licence.
Any unauthorised duplication or distribution is prohibited by law. The content of this manual is provided for information only, is
subject to change at any time and should not be construed as a commitment by InPress Systems AB or its partner companies. InPress
Systems AB accept no responsibility for error or omissions that may appear in this document. Unless specifically authorised in the
licence agreement, no part of this document may be reproduced, stored in a retrieval system or transmitted in any form without the
prior written consent of InPress Systems AB.

Xinet, FullPress, WebNative and WebNative Portal are trademarks of North Plains.
Archiware and P5 are trademarks of Archiware GmbH
Amazon Glacier is a trademark of Amazon Inc.
All other trademarks are the property of their respective owners.

3

Contents
1	 What is ENROUTE..4
2	I nstallING ENROUTE..5

2.1	 Platform requirements...5
2.2	 Where do I get the software..5
2.3	 Installing the software...5

3	 CONFIGURING ENROUTE...6
3.1	 Base configurations..6
3.2	 Event list..7
3.2.1	 Event schedule indicators...8
3.2.2	 Creating a new Event..8
3.2.3	 Pausing events..9
3.2.4	 Editing and adding schedules...9
3.2.5	 Editing and adding conversion setups...10

4	EN ROUTE Events...12
4.1	 General event Setup...12
4.2	 Scan Setup...13
4.2.1	 Scan, Scan files, Scan folders & Scan recursively................................13
4.2.2	 Search database using Keywords..14
4.2.3	 Search database using Template..16
4.2.4	 Scan Database content in named folders...17
4.2.5	 Scan uploadreports..18
4.2.6	 Scan XML files..18
4.2.7	 Fetch pop mail..21
4.2.8	 Filelist limitations...21
4.2.9	 Using database field for notifications...21
4.3	 Routing Method..22
4.3.1	 Move files..22
4.3.2	 Convert files..23
4.3.3	 Transfer files via ftp/sftp..24
4.3.4	 Send link to asset download...26
4.3.5	 Run Custom Program...28
4.3.6	 No routing...29
4.3.7	 Routing Paths and Custom program arguments..................................29
4.3.8	 Updating Database Fields..33
4.4	 Reporting & notification..37
4.4.1	 Email notifications...38
4.4.2	 Email notification template format..38
4.4.3	 Email notification data and tokens..41
4.4.4	 Reporting..47
4.4.5	 Report template format...47
4.4.6	 Report data and tokens..50
4.4.7	 Report examples...50
4.4.8	 Connect to external mySQL...52
4.5	 Testing and Running events from admin..53

5	Ac tivity and logs...54
A	T ime and DAte formatTING..56
	I nPress Systems Software license and Credits........................57

4

1	 What is ENROUTE

EnRoute is designed to be run at the central server where all assets are stored. It has a back-end
engine and a web-based administrators interface. The EnRoute daemon, enrd, runs in the
background and is started automatically when the server starts up. The daemon is responsible for
running the events scheduled by the administrator (see below).

EnRoute allows an administrator to configure events to be run with a cycle time or using one
or more schedules. A cycle can be setup with a minimum time (Hot folder) or a specific interval
(minutes or hours). A schedule can be used to run an event at specific hours on certain weekdays
or dates. It is possible to select multiple schedules but only one cycle. It is not possible to com-
bine a cycle with a schedule.

An event executes the operations of scanning, routing and reporting in that order.

The scanning stage finds the assets to operate on based on the event setup. Typical scanning
setups can be: Scan directory for files or Search directory using keywords. The scanning process takes
into consideration locking of files, growing files, etc. Only files that are stable will be included in
the scanned set. Other scanning options are available to, for example, ensure that the asset has
generated a proper entry in the Xinet database before being included in the scan result set.

When assets have been found, a routing method is applied. Typical routing setups can be: Move
assets to path defined by certain database fields that have been applied to the asset, Move assets
to path defined by data supplied by the user using a sidecar XML file. Routing can also set Finder
flags (colors), apply keywords to the routed files and run conversion on assets. It is also possible
to use the route step to generate an archive request in InPress OnFile or to pass the found assets
to a custom program.

The last step, reporting, makes it possible to send notifications by e-mail and/or write textbased
reports of the operations performed. All e-mails and reports can be customized using InPress
Systems notification templates, common for most of InPress Systems products (Accelerator,
InterAct, InAlias and OnFile).

5

2	I nstallING ENROUTE

2.1	 Platform requirements

EnRoute is available for MacOSX (PPC/Intel) and RedHat Linux 5+. The RedHat distributions
are available in two versions: 5 and 6-64.

The version 5 release is a 32 bit release. When installed on a RedHat 5 64-bit linux systems it
requires the compatibility packages to be installed. This release can only be used on linux v 5.

The RedHat 6 version is 64-bit only and cannot be used on a 32 bit system. It can also be used
on Linux version 7.

EnRoute version 3 requires Xinet 17.X or later.

IPIK (InPress Portal Integration kit) is required when using the Assetlink routing method in
conjunction with an outward facing Portal server. IPIK needs to be installed on the Portal server.
No configuration of IPIK is required for EnRoute assetlink.

2.2	 Where do I get the software

To get the latest EnRoute software, use the downloads page at www.inpress.se.

The installation package is a gzipped unix tar file named “enr” followed by the version and plat-
form and ending in “tar.gz”. For example enr.3.0.redhat6_64.tar.gz refers to EnRoute version 3.0
for the RedHat 6 operating system.

2.3	I nstalling the software

Login to the server as root and place the software in an appropriate installation directory. Un-
compress and untar the file to display the “enrouteinst” folder, a README file and an installa-
tion script.

Run the script by typing “./installenroute” and press return. Any current installation will be
upgraded to the version you are installing.

2.4	S tarting up

The installation script installs the proper startup scripts for all platforms and then starts the dae-
mon. The daemon should start and stop using the normal startup procedures.

In case you need to stop the daemon manually, run the following command line command

/usr/inpress/enroute/bin/enroute_ctrl stop

In case you need to start the daemon manually, run the following command line command

/usr/inpress/enroute/bin/enroute_ctrl start

2.5	 Upgrading from version 2.X

EnRoute version 3 is installed in a different location than earlier versions. The configuration is
also kept in a database as opposed to configuration files. The existing version is automatically im-
ported into the new when installing. The old folder structure is renamed and not removed. The
old daemon is deactivated.

You need to be logged
in as root when install-

ing the software

6

3	 CONFIGURING ENROUTE

The web-based EnRoute admin utility can be found under the web address or via the "EnRoute"
button under the Xinet nativeadmin plugins tab.

http://<yourserver>/webnative/plugins/enrouteadmin

Access EnRoute admion from nativeadmin plugin page

You need to be logged in as “nativeadmin” to get access to the admin utility. It is organized the
same way as the other admin utilities for InPress Systems, with buttons for different functions
and licensing.

EnRoute admin GUI

3.1	 Base configurations

There are some base configurations that can be done in EnRoute. These configurations will be
default for all the events. Some of the configurations can be overridden by the event configura-
tion.

Configuration Description

Sleep time How long the daemon will wait between runs (seconds). The default is 10 s

Maximum concurrent events The maximum number of EnRoute events that can run simultaneously. The
default is 5.

Error E-mail E-mail address to send error message to. Can be overridden by Event. This
global Error email address is also used when the daemon reports an error.

Reply-to E-mail The sender of all EnRoute email messages.This setting can be overridden
per Event.

7

Main Server URL Server url that will be used when building links to WebNative for notifications
and reports and for certain links in event emails (like Asset link). This should
be the address to the Xinet back end server as seen from the Portal server in
the case of one being used and configured below.This setting can be over-
ridden per Event.

Portal Server URL Server url that will be used when building links to WebNative Portal for noti-
fications and reports and for certain links in event emails (like Asset link).This
setting can be overridden per Event.

Portal Site name Portal site name that will be used when building links to assets in WebNative
Portal for notifications and reports.This setting can be overridden per Event.

Display date format Select the format of dates and times to be used in the adminstration inter-
face.

Base configurations

3.2	E vent list

The central concept in EnRoute is the event. Each event is configured and then scheduled to be
executed in a cyclic manner with a cycle time or via one or more schedules which can be created.

The Event section present a list of all the events that have been configured. The list show the
name and description as well as the current scheduling information such as selected schedules
and cycles, last execution and next execution. The screen also act as the access point for editing
the events and viewing event logs. From this page it is also possible to add new events.

Schedules to be used for events as well as conversion setups can be viewed and edited from the
Event page.

8

The Event list with indicators, information and buttons for edit, pause and view log

3.2.1	E vent schedule indicators

The Event schedule indicators consist of a "colored light", a symbol for the type of execution
and the details of the selection execution options.

	 Green light : At least one execution option is selected and have been enabled
	 Yellow light : No execution options have been selected
	 Red light : At least one execution option is selected but none have been enabled
	 Grey light : The event has been paused

The symbol can either be a calender or two curved arrows:

	 Calender : The execution option or options are of the schedule type
	 Arrows : A cyclic execution option have been selected

The next and last indicators show when the event was executed the last time and the time it is
due for execution again.

3.2.2	 Creating a new Event

To create a new event, use the "Add new event" button. A dialogue where the name of the event
is defined is shown. The name can only consist of the letters a-z, A-Z, numbers and hyphen (-),
underscore (_) and dot (.). The name can not be changed afterwards. When adding a new event
configuration it is possible to copy an existing event as a starting point.

Adding a new event

Event names can only
include letters a-z A-Z,

0-9 , “-”, "." and “_”

9

A new event has been added

Edit the event tabs and use the save button. See section 4 for full information on the Event scan-
ning, routing methods and reporting.

3.2.3	 Pausing events

An event can be temporarilly paused by using the Pause button. The event will then be marked
as paused and all execution of the event will be postponed. Note that if the event is running
while setting it to paused it will still finish the execution. The event will then be executed when
unpaused providing the next execution time has been reached.

It is also possible to pause all events with one click using the Pause all button.

Pausing does not change any settings on the event.

3.2.4	E diting and adding schedules

An event can be executed on a regular interval using a cycle or on certain times using schedules.
The schedules are all custom made and consist of what weekdays or dates to run as well as the
hour. Several schedules can be created and reused on different events.

Schedules are created using the Schedules button at the bottom of the event list page or the but-
ton next to the execution options on the event configuration page. The name can only consist of
the letters a-z, A-Z, numbers and hyphen (-), underscore (_) and dot (.). The name can not be
changed afterwards.

Input a name and add a schedule

Schedule names can
only include letters

a-z A-Z, 0-9 , “-”, "."
and “_”

10

Edit the schedule by checking days, dates and hours

The list of schedules

3.2.5	E diting and adding conversion setups

Editing and adding conversion setups is similar to schedules. Open the list window from the
button at the bottom of the event list page or next to the conversion selector in the event. Note
that the button in the event configuration page is only available when the routing method con-
vert has been selected.

The name can only consist of the letters a-z, A-Z, numbers and hyphen (-), underscore (_) and
dot (.). The name can not be changed afterwards.

Input a name and add a conversion setup

Conversion setup
names can only include

letters a-z A-Z, 0-9 ,
“-”, "." and “_”

11

Edit the conversion setup

Select the conversion setup from the event configuration's routing section

12

4	EN ROUTE Events

An Event consists of three steps: Scanning, routing and notification/reporting.

Scanning decides how EnRoute finds the files to work on. Scanning can be done via searching
through folder structures in different ways or by querying the Xinet database to find files.

The Routing method decides what to do with the items that has been identified in the scan step.
The methods provided are copy/move, convert, send via ftp, send as downloadlink, ingest into
OnFile archive (requires an OnFile license) and pass to custom program/scripts.

Notification and Reporting controls how e-mail notifications and text based file reporting should
be handled. It is also possible to send information to an exernal MySQL server or post to an-
other server via an http POST.

4.1	 General event Setup

The event's general setups relate to scheduling, description and execution of a second event after
the event is done.

Option Description

Event description A descripitive text that is not used anywhere in the event.

Event id A unique identifier created when the event runs. Can be referred to as
event.ID when routing files, sending emails, writing reports and setting
database fields.
The Event ID is a string created much like routing paths (see more details
in the routing section). The string is build using functions and tokens
concatenated with “&”, Example: “ID_&date(%Y-%m-%m.%H.%M)”

Functions that can be used are:
date(format) = execution date where format is the standard UNIX date
formatter, default is YYYY-MM-DD.
counter(N) = event counter where N is the number of significant digits.
Using a number for N specifies the counter with leading “0” characters.

The default value is a unique numeric identifier.

Run event Select the cycle or schedule(s) to be used for the event. It is possible
to select a single cycle or multiple schedules. It is not possible to mix a
cycle and schedule.
Each selected cycle/schedule need can be activaded separately,
See illustrations below

Execution info Information about the execution status. The last time when it was ex-
ecuted as well as the expected next time of execution. Next execution
will not show if no cycle/schedule is active. Next execution is updated
when the event is saved.

Trig another event when done Select an event to be run when the current event has executed. Note that
the event will not be executed if the current events exits because of no
files found.

Some examples of making the run event setup follow below:

A cycle has been selected and activated by checking the box. No more options can be selected.

A schedule has been selected. It is possible to select more than one.

13

Two schedules have been selected and one activaded. The event has been saved and necxt execution reflecs the selection.

The next execution time reflects a change has been made after the event has been saved.

4.2	S can Setup

There are a number of scanning methods: file system scans, database searches, file parsing and
email retreival.

File system scans are performed within a directory selected using the navigation tool. Navigation
is provided within all defined Xinet volumes. If the scan need to happen in a non-Xinet enabled
folder, just type in the path.

The file system search can be made for files, folders, files and folders or files recursively. It is
also possible to restrict the search in multiple ways. See details in following sections.

The two file parse scan methods open the files found and parse the content in order to find file
information and additional metadata that can be used in the route and notification steps. The
uploadreport scan read the upload reports generated by the WebNative upload cgi. The xmlfile
parse read an XML file to get the same information. The XML file needs to conform to a format
defined below.

There are two different database query scan scan methods. The first one performs a search using
keyword data while the second searches for content in a named parent folder. Both queries can
be restricted in many ways and require a base path where to perform the search. See more exam-
ples of queries in following sections.

The no scan option can be used in conjunction with the custom program route method to
schedule programs to run.

See details of the different scan types in the following sections. A few options for scanning are
common to all the scan methods:

Option Description

Run with no files Run the setup, even if there are no files found. Routing and reporting will
take place.

Scan wait (s) Enroute uses this wait time to confirm that a file is not growing in size.
Default is 5 seconds

Wait for DB When routing using database fields, it is important that the file has been
updated in the database before routing is performed. This setting forces
EnRoute to wait until the file has been added to the Xinet database be-
fore being added to the active filelist.

4.2.1	 Scan, Scan files, Scan folders & Scan recursively

The filesystem scan function in EnRoute come in several flavors.

Scan, Scan files and Scan folders search the first level of a scan path. It will either scan for files
and folders or just files or folders.

The Scan recursively option will scan for files only but recursively in a path. Folders will be
ignored. When this scan type is used, there will also be an option to remove empty folders in the
route section.

14

Scan options Description

Scan Scan all files and folders in scan path. Not recursive.

Scan files only Scan files only in scan path. Ignore folders. Not recursive.

Scan folders only Scan folders only in scan path. Ignore files. Not recursive.

Scan recursively Scan path recursively for files and ignore folders.

Scan/Search Path The path where to scan for files

Limit to pattern Regular expression that needs to be matched on file or foldername.

Restrict to same value in dbfield Only include files with the same value in this database field. Type in name
of single database field. EnRoute will check the value of the first file/
folder it finds and then only allow new files/folders with same value.

Minimum number of files The event will only run if the minimum number of files/folders is met.

Maximum number of files The event will only include this number of files/folders.

4.2.2	S earch database using Keywords

Searching the database can be done in two ways: Keyword query and Template-based query.
They both use the same selected scan type : Search database using keywords

Scan Options Description

Search database using key-
words

Query files in the Xinet database and search for specific data assigned to
the files.

Scan/Search Path The base path where to restrict the database query to

Include subfolders in search Select One level only to search in search path only or Include subfolders
to search recursively beneath scan path

Keyword query Semi-SQL call to use for the query or filename for custom query based
on file. The query string can include tokens for keywords, etc.
Example: #customer_no#=1234 AND #status#=”delivered”
See more details and examples below.

File/Folder matching File scanning pattern to catch names, part of names or extensions. Use
% as wildcard, example: %.jpg

Include files and/or folders Select whether to search for files, folders or both

Minimum number of files The event will only run if the minimum number of files/folders is met.

Maximum number of files The event will only include this number of files/folders.

When using a Keyword query, the query string itself is typed into the keyword query field. The
syntax used is the keyword comparison part of the sql query. It can include one or more keyword
names (embedded within # characters) along with the corresponding test critera, together with
logic operators like AND and OR. Example:

	#CustomerID#="ABC"

EnRoute interprets the string and builds the complete query needed to get all the files that meet
the search criteria, incorporating the other configurations like File/Folder matching and Search
path.

A Keyword has to match the name of an existing Xinet Keyword and and it need to be embed-
ded within # (hash) characters

The Operators that can be used are: = (equal), < (less), > (more), <> (not like) or != (not like).

A Value can be boolean (0 or 1) , numerical, string (quoted) or a date operator #vdate()#,
#date()# or #lexec()#.

The date operators (date and vdate) can take an argument that will offset the date by a certain
number of days forward or backward. vdate() always use the time of day = 12.00 (noon) like the
Xinet database when not specifying times. lexec() use the time of the last execution. The format

15

used for the search is the standard mySQL date. If another format is needed, specify format as as
an argument.

Example searches:

Searching for keyword CustomerID equal to “ABC”

#CustomerID#=”ABC”

Searching for keyword Project_status equal to “Done” and Done_date older than a week ago

#Project_status#=”Done” AND #Done_date#<#vdate(-7)#

Use the Test Event button at the bottom of the page to see wether a search setup result in any
files. Type in the search, save and then run Test Event. A window opens which show detailed
loginfo of the event. The complete search query is shown and also the resulting filelist. When
using the Test Event button any route method is simulated. It will not be executed.

Example. Simple query with two fields, the result and the files being searched on.

There are two fields being used in the search: xtestdate and xtestbool

The search is made for assets where xtestbool is set to true (1) and where the datefield xtesdate is before today's date

16

The Test Event dialogue show the resulting query and searchresult

4.2.3	S earch database using Template

Searching the database can be done in two ways: Keyword query and Template-based query.
They both use the same selected scan type : Search database using keywords

If there is a need to use a more complex search or a search using other parameters than keywords
it is possible to do so by using a template that is saved as a file. The query template should be
saved as an isolatin 1 file, using UNIX linebreaks. The file can be saved anywhere on the server.
The full path to the file is specified the Keyword query setup field. When EnRoute reads a query
that starts with “/” it automatically assumes that it is a filebased query.

Scan Options Description

Search database using key-
words

Query files in the Xinet database and search for specific data assigned to
the files.

Scan/Search Path The base path where to restrict the database query to

Include subfolders in search Select One level only to search in search path only or Include subfolders
to search recursively beneath scan path

Keyword query = Path to search
template

Path to the query template to be used. The path can be followed by
optional arguments that can be used in the template. Arguments are
separated by semi colon ";"

example: /usr/inpress/enroute/setup/queries/myquery;123;158

File/Folder matching File scanning pattern to catch names, part of names or extensions. Use
% as wildcard, example: %.jpg

Subscan method Select whether to search for files, folders or both

Minimum number of files The event will only run if the minimum number of files/folders is met.

Maximum number of files The event will only include this number of files/folders.

17

The queryfile needs to contain the full query to be passed to the database. This query needs to be
designed to return the subpath + filename to the entries found starting at the selected scanpath.

The query needs to be a working mySQL query and it can include some specific tokens:
#SCANPATH#, #ARG0#, #ARG1#

#SCANPATH# translates to the scanpath of the Event.

#ARG0#, ARG1# and so on translate to specific arguments that can be entered in the admin
after the actual path to the queryfile.

The arguments are separated by “;” In addition to the already mentioned tokens, #date()#,
#vdate()# and #lexec()# can be used as with simple queries.

Example entry in setup:

SCANPATH: /raid/files
DATABASE QUERY: /usr/inpress/enroute/setup/queries/myquery;123;158;159

The contents of the file “myquery” is:

SELECT TRIM(“#SCANPATH#/” FROM CONCAT(path.Path,”/”,file.unixname)) FROM (file,path)
LEFT JOIN keyword1 k1 ON (file.FileID=k1.FileID) WHERE file.pathID=path.pathID
AND file.Online=1
AND file.Dir=0
AND path.Path LIKE ‘#SCANPATH#/%’
AND Field#ARG0#>’#Date(-28)#’
ORDER BY Field#ARG1#, Field#ARG2#;

The query will be (if executed on 2016-01-30):

SELECT TRIM(“/raid/files” FROM CONCAT(path.Path,”/”,file.unixname)) FROM (file,path)
LEFT JOIN keyword1 k1 ON (file.FileID=k1.FileID) WHERE file.pathID=path.pathID
AND file.Online=1
AND file.Dir=0
AND path.Path LIKE ‘/raid/files’
AND Field123>’2016-01-30’
ORDER BY Field158, Field159;

4.2.4	S can Database content in named folders

Scanning using the Scan Database content in named folders method uses the database to find
all folders of a certain name that exists under a specific basepath. Then proceed to add all the
files/folder from within those folders. It is also possible to add an additional keyword restriction
on the search.

Scan Options Description

Scan database content in named
folder

Query files in the Xinet database and search for files/folders inside named
Parent folder(s). Combine with keyword search if applicable.

Base scan path Limit the database search to this base path

Parent folder name The search will match files and folders at the first level within parent fold-
ers with this name.

Subscan method Select whether to find files, folders or both

Additional database query Semi-SQL call to use for the query or filename for custom query based
on file. The query string can include tokens for keywords, etc.
Example: #jofolder#=1 AND #status#=”closed”
See more details below.

18

Minimum number of files The event will only run if the minimum number of files/folders is met.

Maximum number of files The event will only include this number of files/folders.

For example, find all folders within folders named "To Archive" under the Xinet volume Jobs.
Only get the folders with the keyword Jobstatus set to "Done".

Search database content in named folder with an additional keyword query

A keyword restriction is identical to the keyword search above.

4.2.5	S can uploadreports

An uploadreport is a text/html file generated by the WebNative upload cgi when uploading files
and using specific upload styles. This functionality is not possible to use when uploading files to
Xinet via Portal, pilote or the uploader.

Scan methods Description

Scan uploadreports Scan for uploadreports. Files specified in report are identified

Scan/Search Path The path where to scan for upload reports

Limit to pattern Regular expression pattern to identify uploadreport. Defaults to upload-
report.html* when using "Scan uploadreports"

Since this functionality is only available when using the old styles it is no longer being developed
in EnRoute for versions newer than 2.X. It is still in the release for backwards compatibility. See
the old manual for version 2.X for more information.

4.2.6	 Scan XML files

It is possible to read a very specifically formatted XML file and to use the information for rout-
ing, keywording etc. The general idea is to scan for the XML file and let EnRoute open and read
the file and parse it for scanning information as opposed to getting scan information from the
filesystem or Xinet database.

The XML format can be created from another system that provides files along with an XML
sidecar or just an XML file specifying what assets to work with. One example of a system that
creates this type of file is InPress Systems InterAct. Specifically the AssetRequest plugin.

19

Scan methods Description

Scan xmlfile Scan for xmlfiles. Files specified in the file are identified

Scan/Search Path The path where to scan for XML files

Scan Pattern Regular expression that needs to be matched on file or foldername.

XML element for Metadata Name to be used to identify the Metadata section in the XML file.
Default is metadata

XML element for File Name to be used to identify the File section in the XML file.
Default is file

XML element for Filepath Name to be used to identify the File path section in the XML file.
Default is filepath

XML element for Fileid Name to be used to identify the File id section in the XML file.
Default is fileid

The XML file can hold information about the files and fileids along with additional metadata
that can be used to calculate routing paths and applied to keywords.

The XML format supported by the EnRoute parse is like the following :

<?xml version="1.0" encoding="ISO-8859-1"?>
<import>
	<METADATA>
		 <Dataelement1>DATA1</Dataelement1>
		 <Dataelement2>DATA2</Dataelement2>
		 <Dataelement3>DATA3</Dataelement3>
	</METADATA>
	<FILE>
		 <FILEPATH>Filepath</FILEPATH>
		 <FILEID>Fileid</<FILEID>
		 <Dataelement1>DATA1</Dataelement1>
		 <Dataelement2>DATA2</Dataelement2>
		 <Dataelement3>DATA3</Dataelement3>
	</FILE>
	<FILE>
		 <FILEPATH>Filepath</FILEPATH>
		 <FILEID>Fileid</<FILEID>
		 <Dataelement1>DATA1</Dataelement1>
		 <Dataelement2>DATA2</Dataelement2>
		 <Dataelement3>DATA3</Dataelement3>
	</FILE>
</import>

The XML element names METADATA, FILE, FILEPATH and FILEID are the default names
that EnRoute use when reading. Other names can be configured in the scan setup. Only XML
elements are supported as of this release. Information cannot be given in attributes.

The root element can have any name.

EnRoute reads the filepath and fileid entries and use these to get the files. A fileid overrides path.
The folder where the XML is found is used as the basepath whenever a relative filepath is given
by the filepath element.

The file is read and the data parsed. Metadata fields are added to the internal EnRoute data to be
used for routing and reporting as meta.NAME where name is the element name of the metadata
element. Additional elements within the file element are added to the internal EnRoute dataset
as file.NAME.

20

Example. The following dataset would be generated from the XML file below assuming the
example XML file below is scanned in the path : /raid/incoming/xmlfiles

<?xml version="1.0" encoding="ISO-8859-1"?>
<import>
	<metadata>
		 <exporter>John Doe</exporter>
		 <branch>Data export</branch>
	</metadata>
	<file>
		 <filepath>IMG_0641.JPG</filepath>
		 <type>Image</type>
		 <owner>Internal</owner>
	</file>
	<file>
		 <filepath>/raid/Jobs/123/Catalog.indd</filepath>
		 <type>Layout</type>
		 <version>1.01</version>
		 <date>2016-02-14</date>
	</file>
</import>

When parsing this XML file, 2 files would be found. The first one has no path so it would be
assumed to be in the same directory as the XML file. Following data is available for routing and
reporting after the XML has been parsed.

	meta.exporter = "John Doe"
	meta.branch = "Data export"

File 0:
(/raid/incoming/xmlfiles/)IMG_0641.JPG
file0.type = "Image"
file0.owner = "Internal"

File 1:
/raid/Jobs/123/Catalog.indd
file0.type = "Layout"
file0.version = "1.01"
file0.date = "2016-02-14"

See following sections for more information regarding how the metadata, filedata etc is used for
routing and reporting.

21

4.2.7	 Fetch pop mail

The fetch pop mail scan will connect to a pop email server, get the first non-read email and
download it to the server. The subject, content and attachments are retrieved from the mail and
the attached files count as the "scanned" files.

Scan methods Description

Fetch pop mail Get emails using a pop account. Attached files are treated as scanned

Email server The server to connect to.
Prefix server address with pop3:// or pop3s:// (for secure connections)

Username Username for the account to connect to

Password Password for the account to connect to

Forward original email Select wether to forward a stripped mail (no attachments) and the adress
to forward to.

Email filter by subject Ignore and delete emails that contain this string in the subject. Several
strings can be added using semicolon as separator. The string can use
wildcard (*) and single character wildcard (.)

Filter attachments Ignore and delete attachments that contain this string in the filename.
Several strings can be added using semicolon as separator. The string
can use wildcard (*) and single character wildcard (.)

Ignore inline attachments Select yes to ignore and delete inline attachments

The email parse collect the email address, from address, replyto address and subject and makes
these available to EnRoute for routing and reporting purposes as

	meta.to
	meta.subject
	meta.from
	meta.replyto

4.2.8	 Filelist limitations

The minimum and maximum number of files can be used to control how a scan is made. By set-
ting a minimum number of files, the event can be forced to “wait” until the right number of files
can be found before being launched

By setting a maximum number of files the event will just include exactly the number of files
needed and leave the rest behind for the next scan.

Setting the same value on both minimum and maximum will force the event to wait until the
right number of files have been found and then run on exactly that number.

4.2.9	 Using database field for notifications

EnRoute can read database fields on the files that have been found. This feature can be used to
read an email address out of a database field to be used for notifications (see following section).
However, using this feature may also put some restrains on the filelist itself.

When using a databasefield to pickup email notification address, ONLY the files with the same
email will be included in a specific scan.

For example, using a scanforfiles on a hot folder and reading the notification email from the
database field “Notify”. If there are four files, two with Notify=”admin@company.com”, one
with Notify=”sales@company.com” and one with a blank value in the field, it will result in three
different filelists.

22

4.3	 Routing Method

After EnRoute has scanned and identified the files, it will apply the selected routing method
from the Event setup. While “Routing” implies moving files, it is used here in a wider meaning
and the files do not have to be moved.

The supported routing methods are Move, Convert, Transfer via ftp, Send link to asset down-
load, Run Custom Program and No Routing. The different methods will be covered in detail
below. Some of the options are general.

General Route options Description

Delete original files If set to yes, EnRoute will delete the original file that has been copied.

Clean out orphaned subfolders Using a “recursive scan” combined with “delete original files” may cause
empty folders. This setting will clean out these folders when the event
has completed

Unzip Select to unzip files that were part of the scan.
EnRoute will check the first level of the zip and if the zip expands to a
folder, it will move into that folder and get the individual files/subfolders
when the opition "ignore single top folder" is selected,

Save original zipfile Route the zips that are unzipped to this path.

4.3.1	 Move files

Move files will copy the files to the routing path. If the “delete original” function is selected, it
will be a move. Move can move to a static path or to a dynamic path based on different data col-
lected in the scan or from the individual files.

Files can also be renamed while routing. If the routing path ends with “/” it is assumed that the
path is to a directory and the original filename is added to the path.

Move files can route to two different output paths with separate configurations.

Routing options Description

Move files Copy/Move file to target (routing path)

Routing Path Target Path where to put the files. Can be static or dynamic. Ending with “/”
assumes original filename should be used.
See more information and examples below for creating dynamic paths.

Set Finder color, routed file Pulldown to select the finder lable color to be set on routed file.

Reset database fields, routed
file

If set to yes, all the entries in the database for the file will be deleted after
routing. Note that this does not affect the original file if kept.

Set database fields, routed file Formulas for setting database fields on the routed file.
The syntax for setting database fields is Fieldname1=Value1;Fieldname2=V
alue2;.. where Fieldname is the name of a valid Xinetfield and value is static
or variable.
See more information about setting keywords in following sections.

Max files in target dir Maximum number of files in the directory where files are moved to. When
reaching the max number a new directory is created adding a -N (-1, -2, ..)
to the directory name.

Routing Character Filter Routing Character filter is used to filter the characters used in the routing
path. There are three default filters;
Only lett, num, undersc to undersc - This filter only accept a-z, A-Z, 0-9
-/. All other signs will be replaced with underscore ().
Only lett, num, undersc remove - This filter only accept a-z, A-Z, 0-9 _-/.
All other signs will be removed.
Dash to slash - Replaces dash (-) to slash (/).
It’s possible to create own filters, they should be placed in the folder /usr/
inpress/enroute/setup/routetrans.

Routing Filter Option Routing Filter Option is used to decide what to filter (routing character filter),
just filename, just path or both.

23

Routing options Description

Overwrite file If set to yes, EnRoute will overwrite existing files otherwise a decimal will be
appended to the filename: -N (-1, -2, ..)

Inherit permissions If set to yes, EnRoute will use the permission details of the first encountered
parent directory´s for any subfolders and files.

Error Path Path where to put files in case Routing path cannot be resolved or if a copy
cannot be made to the target path

Routing path 2 and related All the above setups for route path are also present for a second route path
copy. When using route path 1 & 2 on a file, there will be two copies cre-
ated from the original.

Routing method “Move files” moves files to a dynamic path including the date. Original files are deleted and the routed files
get two database fields set. Filtering on the filename is enabled.

4.3.2	 Convert files

Convert will convert the files to the routing path using a conversion setup. The converted file
can be sent to a static path or to a dynamic path based on different data collected in the scan or
from the individual files.

Files can also be renamed while routing. If the routing path ends with “/” it is assumed that the
path is to a directory and the original filename is added to the path.

Convert files also has the ability to create a copy of the original file on a second path. This copy
is created using the move files route method with identical setups.

All the options except the two top options are the same for Convert as for Move.

Routing options Description

Convert Convert file to target (routing path)

Conversion option Setup to convert to. A setup includes fileformat, resolution, color, and more.
New conversion setups can be created (see below).

Handling of non-images How to handle files that can not be converted;
Ignore, Copy to routing path, Copy to error path

24

Converting images to the setup named Thumbnail. The converted images goes to the path /home/webimages followed by
a filename given by the database field webname). Non-images and any file errors (for example where the database field has
no value) are moved to the path /home/webimages/ERRORS/.

When the route method Convert is selected, the button "Conversions" show up. This button
has the same function as the Conversion button at the bottom of the events page, ie it opens a
window that displays all conversion setups saved and allows for editing and adding new setups.

A conversion setup includes the following choices:

Conversion setting Description

Name Name to choose from. Can only use a-z, A-Z and numbers

File format Format of file

ICC Profile Profile to use for conversion. Using Profiles to choose the color space over-
rides any color space settings. It also requires the images to be converted, to
have a source profile or that there is a default source profiles set by the Xinet
setup for the image type.
Add new profiles by copying to: /usr/inpress/enroute/setup/iccprofiles

Color space Color space to use if not using profile.

Resolution (dpi) Resolution in dpi

Scale method Inches, Cm, Mm and Pixel will scale to the appropriate finite size as set by
Width and Height.
% will scale proportionally to the original size using only Width.

Width Width in the selected Scaling method. Use only numbers and decimal point.

Height Height in the selected Scaling method. Use only numbers and decimal point.

Padding When scaling to a set width and height, using Padding means that the image
will always be the set size, using padding to fill up empty space.

4.3.3	 Transfer files via ftp/sftp

The transfer method will send the files to a remote ftp or sftp server. Either as a zipped archive or
as separate unzipped files.

25

Routing options Description

Ftp/Sftp connection Transfer files to an ftp or sftp server

Remote server to connect to Remote server address of the type: ftp://host or sftp://host
The address need to start with ftp:// or sftp:// and cannot end with /
Example: ftp://ftp.inpress.se

Remote folder A remote folder can be created automatically for placement of the files
that are transferred. It can be one or more folders deep and can contain
dynamic data. Leave this empy if the transfer should be sent to the top level
of the host.
Example: date(%Y-%m)&/&event.id would translate to something like 2016-
02/1454320817

Username ftp/sftp username

Password ftp/sftp password

File handling method Send each file separately or make a zipfile. When sending separately the
full structure of a folder will be recreated on the target host

Name of zip-archive The name of the zip when using the file handling method zip
The name may include dynamic content. The default is the event id + the
string "-archive", example: 1454320817-archive.zip

Email subject This string will generate a token to be used inside a notification email. The
notification template to be used have to include this tag: event.subject

Notification options The routing method for sending sftp/ftp creates a few new notificatioin
tokens that can be used in the normal notifications 1 and 2. There is a sam-
ple_html_ftpreceipt to illustrate the notification that can be done.

Transfer files also has the ability to create a copy of the original file on a second path. This copy
is created using the move files route method with identical setups.

Example: Transferring separate files and sending an email. Remote folder is used with some
dynamic information.

The transfer setup sends to an sftp server, using a dynamic remote folder name. FIles are sent without zipping.

26

The resulting folder structure on the ftp server end

The email notification that was sent out using the sample email for transfer

4.3.4	S end link to asset download

Send link to asset download will create a zipped archive and send a link via email to download
the file using the Portal interactor cgi. This requires that the Portal server being used has to have
the InPress Portal Integration Kit (IPIK) installed.

The method setup is concerned with the zip generation while the notification setup is done
under the notifications and reporting section.

Assetlink also has the ability to create a copy of the original file on a second path. This copy is
created using the move files route method with identical setups.

Routing options Description

Send link to asset download Create a zip archive and send email with link for download

Name of zip-archive The name of the zip when using the file handling method zip
The name may include dynamic content. The default is the event id + the
string "-archive", example: 1454320817-archive.zip

Local path The local path where to place the temporary zip. It will be deleted automati-
cally when the link expires

Password protect link Insert a password to protect the link. The word auto will imply automatic
generation of the password. Leaving it empty will generate a non-protected
link.

27

Routing options Description

Expiration type and length Expiration in hours. The default is 24 hours.
Expire but only use once means that it will expire when used or after the
expiration time whatever happens first.

Message A message that will be displayed when accessing the link and also be in the
email that is sent. The email token to be used is: assetlink.message

Email subject This string will generate a token to be used inside a notification email. The
notification template to be used have to include this tag: event.subject

A very important part of the Assetlink method is that an email needs to be sent that includes the
link to do the download of the zip. The setup of the email is done using the Notifications and
Reports section.

Notification options Description

Specific setups for Assetlink

Notification email The email to send to

Notification template The template to use for the notification. The template has to include the
right tokens for sending the assetlink.
EnRoute includes a sample template: sample_html_assetlink

Mail sender The replyto address for email. Will default to Base options

Main Server address Xinet server address.
When using a Portal server this needs to be the address for the Xinet server
as seen from Portal

Portal Server address Portal address to be used for the link in the email. The Portal server needs
to have IPIK installed.

Example: Setup for sending assetlink.

Assetlink configuration along with the corresponding notification. Some setups are from Base configurations.

28

Email using the assetlink sample template.

Accessing the link

Log in and get the files

4.3.5	 Run Custom Program

The method Run Custom Program will run an external program on the files that has been
scanned. There are two ways to run the program: One at a time or All at once.

When running one time per file, the program will execute once per file passing the path to the
file as the program´s first argument.

When running once for all files, EnRoute will create a temporary file including a list of all the
current files. It will execute once while passing the path to the listfile as the program´s first argu-
ment. After execution, the temp file will be deleted by EnRoute.

Routing methods Description

Run Custom Program Will run an external program.

Custom Program Write the file name to the external program that is going to be run. Place the
external program in the folder /usr/inpress/enroute/setup/extprogs/.
Note that the program/script has to be executable.

29

Custom Argument 1 The first optional argument to the external program

Custom Argument 2 The second optional argument to the external program.

Custom Argument 3 The third optional argument to the external program.

Custom Argument 4 The fourth optional argument to the external program.

Execute type If there are several files in the file list, to be executed by the custom pro-
gram, you can choose how to execute them.
One at a time - The files will be executed one by one. A path to the file that
is going to be executed is sent as argument 1.
All at once - All files will be executed at once. A path to a file list is sent to
the custom program as argument 1.

Delete original files If set to yes, EnRoute will delete the original file that has been processed

The custom arguments can be static or dynamic. Dynamic arguments are very similar to the
arguments used to create paths. However, when running in the “once for all files” mode it is not
possible to use dynamic data from individual files.

Note that the custom script/program will need to handle flags -d (debug), -n (no operation), -f
(foreground) when executed. These flags are added on by EnRoute when execution depending
on settings and how the event is executed. When running a test, for example the flags -f and -n
are added.

4.3.6	N o routing

The No routing method is normally used when it is only of interest to use the Event to generate
reports, send notifications or to set database fields.

4.3.7	 Routing Paths and Custom program arguments

The Routing Path for methods move and convert as well as arguments to running Custom
Programs can be static or dynamic. The same goes for some other configurations like the remote
folder for ftp and zip archive name in assetlink. Most of the discussion below concerns paths for
move/convert but will also be valid for other dynamic arguments.

A dynamic path contains tokens separated by & characters. Every token is either a reference to a
static path section or to a variable or a function.

Example: /myRaid/files/Jobs/&db(CustomerName)&/&db(ProjectID)&/

In the example above we are using the following components:

/myRaid/files/Jobs/ db(CustomerName) / db(ProjectID) /

The db() components are dynamic and will get their values querying the Xinet database on the
files it’s routing. The other components are static.

With the values “ACME” for CustomName and “2010-123456” for ProjectID the path is:

/myRaid/files/Jobs/ACME/2010-123456/

The path ends with a “/” meaning that EnRoute will treat this as a path where to put the file us-
ing the files original name. It is also possible to create full paths including filename.

Example: /myRaid/files/SubmittedFiles/&db(ProjectID)&/&date()&/&db(SKU)&file.fext

In the example above we are using the following static components:

/myRaid/files/SubmittedFiles/, /, /

and the following dynamic components:

db(ProjectID), date(), db(SKU), file.fext

30

In this example the resulting path is dependent on the values of two database fields (ProjectID
and SKU) as well as the current date. We also pick up the file extension from the original file (if
it exists) and adds to the value of the SKU database field which is used as the name.

In this case the path does NOT end with a “/” meaning that EnRoute will treat this as a path to
the final file.

There are a number of dynamic sections that can be used based on what the current scenario is.
Possible variables to use are values from database fields (from Xinet), data from an upload form
(or list), parts of the current filename and specific functions. The dynamic sections can both
be used to create routing paths for move/convert and to create arguments for running custom
programs, sftp/ftp and assetlink.

Dynamic section Description

file.ATTRIBUTE File attributes, like “name”, “subname”, “namenoext”, “ext”

file.name Filename

file.path Full filepath

file.dir Path to folder enclosing file

file.namepath Relative filepath from scan directory to current location

file.namenoext Filename without any extenstion

file.ext File’s extension if any

file.fext File’s extension if any, including the “.”

file.lastfolder Name of folder enclosing the file

file.lastfolder_N Name of Nth folder enclosing the file. N is a number: 1,2,3... 1 means the last
folder (ie the same as using file.lastfolder), 2 the secnod last and so on.

file.fromzip Name of zipfile where the File was unzipped from. Without “.zip”

file.idx Index of file inside filelist

file.idx_n Index of file inside filelist, using n significant numbers. Example: index 5, idx_3
would result in “005”

file.FIELDNAME Data from file associated uploadform field named FIELDNAME (see uploadform)
or file associated data in XML file (when using XML scan)

meta.FIELDNAME Data from general uploadform field named FIELDNAME or metadata in XML file

event.ATTRIBUTE Event attributes, like “ID”, “nfiles”, “scanfolder”

event.ID The event id as specified in setup. Defaults to same value as event.mainID

event.mainID The internal event id generated by EnRoute. Unix time stamp, 10 digits

event.scanfolder Name of scanning folder

event.nfiles Number of current files

date(FORMAT) Current time expressed in specified FORMAT. EnRoute uses the standard date
formatters in UNIX (see appendix for details). If not specified, EnRoute will use.
%Y-%m-%d which translates to the YYYY-MM-DD format.

db(FIELD) Retrieve value for database field FIELD. Error if empty. If field is fid the fileid will
be returned.

db2(FIELD;Default) Retrieve value for database field FIELD. If empty use Deafult value. If empty and
no default, use empty string without error.
If field is fid the fileid will be returned.

dbdate(FIELD;FORMAT) Date stamp from a keyword or the assets Creation, Modification or Access time
formatted to specified FORMAT. EnRoute uses the standard date formatters in
UNIX (see appendix for details). If not specified, EnRoute will use. %Y-%m-%d
which translates to the YYYY-MM-DD format.
Specify the Keyword field name or use CreateDate, ModifyDate or AccessDate.

amp Insert the & character

31

Dynamic section Description

abr(VALUE;METHOD;ARG) Abbreviate a value using certain method

VALUE=data to abbreviate, for example file.name
METHOD=lvl,num,AB,Ab,ab,to,fr
ARG=number or digits or characters or token

lvl - rounds down to number of digits in ARG: abr(12999;lvl;2) Results in 12000
num - rounds to number of digits in ARG: abr(12999;num;2) Results in 13000
ab - uses number of chars in ARG, lowercase: abr(Wxyz;ab;2) Results in wx
Ab - uses number of chars in ARG, no casechange: abr(Wxyz;Ab;3) Results in
Wxy
AB - uses number of chars in ARG, uppercase: abr(Wxyz;AB;2) Results in WX
to - uses string up to ARG: abr(ABC-123;to;-) Results in ABC
fr - uses string from ARG: abr(ABC-123;fr;-) Results in 123

abr() can be used on most routing tokens including db() and db2()

getsect(VALUE;IDX;SEP)
gs(VALUE;IDX;SEP)

Get section of string separated by a separator.

VALUE=data to get section from, for example file.name
IDX=Letter "L" or number 1 or higher. L will get the last section
SEP=the character used as a separator, default is _ (underscore)

lookup(VALUE;FILE;COL)
lu(VALUE;FILE;COL)

Lookup a value from a tabdelimeted file

VALUE=data to use when looking up value, for example file.name
FILE=file to use for the lookup. Needs to be in /usr/inpress/enroute/setup/
lookup
COL=column to read

Example: file extmap contains extensions and corresponding names like
	 jpg	 webimg
	 psd	 originals
	 ...
Using lookup(file.ext;extmap;2) will return “webimg” if the extension is jpg

lookup() can be used on most routing tokens including db() and db2()

replace(VALUE;FIND;REP)
rp(VALUE;FIND;REP)

Replace a substring within a larger string

VALUE=string to search and replace in, for example file.dir
FIND=section to change (can only be static)
REP=replacement text, ie section to change (can only be static)

Example: file.dir is /raid1/hotfolders/incoming_jobs
Using replace(file.dir;raid1/hotfolders;raid2) will return “/raid2/incoming_jobs“

replace() can be used on most routing tokens including db() and db2()

dbd(BASE;F1;V1;F2;V2)
dbf(BASE;F1;V1;F2;V2)

Search for a file- or directory path in the Xinet database. dbd restricts to dirpath
while dbf restrict to a filepath. dbd() and dbf() returns the shortest path if multi-
ple paths are found.

BASE=optional basepath where search should take place.
F1=Name of first field to match
V1=First value to match
F2=Name of second field to match (optional)
V2=Second value to match (optional)

Search: F1="V1" AND F2="V2" while path LIKE BASE%

Note that values can be dynamic. Example: Find project folder that match
incoming file´s value for project. Add "/uploads/" to path
Route: dbd(/raid/projects;PROJID;db(PROJID);PROJFOLDER;1)

upper(VALUE)
up(VALUE)

Transform value to uppercase

lower(VALUE)
lo(VALUE)

Transform value to lowercase

32

Dynamic section Description

if(TOK;STR1;STR2) Test if TOK exist and has a value that is NOT 0.

TOK=token to test.
STR1=String to use if test is true.
STR2=String to use if test is false.

example:
if(file.ext;upper(file.ext);NOEXT)
return the extension as uppercase if it exists, else the string "NOEXT"

if(TOK==VAL;STR1;STR2)
if(TOK!=VAL;STR1;STR2)

Test if TOK is equal/not equal to VAL

TOK=token to test
STR1=String to use if test is true.
STR2=String to use if test is false.

example:
if(file.ext==jpg;IMAGE;OTHER)
will return the string IMAGE if extension is jpg, else the string "NOEXT"

customfunc(ARG1;ARG2..) Run a custom function that will return a path segment. The custom function
needs to be an executable file inside /usr/inpress/enroute/setup/extprogs. It
can be passed arguments (up to 10) that will be used when the custom function
is called. Arguments can be any tokens mentioned in this table. The program/
script should return the path segment to be used on stdout. A non-zero exit
status indicate an error.

Example: /basepath/&myfunc(file.path;date())&/
myfunc will be called and file.path and current date passed as parameters to
the script/program.

A sample of a custom routing function script is included with the distribution.

Examples using different Route path setups

Example 1:

The goal is to route files that are being uploaded using the Xinet uploader and we want to route
based on supplied database information.

Xinet uploader sets two database fields: ProjectID and CustomerName
RoutePath is set to: /myRaid/files/Jobs/&db(CustomerName)&/&db(ProjectID)&/

On an upload using CustomerName: “inpress” and ProjectID: “Enroutemanual” the path would
translate to:

Resolved path is: /myRaid/files/Jobs/inpress/Enroutemanual/

The routepath ends with a “/”. Enroute will assume this is the directory where to route the file
and add the original filename at the end. Routing of a file named “Screenshot” would then place
the file in the full path

/myRaid/files/Jobs/inpress/Enroutemanual/Screenshot

Example 2:

Files are uploaded using the WebNative html upload with the House_inpress form. The form
has an input field named “CustomerID” and associated to the selected file there is a field named
“Status” (for more information about the House_inpress upload style, see a following section).

We want to route the files to an appropriate customer folder, create a subfolder named after
today’s date and make a subfolder inside that folder for the files status as selected by the person
submitting the file.

RoutePath: /myRaid/files/Incoming/&meta.CustomerID&/&date(%Y-%m-%d)&/&file.Status&/

33

On an upload using CustomerID: “inpress” and Status: “Printready” on Sept 20, 2007 the path
translates to

Resolved path is: /myRaid/files/Incoming/inpress/2007-09-20/printready/

The routepath ends with a “/”. Enroute will assume this is the directory where to route the file to
and append the name to the end. Routing of a file named “Enroute manual” would result in the
full path looking like this:

/myRaid/files/Incoming/inpress/2007-09-20/printready/Enroute manual

Example 3:

A folder with files is scanned at a specific time everyday. There are database fields set on the files.
We want to use two keywords to file the files into nested subfolders and also rename the file add-
ing _OLD to the filename.

Routing Path: /myRaid/files/Old/&db(Keyword1)&/&db(Keyword2)&/&file.noext&_OLD.&file.fext

Processing the file foo.jpg with Keyword1 = “fruit” and Keyword2 = “orange”

Translates to: /myRaid/files/Old/fruit/orange/foo_OLD.jpg

The routepath does NOT end with a /. Enroute will assume this is the full path where to route
the file including the filename. We are using the tokens file.namenoext and file.ext to generate a
new filename while making sure that we preserve any extension.

4.3.8	 Updating Database Fields

Depending on the routing method, both original and routed files can have database values set by
EnRoute. There is one setup for original files (in the repoerting section) and separate setups on
first and second route.

The syntax for setting a database fields is

	Fieldname1[Operator1]Value1;Fieldname2[Operator2]Value2;..

where Fieldname is the name of a valid datafield in Xinet, Operator is one of the valid operators
(listed below) and the value part can be static information, dynamic information or a valid func-
tion.

Example:

	 Delivered=1;Usedate=date();

Following operators can be used:

Operator Description

Field=VALUE Sets the Field to VALUE. Example: “Submitdate=date()”.
The date function inserts the current date.

Field=+ Increments the field by 1. The field can be integer or string. Example: “Usage=+”.

Field=- Decrements the field by 1.

Field=+VALUE Increments the field by numerical VALUE.

Field=-VALUE Decrements the field by numerical VALUE.

Field=!VALUE Sets to VALUE only if no the database field is empty. Example: “Converted_on=!date()”.

Field=>VALUE Inserts string VALUE before any existing value and reapplies the string to the field.
Example: “Execute_dates=>date()&,”.
A string like “2010-10-25,2009-10-15,2010-06-12” will be maintained, with new additions
at the START of the string.

34

Operator Description

Field=<VALUE Inserts string VALUE after any existing value and reapplies string to the field.
Example: “Events=<event.ID& “.
A string like “0001 0002 0003” will be maintained, with new additions
at the END of the string.

Field=[VALUE Adds string VALUE to a list of unique values.
Example: “Events=[event.name”. A string like “abc def ghi” will be maintained.
Field={VALUE
Adds string VALUE to a list of unique values, maintains count of each occurrence.
Example: “Events={event.name”. A string like “abc(2) def(5) ghi” will be maintained.

The dynamic information to be used when setting a database field is similar but not identical to
the information accessible when creating routepaths. It is the same as the information available
when creating notifications and reports (see following sections) with the difference that the to-
ken used for files is simply "file." while reports and notifications have to take into consideration
that there is a list or array of multiple files which is addressed using file.N where N is a number.
The @ character is used in notification/report templates to generate loops for multiple files.

Variable value Description

event.ATTRIBUTE Event attributes, like “ID”, “nfiles”, “scanfolder”

event.ID The event id as specified in setup

event.mainID The internal EnRoute event id. Unix timestamp (10 digits)

event.scanfolder Name of scanning folder

event.nfiles Number of current files

event.procsizemb Total filesize in Mb for all processed files

event.name The event name

event.date Current date of execution, YYYY-MM-DD format

event.time Current time of execution, in HH:MM format

event.edate Current date of execution, format as selected in base config

event.etime Current time of execution, format as selected in base config

event.edatetime Current date and time of execution, format as selected in base config

event.ldate Current date of last execution, format as selected in base config

event.ltime Current time of last execution, format as selected in base config

event.ldatetime Current date and time of last execution, format as selected in base config

meta.FIELDNAME Data from general uploadform field named FIELDNAME or general data in XML
file (when using XML scan)

file.ATTRIBUTE File attributes, like “name”, “subname”, “namenoext”, “ext”

file.idx (file) Index in filelist

file.fid Xinet file id

file.name Filename

file.namenoext Filename without extension

file.ext File extension (without .) in lowercase. Empty for folders

file.type File / Folder

file.sizemb File size in Mb

file.path Original Filepath

file.dir Original path to parent folder

file.lastfolder Folder enclosing original file

file.name_u Filename, URL encoded

file.path_u Original Filepath, URL encoded

35

Variable value Description

file.dir_u Original path to parent folder, URL encoded

file.path_x Original Filepath, Xinet encoded

file.path_wnurl Original Filepath, WebNative URL. Server address from Event/Base config

file.path_portalurl Original Filepath, Portal URL. Server address from Event/Base config

file.path_xineturl Original Filepath, Portal or Webnative URL depending on Main/Portal server
addresses from Event/Base config

file.tattriibute First Target attribute, ie file.tname, file.text, file.tlastfolder, file.tpath_u etc
NOTE: for transfer via ftp/sftp target = the remote server info.

file.tattriibute2 Second Target attribute, ie file.tname2, file.text2, file.tlastfolder2, file.tpath2_u...

file.comment Files comment if any

file.FIELDNAME Data from file associated uploadform field named FIELDNAME (see uploadform)
or file associated data in XML file (when using XML scan)

file.hasmeta Exists and is set to 1 if there is any file metadata

file.vent.FIELDNAME Data from keyword field associated to original file. The keywords to collect
need to be specifically listed in the reports section of the event setup.
This representation is used to get a value from a specific field.

file.ventnameN
file.vencontN

Data from keyword field associated to original file. The keywords to collect
need to be specifically listed in the reports section of the event setup.
This representation is used to loop all the fields using .ventname@ and
.ventcont@

file.hasvent Exists and is set to 1 if there is any file keword data collected

amp Insert the “&” character

hash Insert the “#” character

date(OFFSET;FORMAT) Date function using current datestamp. FORMAT is the date formatter to be
used. EnRoute uses the standard date formatters in UNIX (see appendix for
details). If no format is specified, EnRoute will default to %Y-%m-%d which
translates to dates like “2007-09-31”
OFFSET is an optional number (positive or negative). If supplied, the date will
be offseted with as many hours.

udate(OFFSET) Date function. Supplies unix timestamp as number.
OFFSET is an optional number (positive or negative). If supplied, the date will
be offseted with as many hours.

abr(VALUE;METHOD;ARG) Abbreviate a value using certain method.
For more information see earlier description in section 3.4.5, Routing Paths and
Custom program arguments

nl(n) insert n newlines. 1 is default

pp(PATH) Transforms a path to a "pretty path" by getting a certain part of the path, and
replacing the / for another string.
The arguments are
PATH=path to work on, example file.path
TYPE=the type of transformation, see below
ARG=argument for the type, see below
REPL=Optional string with which to replace / (slash)

Supported types:
first, arg is number of folder levels to get from start
last, arg is number of folder levels to get from end
lastn, like last but surpress last level
from, arg is folder level to start from , 1,2,3...
fromn, like from but surpress last level
fold, arg is folder name to start from, start with - to NOT show start folder
foldn, as fold but surpress last level

Examples:
pp(file.path;last;3; -) - Get last three levels including file, replace "/" with " - "
pp(file.path;fold;-/jobs/acme/) - Get path after "/jobs/acme/", keep /

counter(n) Return the enRoute event counter with n digits. 0-padded at start

36

Variable value Description

getsect(VALUE;IDX;SEP)
gs(VALUE;IDX;SEP)

Get section of string separated by a separator.

VALUE=data to get section from, for example file.name
IDX=Letter "L" or number 1 or higher. L will get the last section
SEP=the character used as a separator, default is _ (underscore)

lookup(VALUE;FILE;COL)
lu(VALUE;FILE;COL)

Lookup a value from a tabdelimeted file

VALUE=data to use when looking up value, for example file.name
FILE=file to use for the lookup. Needs to be in /usr/inpress/enroute/setup/
lookup
COL=column to read

Example: file extmap contains extensions and corresponding names like
	 jpg	 webimg
	 psd	 originals
	 ...
Using lookup(file.ext;extmap;2) will return “webimg” if the extension is jpg

replace(VALUE;FIND;REP)
rp(VALUE;FIND;REP)

Replace a substring within a larger string

VALUE=string to search and replace in, for example file.dir
FIND=section to change (can only be static)
REP=replacement text, ie section to change (can only be static)

Example: file.dir is /raid1/hotfolders/incoming_jobs
Using replace(file.dir;raid1/hotfolders;raid2) will return “/raid2/incoming_jobs“

upper(VALUE)
up(VALUE)

Transform value to uppercase

lower(VALUE)
lo(VALUE)

Transform value to lowercase

if(TOK;STR1;STR2) Test if TOK exist and has a value that is NOT 0.

TOK=token to test.
STR1=String to use if test is true.
STR2=String to use if test is false.

example:
if(file.ext;upper(file.ext);NOEXT)
return the extension as uppercase if it exists, else the string "NOEXT"

Let’s take a look at a few examples using different database setups.

Example 1:

We want to route files that are being uploaded using the Xinet uploader and the uploaded files
should get today’s date set into the Filesubmit date field and the default value “submitted” set
into the Filestatus field. Set database field is set to:

Filesubmit date=date();Filestatus=submitted

Example 2:

Files are uploaded using the a WebNative html upload with the House_inpress form. The form
has an input field named “CustomerID” and associated to the selected file there is a field named
“Status” (for more information about the House_inpress upload style, see upcoming section).

We want to update the Filestatus database field with the information selected for the file in the
form, update the ProjectID database field with the CustomerID and put today’s date set into
the Filesubmit date field. Set database field is set to:

Filesubmit date=date();Filestatus=file.Status;ProjectID=meta.CustomerID

37

4.4	 Reporting & notification

After performing the routing of the files, EnRoute generates a list of data that can be fed into
notification/receipt e-mail and/or in a written text report. Both the notification and the report
are based on templates and they share the same technology for making custom formatted e-mails
and reports as all other InPress Products.

New templates (both for emails and reports) can be custom made and added to the system and
then selected. See more details on the templating technology below.

In addition to the report and notifications, it is also possible to make a query to a secondary
MySQL server. The query is based on a query templatefile (just like custom queries when scan-
ning) and can use the same data as the report/notification.

Following options are available for Notification and Reporting:

Reporting & Notification Description

Notification email E-mail where to send notification. Can be a comma separated list.
Email address can be picked up from upload form using meta.
FIELDNAME, example: meta.EMAIL.
The first email address can also be read from Xinet database on
the file, using db(FIELDNAME). Note that reading email from data-
base affects the filelist.

Notification Template Select template to use. The default template will be used if no tem-
plate has been selected but an e-mail has been supplied.

Notification 2 email E-mail where to send notification. Can be a commaseparated list.
Email address can be picked up from upload form using meta.
FIELDNAME, example: meta.EMAIL.

Notification 2 Template Select template to use. The default template will be used if no tem-
plate has been selected but an e-mail has been supplied.

Mail sender for notifications Reply address to use for notifications, for this specific event. The
mail sender setup in the general configuration will be used in case
no event Mailsender has been supplied.

Reporting path Path where to write report for Event. This path can be static or
include dynamic segments.

Reporting template Select template to use. The default template will be used if no tem-
plate has been selected but a report path has been supplied.

Read Xinet db fields for inclusion Write the keywords in Xinet, needed for reports and notifications,
separated with semicolon (;). The keyword names and values will be
gathered and included in the array for reports and notifications.

Set database fields, original Formulas for setting database fields, on the original file.
The syntax for setting database fields is Fieldname1=Value1;Fieldna
me2=Value2;.. where Fieldname is the name of a valid Xinetfield and
value is static or variable.
The variables can either be information collected from an upload
form or functions that can be run.
More information and examples in previous section.

Main server address Xinet server address. Used in links to get to files and directories.
Also used when generating links for assetlink.
This address should be the address from the Portal server to Xinet
when a Portal server is used. Defaults to the Base configuration.

Portal server address Portal server address. Used in links to get to files and directories.
Also used when generating links for assetlink.
Defaults to the Base configuration.

Portal Sitename Portal site name. Used for links in emails and reports.

Mail address for Error mails E-mail where to send Error message. In certain circumstances,
EnRoute will send an error mail.

Content array debug Emails and reports gets their data from an array generated by
EnRoute. It is possible to write this array in order to view the data
available. Insert a path where to write the file. The file will be written
to the path and named EVENTNAME_cont_UNIQUENUMBER.txt.

38

Reporting & Notification Description

Report to external MySQL

Database host The IP-number to the server, where the external MySQL database is
located.

Database Name The name of the external MySQL databas (schema).

Database User name and password The user name and password that is needed to log in to the external
MySQL database.

Data to POST or insert Single line SQL or POST that is submitted to the external server. If
used, it will override any template below.

Data template The template that is used to create the DB queries. The SQL queries
must be divided by semicolon (;) and every new SQL query must
start on a new line. There is a sample template included as default.

4.4.1	 Email notifications

Emails can be sent to multiple recipients using a comma to separate the emails. Email addresses
can be static or dynamic. There are two different types of dynamic emails supported: from up-
load form or from database field.

In order to use an email address supplied by an upload form, type in “meta. “the name of the
field, example meta.EMAIL.

In order to use an email address supplied from a Xinet field on a scanned file, specify the field-
name within the db() function, example db(Notificationmail).

Note that when using a databasefield to retrieve the email it is possible to end up with multiple
email addresses. In order to handle this situtation, EnRoute will limit the current scan to the first
value of email address it encounters and ignore files with other values.

4.4.2	 Email notification template format

EnRoute emails are based on mailtemplates. The mailtemplates are files saved into a subfolder
(notiftempl) in the EnRoute setup directory (/usr/inpress/enroute/setup). Each file in this direc-
tory will show up as a selectable choice in the pulldowns for Template for first notification and
Template for second notification. The reason that there are two emails and two templates is to
make it possible to send different emails to different recipients, for example a receipt to someone
uploading a file and a report to the admin.

EnRoute ships with a default emails formatted as text only. This template will be used in case a
notification email address has been entered but no template selected (or default selected).

To create a new email template, copy the template that needs customization into the the folder.
Edit the emails as needed and select it from the admin interface. Please note that any standard
emails shipped with EnRoute should not be edited since they may be overwritten when a soft-
ware upgrade is made.

The email templates are plain text files and should be edited using a text editor like BBEdit or
TextWrangler. Save the files using UNIX linefeeds and encoded as ISO Latin 1. Any empty line
in the file will be ignored so if you need a line that show up as empty, use a space on that line.

The first line in the email template is used as the Subject line of the email and will be stripped
out and not be part of the email itself. If the email is of HTML type it is of upmost importance
that the first line after the subject is an <HTML> tag.

Using database fields
as email address may

split the scan

39

Uploadeport
<HTML>
<HEAD>
<STYLE TYPE=”text/css”>

The example above is the top four lines of an html email template. “Uploadreport” is the subject
and the first line is an HTML doc tag.

EnRoute parses the email template looking for markers specifying tokens that will be exchanged
for the unique data pertaining to the specific event. The marker used in the email templates is
“#” (the hash character). The token is normally embedded inside two markers: “#event.date#”.

Enroute Report - #event.name# - #event.date# / #event.time#

The section above is taken from the default notification template. It has three tokens: event.
name, event.date and event.time, all embedded within “#” characters.

EnRoute builds an array with many different values that come from the current run of the event.
The array is structured into sections like event and meta with subvalues like event.name and event.
date. To insert a value from a certain variable, use the token within the markers.

In addition to the simple sections there are also numbered sections and subsections that can have
different length depending on the data available. Example: file0, file1, file2 and so on with cor-
responding entries for file0.idx, file0.name and so on.

Retrieving data from the numbered sections has to be done using loops. There are two types of
loops: single-line and multi-line. A single-line loop is created by typing one of the numbered
variables at a line using a “@” instead of the number. The entire line will be repeated, string with
the number “0” and increasing the counter as long as there is data:

#file@.idx# : #file@.name#

With the data

file0.idx = “1”
file0.name = “Acme industries.eps”
file1.idx = “2”
file1.name = “ACME_hq.psd”
file2.idx = “3”
file2.name = “Sale 2010.xls”

The template section will be expanded to:

1 : Acme industries.eps
2 : ACME_hq.psd
3 : Sale 2010.xls

A multi-line loop can be created using specific loop tags. These tags are only used to create the
loop and will not be printed. A loop tag needs to be aligned to the left of the line and the follow-
ing syntax is used: “#TOKEN@<#” where TOKEN is the numbered variable token name - for
example “file” - followed by the section to loop and then closing the section again by the end
token “#TOKEN@>#”.

Following example from the default template shows the use of a multi-line loop on the meta@
variable:

#meta@<#

#meta@.name# = #meta@.val#
#meta@>#

A multi-line loop tag
needs to start the

line to the left

40

With the data

meta0 = “0”
meta0.name = “Company”
meta0.val = “ACME Inc”
meta1 = “1”
meta1.name = “Reference”
meta1.val = “Donald Duck”
meta2 = “2”
meta2.name = “Delivery”
meta2.val = “ASAP”

The template section will be expanded to:

Company = ACME Inc

Reference = Donald Duck

Delivery = ASAP

It is possible to put single line loops within multi-line loops. For example, when retreiving Xinet
data from files in an event, these turn up as subindex for the main index:

file0 = “Acme industries.eps”
file0.idx = “1”
file0.name = “Acme industries.eps”
file0.ventname0 = “Creation date”
file0.ventcont0 = “2010-06-01”
file0.ventname1 = “Artist - Photographer”
file0.ventcont1 = “DD”
file1 = “ACME_hq.psd”
file1.idx = “2”
file1.name = “ACME_hq.psd”
file1.ventname0 = “Creation date”
file1.ventcont0 = “2009-04-30”
file1.ventname1 = “Artist - Photographer”
file1.ventcont1 = “Mickey Mouse”

Using template section:

#file@<#

#file@.idx# : #file@.name#
 #file@.ventname@# : #file@.ventcont@#
#file@>#

Expands to:

1 : Acme industries.eps
 Creation date : 2010-06-01
 Artist - Photographer : DD

2 : ACME_hq.psd
 Creation date : 2009-04-30
 Artist - Photographer : Mickey Mouse

In addition to the repetition tags, there is a tag for logics. The logics tag is very simple and
checks for the existence of a certain variable. EnRoute puts a number of these types of variables

A single-line loop can
be made within a

multi-line loop

41

into the array to be able to print certain sections only under certain circumstances. The logics tag
is almost identical to the loop tag and also needs to be placed to the left on the line.
It will not be printed and also has a start and end version: “#TOKEN?<#” and “#TOKEN?>#”

The meta data section is available when EnRoute has parsed an upload using the uploadform
parsing. If it finds metadata, the control token hasMeta will be available. Using a logics token
with hasMeta makes it possible to decide whether to print or not print a section:

#hasMeta?<#
Supplied information:
#meta@.name# = #meta@.val#

#hasMeta?>#

With the data

meta0 = “0”
meta0.name = “Company”
meta0.val = “ACME Inc”
meta1 = “1”
meta1.name = “Reference”
meta1.val = “Donald Duck”
meta2 = “2”
meta2.name = “Delivery”
meta2.val = “ASAP”
hasMeta = “1”

Following is generated:

Supplied information:
Company = ACME Inc
Reference = Donald Duck
Delivery = ASAP

If hasMeta does not exist in the array, the section will not generate any output. Note that the
value of hasMeta is not important. It is the fact that it exists at all that makes the test true.

4.4.3	 Email notification data and tokens

As per last section, EnRoute generates a large set of data to be used in email notifications and
reports. This list of data is generated automatically and “fed into” the notification and report
templates. The content is unique for each execution of every event.

It is possible to output the complete list to a text file to see the exact data available for email
notifications and reports when running a certain event. To do this, type in an accessible path in
the Content array Debug setting on the Reporting & Notification setup page.

The most common variables are listed in the table below. Note that some data can be accessed
from multiple names. In the table all the numbered variables are noted as tokenN, where N will
be replaced by 0,1,2,... for example. In some cases there are subsets of numbered variables (as
with fileN). These are noted as tokenK.

The main bulk of the dataset consist of fileinformation. The fileinformation is made up of 5 dif-
ferent file arrays: file, fileP, fileE, fileF and fileV. All files go into the file array. fileP is made up of
the files that have been processed, fileE are files that Errored, fileF are files that were filtered (not
used as of version 3) and fileV are files that were found but not verified.

In the list below, we list all the sub sections for the file only. They do exist for the other file arrays
if there is an entry for the file in that array.

Logic tokens are used
to decide if to print

certain sections or not

42

Token Name(s) Description

event.ATTRIBUTE Event attributes, like “ID”, “nfiles”, “scanfolder”

event.ID The event id as specified in setup

event.mainID The internal EnRoute event id. Unix timestamp (10 digits)

event.scanfolder Name of scanning folder

event.nfiles Number of current files

event.procsizemb Total filesize in Mb for all processed files

event.name The event name

event.date Current date of execution, YYYY-MM-DD format

event.time Current time of execution, in HH:MM format

event.edate Current date of execution, format as selected in base config

event.etime Current time of execution, format as selected in base config

event.edatetime Current date and time of execution, format as selected in base config

event.ldate Current date of last execution, format as selected in base config

event.ltime Current time of last execution, format as selected in base config

event.ldatetime Current date and time of last execution, format as selected in base config

meta.METANAME Data from general uploadform field named FIELDNAME or general data in
XML file (when using XML scan)

metaN, metaN.name Data from general uploadform field named FIELDNAME or general data in
XML file (when using XML scan).
Formatted as an array that can be looped. metaN.name is the fieldname

metaN.val as above. metaN.val is the value

hasMeta control variable, set to 1 if there are metafield values

file|fileP|fileE|fileV.attribute File arrays with data. Three arrays may exist. Use the @ character to loop
through all the elements.
To get a specific element use the number, example: fileP1.name

file array of all files, loop using file@

filesA control variable, exists and set to 1 if there are files in file array

fileP array of PROCESSED files, loop using fileP@

filesP control variable, exists and set to 1 if there are files in fileP array

fileE array of ERROR files, loop using loop using fileE@

filesE control variable, exists and set to 1 if there are files in fileE array

fileV array of NOT VERIFIED files, loop using fileE@

filesV control variable, exists and set to 1 if there are files in fileV array

noFiles control variable, exists and set to 1 if there are no files in scan

file@.idx (file@) Index in filelist

file@.fid Xinet file id

file@.name Filename

file@.namenoext Filename without extension

file@.ext File extension (without .) in lowercase. Empty for folders

file@.type File / Folder

file@.sizemb File size in Mb

file@.path Original Filepath

file@.dir Original path to parent folder

43

Token Name(s) Description

file@.lastfolder Folder enclosing original file

file@.name_u Filename, URL encoded

file@.path_u Original Filepath, URL encoded

file@.dir_u Original path to parent folder, URL encoded

file@.path_x Original Filepath, Xinet encoded

file@.path_wnurl Original Filepath, WebNative URL. Server address from Event/Base config

file@.path_portalurl Original Filepath, Portal URL. Server address from Event/Base config

file@.path_xineturl Original Filepath, Portal or Webnative URL depending on Main/Portal server
addresses from Event/Base config

file@.tattriibute First Target attribute, ie file.tname, file.text, file.tlastfolder, file.tpath_u etc
NOTE: for transfer via ftp/sftp target = the remote server info.

file@.tattriibute2 Second Target attribute, ie file.tname2, file.text2, file.tlastfolder2, ...

file@.comment Files comment if any

file@.FIELDNAME Data from file associated uploadform field named FIELDNAME (see upload-
form) or file associated data in XML file (when using XML scan)

file@.hasmeta Exists and is set to 1 if there is any file metadata

file.vent.FIELDNAME Data from keyword field associated to original file. The keywords to collect
need to be specifically listed in the reports section of the event setup.
This representation is used to get a value from a specific field.

file.ventnameN
file.vencontN

Data from keyword field associated to original file. The keywords to collect
need to be specifically listed in the reports section of the event setup.
This representation is used to loop all the fields using .ventname@ and
.ventcont@

file.hasvent Exists and is set to 1 if there is any file keword data collected

Functions Functions that use values from arrays

amp Insert the “&” character

hash Insert the “#” character

date(OFFSET;FORMAT) Date function using current datestamp. FORMAT is the date formatter to be
used. EnRoute uses the standard date formatters in UNIX (see appendix for
details). If no format is specified, EnRoute will default to %Y-%m-%d which
translates to dates like “2007-09-31”
OFFSET is an optional number (positive or negative). If supplied, the date
will be offseted with as many hours.

udate(OFFSET) Date function. Supplies unix timestamp as number.
OFFSET is an optional number (positive or negative). If supplied, the date
will be offseted with as many hours.

abr(VALUE;METHOD;ARG) Abbreviate a value using certain method.
For more information see earlier description in section 3.4.5, Routing Paths
and Custom program arguments

nl(n) insert n newlines. 1 is default

44

Token Name(s) Description

pp(PATH) Transforms a path to a "pretty path" by getting a certain part of the path, and
replacing the / for another string.
The arguments are
PATH=path to work on, example file.path
TYPE=the type of transformation, see below
ARG=argument for the type, see below
REPL=Optional string with which to replace / (slash)

Supported types:
first, arg is number of folder levels to get from start
last, arg is number of folder levels to get from end
lastn, like last but surpress last level
from, arg is folder level to start from , 1,2,3...
fromn, like from but surpress last level
fold, arg is folder name to start from, start with - to NOT show start folder
foldn, as fold but surpress last level

Examples:
pp(file.path;last;3; -) - Get last three levels including file, replace "/" with " - "
pp(file.path;fold;-/jobs/acme/) - Get path after "/jobs/acme/", keep /

counter(n) Return the enRoute event counter with n digits. 0-padded at start

getsect(VALUE;IDX;SEP)
gs(VALUE;IDX;SEP)

Get section of string separated by a separator.

VALUE=data to get section from, for example file.name
IDX=Letter "L" or number 1 or higher. L will get the last section
SEP=the character used as a separator, default is _ (underscore)

lookup(VALUE;FILE;COL)
lu(VALUE;FILE;COL)

Lookup a value from a tabdelimeted file

VALUE=data to use when looking up value, for example file.name
FILE=file to use for the lookup. Needs to be in /usr/inpress/enroute/setup/
lookup
COL=column to read

Example: file extmap contains extensions and corresponding names like
	 jpg	 webimg
	 psd	 originals
	 ...
Using lookup(file.ext;extmap;2) will return “webimg” if the extension is jpg

replace(VALUE;FIND;REP)
rp(VALUE;FIND;REP)

Replace a substring within a larger string

VALUE=string to search and replace in, for example file.dir
FIND=section to change (can only be static)
REP=replacement text, ie section to change (can only be static)

Example: file.dir is /raid1/hotfolders/incoming_jobs
Using replace(file.dir;raid1/hotfolders;raid2) will return “/raid2/incoming_
jobs“

upper(VALUE)
up(VALUE)

Transform value to uppercase

lower(VALUE)
lo(VALUE)

Transform value to lowercase

if(TOK;STR1;STR2) Test if TOK exist and has a value that is NOT 0.

TOK=token to test.
STR1=String to use if test is true.
STR2=String to use if test is false.

example:
if(file.ext;upper(file.ext);NOEXT)
return the extension as uppercase if it exists, else the string "NOEXT"

Two of the routemethods, sendbyftp and assetlink, generate specific tokens for emails, only
available for these methods. There are sample email templates included in the distribution which
illustrate how to use these tokens. The lists of tokens are as follows

45

Token Name(s) Description

For ftp/sftp method The tokens can only be used in notifications when using the ftp/sftp method

event.subject Email subject

event.transServer Server sent to

event.transUser Username used when sending the files

event.transNumberFiles Number of files being sent

event.transFSize Total filesize in Mb for all sent files

event.transTime Total time used when sending

event.transSpeed Transfer speed

Token Name(s) Description

For ftp/sftp method The tokens can only be used in notifications when using the ftp/sftp method

assetlink.subject Email subject

assetlink.message Email message

assetlink.expiresHours Number of hours from creation to expiration

assetlink.expiresDate Date and time for expiration

assetlink.md5 md5 checksum for the zip file

assetlink.password Password to access the download

The table below describes the different types of tokens that can be used in an email or report
template.

Token TYPE Description

#NAME# Simple token to be replaced.

Replace with # (single #)

#Function()# Replace with value of Function, see functions above

#NAME@# Repeatable token. Will repeat for data NAME0, NAME1, ...

#NAME@<#
 ...
#NAME@>#

Repeatable token section. Will repeat entire section between start and end token
for data NAME0, NAME1, ... and replace each section with the corresponding
values of NAME0, NAME1, ... Tokens need to be aligned to left in file

#NAME?<#
 ...
#NAME?>#

Logic token. Tokens need to be aligned to left in file
The section between start and end token will be processed if data NAME exists
and has a value.

#!NAME?<#
 ...
#NAME?>#

Logic token. Tokens need to be aligned to left in file
The section between start and end token will be processed if data NAME does not
exists or exists but has no value.

#NAME==VALUE?<#
 ...
#NAME?>#

Logic token. Tokens need to be aligned to left in file
The section between start and end token will be processed if data NAME exists
and has a value exactly equal to VALUE

#NAME!=VALUE?<#
 ...
#NAME?>#

Logic token. Tokens need to be aligned to left in file
The section between start and end token will be processed if data NAME does not
exist or exist and has a value not equal to VALUE

46

Email Example:

Template for generating an email receipt used in an event collecting uploads from form

47

Resulting email receipt from template above.

4.4.4	 Reporting

EnRoute can write a report every time an event is run. The report is written to a specific path
and appended to any existing file that may be residing at the path (unless ;replace is added at the
end on the path). The report path can be dynamic and include tokens pointing to information
in the event´s data (see previous section).

Example: Making a daily report file from an event

Output path for reports: /myraid/Reports/uploads/&date(%Y%m%d)&.report.txt

Uploading files where this Event is running on Sept 20, 2010, will cause EnRoute to write
reports to

/myraid/Reports/uploads/20100920.report.txt

If more than one job is run on the setup the same day, the report will be appended to for every
time the Event runs.

Should a report be replaced instead of appended, the path should end with ;replace.

Example: Making a report file used as an include to show latest addtion to webnative

Output path for reports: /var/adm/webnative/mysite/latestfiles.js;replace

Every time the Event runs the report file will be replaced instead of appened.

4.4.5	 Report template format

EnRoute uses templates to create the reports. The templates share the same technology creating
the files as when making email notifications. Further, the same content array is used to “feed” the
report template.

48

The report templates are files saved into a subfolder (reporttempl) in the EnRoute setup direc-
tory (/usr/inpress/enroute/setup). Each file in this directory will show up as a selectable choice in
the pulldowns for Template for reports.

EnRoute ships with a default report template. This template will be used in case a report path
has been entered but no template selected (or default selected).

To create a new report template, copy the template that needs customization into the the folder.
Edit the template as needed and select it from the admin interface. Please note that any stand-
ard reports shipped with EnRoute should not be edited since they may be overwritten when a
software upgrade is made.

The report templates are in plain text and should be edited using a text editor like BBEdit or
TextWrangler. Save the files using UNIX linefeeds and encoded as ISO Latin 1. Any empty line
in the file will be ignored so if you need a line that shows up as empty, use a space on that line.

When working with reports there are a couple of differences from working with notifications:

•	 The first line is part of the report. (For notifications, the first line is used as subject in the
mail and removed from the body.)

•	 It is possible to use a header and a tail section in the report template. The header will only
be written when a new file is created. The trailer will be removed and re-added everytime
a report file is being appended with new data.

Loops, logics and tokens all work the same way as with notifications.

Header section is defined by:

<HEAD>
... more lines here
</HEAD>

Tail section is defined by:

<TAIL>
... more lines here
</TAIL>

Note that the tail cannot include any repetitions.

Example. Report for uploads using an uploadform that has two general fields as well as one
metadata field per uploaded file.

Report path:

	/raid/Reports/Uploads/&date()&.xml

Report template:

<HEAD>
<?xml version=”1.0” encoding=”ISO-8859-1”?>
<Uploads>
</HEAD>
<upload id=”#event.ID#”>
	<uploadinfo>
		 id=”#event.ID#”
		 date=”#event.date#”
		 time=”#event.time#”
		 #meta@name#=”#meta@.val#”
	</uploadinfo>
#fileP@<#

49

	<file idx=”#fileP@.idx#”>
		 name=”#fileP@.tname#”
		 path=”#fileP@.tpath#”
		 instruction=”#fileP@.instruction#”
	</file>
#fileP@>#
</upload>
<TAIL>
</Uploads>
</TAIL>

Running the event and catching two uploads on the same date (2010-10-01) may end up creat-
ing following file (using some sample data and other setups)

Filename: /raid/Reports/Uploads/2010-10-01.xml

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<Uploads>
<upload id=”2010-10-01-0001”>
	<uploadinfo>
		 id=”2010-10-01-0001”
		 date=”2010-10-01”
		 time=”14.32”
		 Company=”ACME”
		 PO=”123456”
	</uploadinfo>
	<file idx=”1”>
		 name=”Businesscard.pdf”
		 path=”/raid/uploaddata/2010-10-01/0001/Businesscard.pdf”
		 instruction=”Ready to print file”
	</file>
	<file idx=”2”>
		 name=”Letter.pdf”
		 path=”/raid/uploaddata/2010-10-01/0001/Letter.pdf”
		 instruction=”Ready to print file. Please check”
	</file>
</upload>
<upload id=”2010-10-01-0002”>
	<uploadinfo>
		 id=”2010-10-01-0002”
		 date=”2010-10-01”
		 time=”19.13”
		 Company=”ACME Service”
		 PO=”123458”
	</uploadinfo>
	<file idx=”1”>
		 name=”Productsheet.zip”
		 path=”/raid/uploaddata/2010-10-01/0002/Productsheet.zip”
		 instruction=”Zip includes all needed components”
	</file>
</upload>
</Uploads>

50

4.4.6	 Report data and tokens

Reports share the data and tokens with Email notifications. For an explanation on the different
tokens to be used, see “Email notification data and tokens“ above.

4.4.7	 Report examples

Below are a few examples of reports showing the template and the final result.

First Example: XML report

XML report template. The header is only printed when file is created. The tail (not shown in screenshot) is maintained at the
end of the file.

51

The final report after the event has been executed once.

Second Example: report used as an included .js file to create a list of last added assets.

Template to create a js file listing filenames, urls and database values in an array.

52

Final js file listing with filenames, urls and database values in an array.

4.4.8	 Connect to external mySQL

EnRoute can be set up to connect to an external mySQL database and run SQL queries using
the data from the event.

The query is created from a query template much like the report template. It uses the same data,
tokens and technology to render as the notifications and reports. Instead of being sent as email
or written to disk, it is used to build the queries to send to the external mySQL server.

Inside the “/usr/inpress/enroute/setup/dbTempl” is a sample template: DB sample, that illustrate
how a query file may be setup. The actual file to be used depends on the mySQL database to
connect to and its layout.

53

4.5	T esting and Running events from admin

An event can be tested or executed from the admin GUI's event configuration page. Click the
“test” button next to the save button to test an event. A new window will be open and the test
result, including the files that are found, will be shown. No actual routing will take place.

Testing an event from the admin utility is easy...

It can take a while since event may wait for stable files etc...

The full log is shown at the end

Clicking "Run Event" will fully execute the event, including running the route method.

54

5	Ac tivity and logs

The Activity and logs page contains main logs as well as individual Event logs. Select the log to
view from selector at the top. It is also possible to jump to the log of an individual event from
the events list and event configuration pages.

Main log

Select log to view

The top section show the current status of the event or the main daemon with ability stop the
daemon.

For an event log, it is possible to select "details" or "download" to get the full (verbose) log for
an event execution.

55

Event log

Event log details of specific execution

56

A	T ime and DAte formatTING

When using the date() function as a part of a route path, reports or in other types of tasks,
EnRoute uses the standard UNIX/C time_t type formatting of times and dates. As an example,
using date() with the follwing formatter “%Y-%m-%d-%H.%M.%S”

date(%Y-%m-%d-%H.%M.%S)

Assuming that the current date is March 6, 2014 and the current time is 11.22.15, the output
produced is

2014-03-06.11.22.15

Below is a partial list of sequences that can be used

%a	 Locale’s abbreviated weekday name
%A	 Locale’s full weekday name
%b	 Locale’s abbreviated month name
%B	 Locale’s full month name
%d	 Day of month [1,31]; single digits are preceded by 0
%D	 Date as %m/%d/%y
%e	 Day of month [1,31]; single digits are preceded by a space
%h	 Locale’s abbreviated month name
%H	 Hour (24-hour clock) [0,23]; single digits are preceded by 0
%I	 Hour (12-hour clock) [1,12]; single digits are preceded by 0
%j	 Day number of year [1,366]; single digits are preceded by 0
%k	 Hour (24-hour clock) [0,23]; single digits are preceded by a blank
%l	 Hour (12-hour clock) [1,12]; single digits are preceded by a blank
%m	 Month number [1,12]; single digits are preceded by 0
%M	 Minute [00,59]; leading 0 is permitted but not required
%p	 Locale’s equivalent of either a.m. or p.m
%r	 Appropriate time representation in 12-hour clock format with %p
%R	 Time as %H:%M
%S	 Seconds [00,61]; the range of values is [00,61] rather than [00,59] to 	
	allow for the occasional leap second and even more occasional double leap 		
second
%T	 Time as %H:%M:%S
%u	 Weekday as a decimal number [1,7], with 1 representing Monday. See NOTES 	
	below
%U	 Week number of year as a decimal number [00,53], with Sunday as the first 	
	day of week 1
%V	 The ISO 8601 week number as a decimal number [01,53]. In the ISO 8601 	
	week-based system, weeks begin on a Monday and week 1 of the year is 		
the week that includes both January 4th and the first Thursday of the 		
year. If the first Monday of January is the 2nd, 3rd, or 4th, the pre		
ceding days are part of the last week of the preceding year. See NOTES 		
below
%w	 Weekday as a decimal number [0,6], with 0 representing Sunday
%W	 Week number of year as a decimal number [00,53], with Monday as the first 	
	day of week 1
%x	 Locale’s appropriate date representation
%X	 Locale’s appropriate time representation
%y	 Year within century [00,99]
%Y	 Year, including the century (for example 1993)

InPress Systems Software License

This InPress Systems end user software license agreement (“agreement”) is the legal agreement that governs your use of the
software made available by InPress Systems AB (together with its accompanying documentation, the “software”). This agree-
ment is between you, the customer who has acquired the software (“you”), and InPress Systems AB (“InPress Systems”). Please
read this agreement carefully.

InPress Systems is only willing to provide the software to you on the condition that you accept all of the terms contained in
this agreement. You accept this agreement by installing or using the software or installing a license for the software. By ac-
cepting this agreement or by installing the software, you represent and warrant that you have the authority to enter into this
agreement, personally or if you have named a company as customer, on behalf of the company named as customer, and to
bind either yourself or such company to the terms of this agreement.

If you did not acquire the software from InPress Systems or from an authorized InPress Systems integrator or a InPress Systems
affiliate then you may not enter into this agreement or use the software. No other party has the right to transfer a copy of the
software to you.

If you are unwilling to accept this agreement, do not use the software. If you have already paid for the software without having
a prior opportunity to review this agreement and are now unwilling to agree to these terms, you may, within ten (10) days
after the date on which you acquired the software, return it to InPress Systems or the authorized integrator from whom you
acquired it, along with its original packaging and proof-of-purchase, for a full refund.

Notwithstanding anything herein to the contrary, no authorized InPress Systems integrator acts as an agent of InPress Systems,
and no such party may enter into any contracts on behalf of InPress Systems. no authorized integrator has the authority to
modify the terms of this agreement.

1.	 Grant of License
InPress Systems grants to you a nonexclusive, non-transferable license to use the Software on one computer system and to
make one copy of the software solely for backup purposes. You must place the same copyright and other proprietary rights
notices on any copy of the Software as appears on the original. You must not transfer, sell, assign, rent or distribute any copies
of the Software to others. InPress Systems reserves all rights not expressly granted to you.

2.	 Proprietary Rights
As a licensee, you own the media on which the Software is originally recorded. The Software is copyrighted by and proprietary
to InPress Systems and its suppliers. InPress Systems and its suppliers retain title and ownership of all copies of the Software.
The nonexclusive license set forth in this Agreement is not a sale of the Software or any copy. You agree that you will not
assign, sublicense, transfer, pledge, lease or share your rights under this Agreement and agree to take all reasonable steps to
prevent unauthorized use. You agree you may not reverse assemble, reverse compile, or otherwise translate the software.

3. License Maintenance and Support
One year of support is included when purchasing InPress Systems products.
The year of support is calculated from the product licensing date or 30 days after the InPress Systems
invoice is issued, whichever occurs first. Additional support is purchased at yearly intervals for 15% of the Current retail price
of the software. (Please Note: Product modules that are added to the primary license after the original purchase, will be added
to the existing support contract of the primary product license and therefore a full year of support will not be included in such
cases).

4.	 No Other Rights
Except as stated above, this Agreement does not grant you any rights to patents, copyrights, trade secrets, trade names, trade-
marks (whether registered or unregistered), or any other rights, franchises, or license in respect of the Software. You MAY
NOT MODIFY TRANSLATE, DISASSEMBLE, OR DECOMPILE THE SOFTWARE OR ANY COPY, IN WHOLE OR
IN PART.

5.	 Term
The license is effective until terminated. You may terminate the license at any time by destroying the Software (including the
related documentation) together with all copies or modifications in any form. InPress Systems will have the right to terminate
your license immediately if you fail to comply with any term or condition of the Agreement. Upon any termination you must
destroy the Software together with all copies or modifications in any form.

6.	 LIMITED WARRANTY

6.1	 InPress Systems warrants to you that the Software will perform substantially in accordance with the user’s manual for a
period of thirty (30) days after delivery to you (“Warranty Period”). If the Software fails to comply with this limited warranty,
InPress Systems will at its option and at no cost to you, correct errors you discover which you report during the Warranty
Period, or replace the Software, or refund the license fee paid for the Software provided you return the Software.

6.2	 INPRESS SYSTEMS AND ITS SUPPLIERS DO NOT AND CANNOT WARRANT THE PERFORMANCE OR
RESULTS YOU MAY OBTAIN BY USING THE SOFTWARE. YOU UNDERSTAND THAT, EXCEPT FOR THE
EXPRESS WARRANTY SET FORTH IN SECTION 6.1, INPRESS SYSTEMS AND ITS SUPPLIERS MAKE NO WAR-
RANTIES OF ANY KIND, WHETHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO THE SOFT-
WARE, INCLUDING ANY WARRANTIES AS TO PERFORMANCE, NON-INFRINGEMENT OF THIRD PARTY
RIGHTS, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.EXCEPT FOR THE EXPRESS WAR-
RANTY STATED IN SECTION 6.1, THE SOFTWARE IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE EN-
TIRE RISK AS TO SATISFACTORY QUALITY, ACCURACY, AND EFFORT IS WITH YOU. YOU ACKNOWLEDGE
AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR ADVICE,
WHETHER GIVEN BY INPRESS SYSTEMS OR ANY AUTHORIZED INTEGRATOR, AGENTS OR EMPLOYEES.

7.	 LIMIT OF LIABILITY
IN NO EVENT WILL INPRESS SYSTEMS OR ITS SUPPLIERS BE LIABLE TO YOU FOR ANY CONSEQUENTIAL,
INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, OR DAMAGES FOR ANY LOST DATA OR
LOST PROFITS, ARISING FROM OR RELATING TO THIS AGREEMENT, EVEN IF INPRESS SYSTEMS HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. INPRESS SYSTEMS’ TOTAL CUMULATIVE LI-
ABILITY IN CONNECTION WITH THIS AGREEMENT AND THE SOFTWARE, WHETHER IN CONTRACT OR
TORT OR OTHERWISE, WILL NOT EXCEED THE AMOUNT OF LICENSE FEES PAID TO INPRESS SYSTEMS
OR YOUR AUTHORIZED INTEGRATOR, AS APPLICABLE, HEREUNDER. YOU ACKNOWLEDGE THAT THE
LICENSE FEES REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT IN-
PRESS SYSTEMS WOULD NOT ENTER INTO THIS AGREEMENT WITHOUT THESE LIMITATIONS ON ITS
LIABILITY. IN ADDITION, INPRESS SYSTEMS DISCLAIMS ALL LIABILITY OF ANY KIND OF INPRESS SYS-
TEMS’ SUPPLIERS.

8.	 Integration.
You acknowledge that you have read this Agreement, understand it, and that by installing the software you agree to be bound
by its terms and conditions. You further agree that it is the complete and exclusive statement of the agreement between InPress
Systems and you which supersedes any proposal or prior agreement, oral or written, and any other communications between
InPress Systems and you relating to the subject matter of this Agreement. No variation of the terms of the Agreement or
any different terms will be enforceable against InPress Systems unless InPress Systems gives its express consent, including an
express waiver of the terms of this Agreement, in writing signed by an officer of InPress Systems.

9.	 Governing Law
This Agreement shall be governed by and construed in accordance with the laws of Sweden without giving effect to the choice
of law principles thereof.

10.	 Arbitration
Any dispute, controversy or claim arising out of or in connection with this Agreement, or the breach, termination or invalidity
thereof, shall be settled by arbitration in accordance with Göteborgsklausulerna om skiljeförfarande (simplified rules of arbitra-
tion). The arbitral tribunal shall be composed of one arbitrator.

InPress Systems Software Credits

InPress Systems AB use the commonly available software libraries listed below.

JQuery
http://jquery.com
jQuery is provided under the MIT license.

JQuery UI
http://jqueryui.com
Dual licensed under the MIT or GPL Version 2 licenses.

TipTip
http://code.drewwilson.com/entry/tiptip-jquery-plugin
This TipTip jQuery plug-in is dual licensed under the MIT and GPL licenses.

JQZoom
http://www.mind-projects.it/projects/jqzoom/
This software is licensed under BSD.(read the license inside the archive)

jCrop
http://deepliquid.com/content/Jcrop.html
Jcrop is free software released under MIT License.

Fancybox
http://fancybox.net
Licensed under both MIT and GPL licenses

Chosen
http://harvesthq.github.io/chosen/
Chosen is licensed under the MIT license.

libcurl
http://curl.haxx.se/docs/copyright.html
Curl and libcurl are licensed under a MIT/X derivate license

libsqlite
http://www.sqlite.org/copyright.html
Public domain

libmysqlclient
GNU General Public License

libqrencode
GNU Lesser General Public License

	Enroute_3-nl
	1	What is ENROUTE
	2.1	Platform requirements
	2.2	Where do I get the software
	2.3	Installing the software

	3.1	Base configurations
	4.1	General event Setup
	3.2	Event list
	3.2.1	Event schedule indicators
	3.2.2	Creating a new Event
	3.2.3	Pausing events
	3.2.4	Editing and adding schedules
	3.2.5	Editing and adding conversion setups

	4.5	Testing and Running events from admin
	4.4	Reporting & notification
	4.4.1	Email notifications
	4.4.2	Email notification template format
	4.4.3	Email notification data and tokens
	4.4.4	Reporting
	4.4.5	Report template format
	4.4.6	Report data and tokens
	4.4.7	Report examples
	4.4.8	Connect to external mySQL

	4.3	Routing Method
	4.3.1	Move files
	4.3.2	Convert files
	4.3.3	Transfer files via ftp/sftp
	4.3.4	Send link to asset download
	4.3.5	Run Custom Program
	4.3.6	No routing
	4.3.7	Routing Paths and Custom program arguments
	4.3.8	Updating Database Fields

	4.2	Scan Setup
	4.2.1	Scan, Scan files, Scan folders & Scan recursively
	4.2.2	Search database using Keywords
	4.2.3	Search database using Template
	4.2.4	Scan Database content in named folders
	4.2.5	Scan uploadreports
	4.2.6	Scan XML files
	4.2.7	Fetch pop mail
	4.2.8	Filelist limitations
	4.2.9	Using database field for notifications

	5	Activity and logs

	license.2014-03-06

