C-H Functionalization Approach for the Synthesis of Chiral C2 Symmetric 1,5-Cyclooctadienes Ligands

Bowen Zhang, Michael Hollerbach, Simon Blakey, Huw Davies

Submitted date: 23/10/2019 • Posted date: 28/10/2019
Licence: CC BY-NC-ND 4.0
Citation information: Zhang, Bowen; Hollerbach, Michael; Blakey, Simon; Davies, Huw (2019): C-H Functionalization Approach for the Synthesis of Chiral C2 Symmetric 1,5-Cyclooctadienes Ligands.
ChemRxiv. Preprint.

Chiral cyclooctadiene (COD) derivatives are readily prepared by rhodium-catalyzed allylic C-H functionalization of COD. Either mono or difunctionalization of COD is possible generating the products in high yield, diastereoselectivity and enantioselectivity.

File list (2)
SI COD_V15 Submitted version.pdf (13.49 MiB) view on ChemRxiv • download file

COD_OL v16 chem archive version v2.pdf (416.09 KiB) view on ChemRxiv • download file

Supporting Information

C-H Functionalization Approach for the Synthesis of Chiral
C_{2} symmetric 1,5-cyclootadienes Ligands

Bowen Zhang, Michael R. Hollerbach, Simon Blakey,* and Huw M.L. Davies*
Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322

Table of contents

General procedure for the diazo compound I-XII synthesis S2
General procedure for mono-allylic-insertion S3
General procedure for Bis-allylic-insertion S10
Derivatization for Bis-insertion \boldsymbol{C}_{2} symmetric chiral COD ligand S16
General Procedure for conjugate addition test (Arylation of cyclohex-2-enone) S22
${ }^{1} \mathbf{H} \&{ }^{13} \mathrm{C}$ spectra of mono-insertion products $\mathbf{1 7 - 2 7}, \mathbf{3 7}$ S23
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ spectra of di-insertion products 28 -35. S36
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ spectra of derivatization products 41-49. S45
HPLC analysis for mono-insertion products S54
HPLC analysis for di-insertion products. S81
HPLC analysis for derivatization products S97
HPLC analysis for conjugate addition test (Arylation of cyclohex-2-enone) S111
Catalyst screen result for the initial mono-insertion test S120
Single crystal structure for compound 22, 37(major), 35[after reduction] S122
dr. in crude ${ }^{\mathbf{1}} \mathbf{H N M R}$ for di-insertion products S123
Comparison with other cyclic alkenes \& triene catalyst screening. S125
References S126

General procedure for the diazo compound synthesis

Diazo compound 2-12 used in this work were pre-synthesized by group in storage following the general procedure below.
(1)

(1) Aryl acetic acid (1.0 equiv, 20 mmol) and 2,2,2-trihaloethanol (1.1 equiv, 22 mmol) were dissolved in 50 mL dichloromethane and stirred at $0^{\circ} \mathrm{C}$ in ice/water bath. $\mathrm{N}, \mathrm{N}^{\prime}-$
Dicyclohexylcarbodiimide (DCC) (1.1 equiv. 22 mmol) was then added to the stirring solution carefully. Catalytic DMAP (0.1 equiv, 2.0 mmol) was then dissolved in 2 mL DCM and added to the solution. The white precipitation forms rapidly and the solution become milk color. The reaction was kept running for 4 h and warm to r.t. naturally. Filter and concentrate the solution give the crude ester product. Purify the ester with a quick silica plug $\left(5 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Pentane}\right)$ and then concentrate under vacuum, yielding the ester as colorless oil, which is directly used for the following diazo transfer step.
(2) Ester from step (1) (1.0 equiv, 10 mmol) and ortho-nitrobenzenesulfonyl azide (o-NBSA) (1.2 equiv, 12 mmol) were dissolved in 30 mL anhydrous $\mathrm{CH}_{3} \mathrm{CN}$. The solution was kept stirring at $0{ }^{\circ} \mathrm{C}$ and DBU (1.4 equiv, 14 mmol) was added dropwise to the solution. The color of the solution gradually turned orange and it is quenched after 1 h by diluting with 100 mL $\mathrm{Et}_{2} \mathrm{O}$ followed by adding 100 mL NH 44 (sat.) solution. Extract the aqueous layer with $\mathrm{Et}_{2} \mathrm{O}$ (30 mLx 3), combined the organic layers and dry it over MgSO_{4}. Silica plug and concentrate give the crude diazo product as orange oil or solid. Further purification was done by flash column chromatography ($2-5 \% \mathrm{Et}_{2} \mathrm{O} /$ Pentane)
*For spectra information of these diazo compounds, refer to the references ${ }^{[1-3]}$.
(below are all diazo compounds involved. Notice the diazo compound \mathbf{I} is $\mathbf{1 6}$ in the main context)

General Procedure for mono-allylic-insertion

To a 16 mL glass reaction vial was added stir bar, 1,5 -cyclooctadiene (COD) ($0.75 \mathrm{mmol}, 2.5$ equiv, $81 \mathrm{mg} / \sim 0.1 \mathrm{~mL})$ and $\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}(0.1 \mathrm{~mol} \%)$. The vial was degassed and filled with Ar for several times. 2 mL anhydrous DCM was then added to the vial and the solution was kept stirring at $0^{\circ} \mathrm{C}$ for 5 min . Aryl diazo ester ($0.3 \mathrm{mmol}, 1.0$ equiv) was dissolved in 4 mL DCM and added dropwise to the vial over 3 h via syringe pump. The reaction was kept running for 2 h after the addition of diazo compound is finished. The solution was concentrated to give oil mixture and the crude ${ }^{1} \mathrm{H}$ NMR was obtained for dr analysis. Further purification was done by column chromatography ($0.8-10 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane depending on substrate), giving product as colorless oil.

18
(R)-methyl 2-(4-bromophenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 18: Derived from the reaction of diazo $\mathbf{I I}(0.3 \mathrm{mmol}, 77 \mathrm{mg})$ and $\operatorname{COD}(0.75 \mathrm{mmol}, 81 \mathrm{mg})$ following general procedure, purified by column chromatography ($2.5 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: 74 $\mathrm{mg}, 73 \%$ yield; 72% ee.; $11.6: 1 \mathrm{dr}$, colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 5.57(\mathrm{q}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.49-$ 5.42 (m, 1H), 5.01 (dd, $J=11.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (s, 3H), $3.51-3.44$ (m, 1H), 3.39 (d, $J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{dq}, J=13.7,3.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 3 \mathrm{H})$, $2.22-2.16(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.50,136.55,131.58,130.46$, 129.96, 129.35, 129.28, 127.23, 121.41, 57.48, 52.10, 42.16, 33.05, 27.91, 27.46. IR: 3010, 2949, 2885, 1732, 1488, 1433, 1340, 1266, 1153, 1073, 1011, 813, $763\left(\mathrm{~cm}^{-1}\right)$; HRMS(APCI) m / z : found at $335.0643\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Br}\right]^{+}\right.$calculates to be 335.0641$]$; $[\alpha]^{20}{ }^{\mathrm{D}}:-35.1^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$;

(R)-2,2,2-trichloroethyl 2-(4-bromophenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 17: Derived from the reaction of diazo I ($0.2 \mathrm{mmol}, 75 \mathrm{mg}$) and COD $(0.5 \mathrm{mmol}, 81 \mathrm{mg})$ following general procedure, purified by column chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $66 \mathrm{mg}, 72 \%$ yield; 91% ee.; $\mathrm{dr}>30: 1$, colorless oil. A large scale reaction was also performed for this reaction. Diazo I ($3.0 \mathrm{mmol}, 1.12 \mathrm{~g}$) and COD ($6.0 \mathrm{mmol}, 650 \mathrm{mg}$)
was reacted to generate the product at yield: $1.08 \mathrm{~g}, 80 \%$ yield; 89% ee.; $\mathrm{dr}>30: 1$, colorless oil.
${ }^{1}{ }^{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{q}, J=6.1,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.48$ (dt, $J=13.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=11.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.77\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{2}$ next to $\mathbf{C C l}_{3}$), $4.66\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\left.\mathbf{C C l}_{3}\right), 3.58(\mathrm{td}, J=10.4,5.4 \mathrm{~Hz}$, 1 H), 3.53 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.57-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.16(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.27,135.60,131.69,130.62,129.71,129.43$, $126.98,121.77,94.69,74.21,57.37,41.80,33.05,27.91,27.47$. IR: 3012, 2888, 1749, $1488,1428,1407,1371,1270,1200,1134,1074,1012,824\left(\mathrm{~cm}^{-1}\right) ; \quad$ HRMS-(APCI) m/z: found at $450.9632\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{BrCl}_{3}\right]^{+}\right.$calculates to be 450.9629$] ; \quad[\alpha]^{20} \mathrm{D}:-24.8^{\circ}$ ($\mathrm{c}=1.00, \mathrm{CHCl}_{3}$);

19
(R)-2,2,2-trifluoroethyl 2-(4-bromophenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 19: Derived from the reaction of diazo III $(0.3 \mathrm{mmol}, 97 \mathrm{mg})$ and COD $(0.75 \mathrm{mmol}, 81 \mathrm{mg})$ following general procedure, purified by column chromatography ($0.8-1.5 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $100 \mathrm{mg}, 83 \%$ yield; 93% ee.; dr > 30:1, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.53(\mathrm{~m}, 2 \mathrm{H})$, $5.51-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=11.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), 4.35 (dq, $J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$), $3.53-3.46$ (m, $2 \mathrm{H}), 2.49$ (ddt, $J=17.9,11.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.17(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.48,135.45,131.75,130.44,129.82,129.50,129.30,126.83,122.79(\mathrm{q}, \mathrm{J}=277.8$ Hz , \mathbf{C} of $\mathbf{C F}_{3}$), 121.84, $60.48\left(\mathrm{q}, \mathrm{J}=36.7 \mathrm{~Hz}\right.$, \mathbf{C} of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), 56.93, 42.18, 32.71, 27.95, 27.35. IR: $3014,2889,1751,1488,1407,1280,1164,1131,1071,1036,1011,978$, $812\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m / z : found at $401.0361\left[(\mathrm{M}-\mathrm{H})^{-}:\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{BrF}_{3}\right]^{-}\right.$calculates to be 401.0359]; $\quad[\alpha]^{20}{ }_{\mathrm{D}}:-39.2^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$;

(R)-2,2,2-trifluoroethyl 2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)-2-(4-iodophenyl)acetate 20: Derived from the reaction of diazo IV $(0.3 \mathrm{mmol}, 111 \mathrm{mg})$ and COD $(0.75 \mathrm{mmol}, 81 \mathrm{mg})$
following general procedure, purified by column chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane).
Product: $117 \mathrm{mg}, 78 \%$ yield; 95% ee.; dr > 30:1, colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.56(\mathrm{tq}, J=11.6$, $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.52-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=10.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), $4.34\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), 3.53 $3.44(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{ddt}, J=17.6,11.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.16(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.46,137.72,136.13,130.69,129.82,129.50,129.31,126.83,122.79(\mathrm{q}$, $\mathrm{J}=277.8 \mathrm{~Hz}, \mathbf{C}$ of $\mathbf{C F}_{3}$), $93.46,60.48$ ($\mathrm{q}, \mathrm{J}=36.7 \mathrm{~Hz}, \mathbf{C}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$), $57.04,42.12$, 32.69, 27.95, 27.35. IR: 3013, 2887, 1750, 1485, 1404, 1279, 1164, 1129, 1062, 1006, 977, 810, $758\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $451.0379\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{I}\right]^{+}\right.$ calculates to be 451.0376]; $\quad[\alpha]^{20} \mathrm{D}:-36.5^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$;

(R)-2,2,2-trifluoroethyl 2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)-2-(4methoxyphenyl)acetate 21: Derived from the reaction of diazo $\mathbf{V}(0.3 \mathrm{mmol}, 82 \mathrm{mg})$ and COD ($0.75 \mathrm{mmol}, 81 \mathrm{mg}$) following general procedure, purified by column chromatography ($2-4 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $77 \mathrm{mg}, 72 \%$ yield; 81% ee.; dr $>30: 1$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.53(\mathrm{~m}, 2 \mathrm{H}), 5.51-$ $5.43(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=11.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dq}, J=12.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of CH $\mathbf{2}$ next to $\mathbf{C F}_{3}$), $4.33\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.45(\mathrm{~m}$, 2 H), 2.51 (ddt, $J=17.2,11.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, J=15.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.24$ (m, $3 \mathrm{H}), 2.20(\mathrm{dq}, J=16.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.14,159.09$, 129.86, 129.76, 129.35, 129.27, 128.48, 127.12, 122.90 (q, J=277.4 Hz, C of CF ${ }_{3}$), 113.98, $60.32\left(\mathrm{q}, \mathrm{J}=36.6 \mathrm{~Hz}\right.$, \mathbf{C} of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), $56.69,55.21,42.10,32.80,27.98,27.41$. IR: 3012, 2891, 1750, 1610, 1511, 1465, 1407, 1283,1249, 1163, 1128, 1034, $978\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m / z : found at $355.1517\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~F}_{3}\right]^{+}\right.$calculates to be 355.1516$]$; $[\alpha]^{20} \mathrm{D}:-34.5^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;$

22
(R)-2,2,2-trifluoroethyl 2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)-2-(4-
(trifluoromethyl)phenyl)acetate 22: Derived from the reaction of diazo VI ($0.3 \mathrm{mmol}, 94$ mg) and COD (0.75 mmol 81 mg) following general procedure, purified by column
chromatography ($1-2 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $91 \mathrm{mg}, 78 \%$ yield; 94% ee.; $\mathrm{dr}>30: 1$, white solid. (Single Crystal structure obtained for this compound); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.63-5.53$ (m, 2H), 5.49 (dddd, $J=11.6,7.6,5.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=11.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dq}$, $J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$ in ester), $4.36(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$ in ester), $3.62(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{tt}, J=10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (ddt, $J=16.6,11.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.18(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.25,140.39,130.02\left(\mathrm{q}, \mathrm{J}=32.5 \mathrm{~Hz}\right.$, C on Ar ring next to $\mathbf{C F}_{3}$), 130.06, 129.59, 129.18, $129.06,126.70,125.54$ ($q, \mathrm{~J}=3.7 \mathrm{~Hz}$, C on Ar ring next to the $\mathbf{1 3 0 . 0 2} \mathbf{C}$), 124.01 (q, $\mathrm{J}=272.3$ Hz, \mathbf{C} of $\mathbf{C F}_{\mathbf{3}}$ on the Ar ring), 122.75 ($\mathrm{q}, \mathrm{J}=277.7 \mathrm{~Hz}, \mathbf{C}$ of $\mathbf{C F}_{3}$ in the ester), 60.55 (q, $\mathrm{J}=36.7 \mathrm{~Hz}$, \mathbf{C} of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$ in ester), $57.29,42.29,32.65,27.95,27.31$. IR: 3017, 2893, 1755, 1619, 1422, 1326, 1286, 1166, 1130, 1069, 1020, 980, $838\left(\mathrm{~cm}^{-1}\right)$; HRMS(APCI) m / z : found at $393.1284\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~F}_{6}\right]^{+}\right.$calculates to be 393.1284]; $\quad[\alpha]^{20}{ }_{\mathrm{D}}$: $-43.5^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; \quad$ m.p. $58-60^{\circ} \mathrm{C}$

(R)-2,2,2-trifluoroethyl 2-(4-(tert-butyl)phenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1y) acetate 23: Derived from the reaction of diazo VII ($0.3 \mathrm{mmol}, 90 \mathrm{mg}$) and COD (0.75 $\mathrm{mmol}, 81 \mathrm{mg}$) following general procedure, purified by column chromatography ($0.8-1.5 \%$ $\mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $98 \mathrm{mg}, 85 \%$ yield; 88% ee.; dr > 30:1, colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.63-5.52(\mathrm{~m}, 2 \mathrm{H})$, $5.51-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dq}, J=12.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), 4.30 (dq, $J=12.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$), $3.55-3.48$ (m, $2 \mathrm{H}), 2.50(\mathrm{ddt}, J=16.8,11.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.17(\mathrm{~m}, 5 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.08,150.52,133.23,129.91,129.40,129.17,128.31,127.05$, 125.47, $122.90\left(\mathrm{q}, \mathrm{J}=277.5 \mathrm{~Hz}, \mathbf{C}\right.$ of $\mathbf{C F}_{3}$), $76.99,60.31\left(\mathrm{q}, \mathrm{J}=37.1 \mathrm{~Hz}\right.$, C of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), 57.00, 42.09, 34.47, 32.54, 31.29, 28.04, 27.33. IR: 3014, 2964, 2890, 1753, 1508, 1408, 1365, 1283, 1166, 1131, 1062, 979, $841\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $381.2037\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~F}_{3}\right]^{+}\right.$calculates to be 381.2036]; $\quad[\alpha]^{20} \mathrm{D}:-33.2^{\circ} \quad(\mathrm{c}=1.00$, CHCl_{3});

24
(R)-2,2,2-trifluoroethyl 2-(4-acetoxyphenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 24: Derived from the reaction of diazo VIII ($0.2 \mathrm{mmol}, 60 \mathrm{mg}$) and COD ($0.5 \mathrm{mmol}, 54 \mathrm{mg}$) following general procedure, purified by column chromatography ($6-10 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $53 \mathrm{mg}, 70 \%$ yield; 79% ee.; $\mathrm{dr}>30: 1$, colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.62-5.52(\mathrm{~m}, 2 \mathrm{H})$, 5.48 (dddd, $J=11.7,7.7,6.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=11.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dq}, J=12.7$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 2.49$ (ddt, $J=17.9,11.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.24(\mathrm{~m}, 7 \mathrm{H}, 2.29(\mathrm{~s}, \mathbf{3 H}$ for Me in OAc)), 2.24 $2.17(\mathrm{~m}, 1 \mathrm{H}) . \quad{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.68,169.29,150.17,133.86,129.78$, 129.60, 129.51, 129.48, 126.90, 122.85 (q, J=277.4 Hz, C of CF ${ }_{3}$), 121.64, 60.43 (q, J=36.6 Hz , \mathbf{C} of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$), 56.88, 42.31, 32.61, 28.00, 27.34, 21.16. IR: 3014, 2891, 1752, 1507, 1408, 1370, 1283, 1198, 1166, 1132, 1018, $978,912\left(\mathrm{~cm}^{-1}\right) ; \quad$ HRMS-(APCI) m/z: found at $383.1465\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~F}_{3}\right]^{+}\right.$calculates to be 383.1465]; $\quad[\alpha]^{20}{ }_{\mathrm{D}}:-32.4^{\circ}$ (c=1.00, CHCl_{3});

(R)-2,2,2-trifluoroethyl 2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)-2-(6-
(trifluoromethyl)pyridin-3-yl)acetate 25: Derived from the reaction of diazo IX (0.3 mmol , $84 \mathrm{mg})$ and COD ($0.75 \mathrm{mmol}, 81 \mathrm{mg}$) following general procedure, purified by column chromatography ($5-8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $78 \mathrm{mg}, 72 \%$ yield; 87% ee.; dr > 30:1, colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.50(\mathrm{~m}, 3 \mathrm{H}), 5.03(\mathrm{dd}, J=11.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dq}, J=12.7$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\left.\mathbf{C F}_{\mathbf{3}}\right), 4.40\left(\mathrm{dq}, J=12.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$), $3.58(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{p}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{td}, J=13.6,11.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-$ $2.32(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.18(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.88,151.02,150.02$, $138.79,131.08,130.84,129.67,128.43,126.44,124.24,122.67\left(\mathrm{q}, \mathrm{J}=278.6 \mathrm{~Hz}, \mathbf{C}\right.$ of $\mathbf{C F}_{3}$), 60.68 ($q, J=36.8 \mathrm{~Hz}$, \mathbf{C} of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), 54.02, 42.35, 32.71, 27.89, 27.23. IR: 3014, $2891,1752,1584,1565,1462,1410,1391,1278,1166,1138,1107,1023,978\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $360.0971\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{NClF}_{3}\right]^{+}\right.$calculates to be 360.0973]; $\quad[\alpha]^{20}{ }_{\mathrm{D}}:-33.4^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$;

26

2,2,2-trichloroethyl (R)-2-(3-bromophenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 26: Derived from the reaction of diazo $\mathbf{X}(0.3 \mathrm{mmol}, 97 \mathrm{mg})$ and $\operatorname{COD}(0.75 \mathrm{mmol}, 81 \mathrm{mg})$ following general procedure, purified by column chromatography ($6-10 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $78 \mathrm{mg}, 64 \%$ yield; 63% ee.; $\mathrm{dr}>30: 1$, colorless oil.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 7.50(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (ddd, $J=7.9,2.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{dt}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.53(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.47$ $(\mathrm{m}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=11.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of CH2 next to $\mathbf{C F}_{3}$), 4.35 (dq, $J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), $3.54-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.48$ (ddt, $J=17.5,11.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.17(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.35$, $138.64,131.80,130.91,130.10,129.90,129.58,129.18,127.42,126.74,122.78$ (q, $J=277.3$ Hz , \mathbf{C} of $\mathbf{C F}_{3}$), $122.60,60.50\left(\mathrm{q}, J=36.7 \mathrm{~Hz}\right.$, \mathbf{C} of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), $57.03,42.33,32.53$, 28.01, 27.27. IR: $3014,2890,1754,1593,1570,1475,1429,1408,1282,1169,1136,1075$, 997, $979\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $403.0510\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{Br}\right]^{+}\right.$ calculates to be 403.0515]; [$\alpha]^{20}$ D: $-39.9^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$;

27
bis(2,2,2-trichloroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)(2S,2'S,3E,3'E)-bis(4-phenylbut-3-enoate) 27: Derived from the reaction of diazo XI ($0.2 \mathrm{mmol}, 67 \mathrm{mg}$) and COD ($0.5 \mathrm{mmol}, 54 \mathrm{mg}$) following general procedure, purified by column chromatography (6-10\% $\mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $53 \mathrm{mg}, 67 \%$ yield; 88% ee.; dr > 30:1, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.61-$ 5.54 (m, 2H), 5.42 (dd, $J=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (d, $J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35(\mathrm{td}, J=11.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{dtt}, J=16.8,7.5,4.4 \mathrm{~Hz}, 3 \mathrm{H})$, $2.36-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{dt}, J=15.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.57$, 136.58, 134.21, 129.88, 129.36, 129.15, 128.60, 127.81, 127.10, 126.48, 124.92, 94.88, $74.12,55.29,41.51,32.82,27.93,27.53$. IR: 3011, 2952, 2888, 1747, 1496, 1449, 1428, 1373, 1257, 1196, 1133, 966, $802\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $399.0682\left[(\mathrm{M}+\mathrm{H})^{+}\right.$: $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Cl}_{3} \mathrm{I}\right]^{+}$calculates to be 399.0680]; $[\alpha]^{20}{ }_{\mathrm{D}}$: $-39.9^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$;

37 (major)

37 (minor)
(R)-2,2,2-trifluoroethyl 2-((R,2E,6E,10E)-cyclododeca-2,6,10-trien-1-yl)-2-(4iodophenyl)acetate 37 (major) \& (R)-2,2,2-trifluoroethyl 2-((S,2E,6E,10E)-cyclododeca-2,6,10-trien-1-yl)-2-(4-iodophenyl)acetate 37 (minor): Derived from the reaction of diazo

IV ($0.3 \mathrm{mmol}, 111 \mathrm{mg}$) and Triene $36(0.75 \mathrm{mmol}, 122 \mathrm{mg})$ following general procedure, purified by column chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: 118 mg (combined for $\mathbf{3 7}$ (major) and $\mathbf{3 7}$ (minor)), 78% yield; $\mathrm{dr}=1: 0.86$ [$\mathbf{3 7}$ (major):37 (minor)]; 92% ee. for $\mathbf{3 7}$ (major), 96% ee. for $\mathbf{3 7}$ minor); white solid. The 2 diastereomers were fully separated and characterized using prep HPLC. (Single crystal structure obtained for 37 (major).)

37(major):

${ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.91(\mathrm{~m}, 4 \mathrm{H})$, 4.88 (ddd, $J=14.7,10.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (ddd, $J=15.0,9.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (dq, $J=$ $12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$), $4.35\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), 3.47 (d, $\left.J=9.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.72(\mathrm{qd}, J=10.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.18-$ $2.12(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{tdd}, J=$ $13.2,10.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.54,137.42,136.24,134.08$, 132.30, 131.25, 130.89, 130.71, 129.60, 122.83 ($\mathrm{q}, \mathrm{J}=277.5 \mathrm{~Hz}, \mathbf{C}$ of $\mathbf{C F}_{3}$), $93.08,65.86$, 60.44 ($q, J=36.6 \mathrm{~Hz}$, \mathbf{C} of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), $56.15,46.75,37.32,32.19,32.14,32.12,31.92$, 29.71, 15.28. IR: 2971, 2929, 2913, 2847, 1748, 1485, 1445, 1433, 1410, 1347, 1277, 1146, 1132, 1007, $981\left(\mathrm{~cm}^{-1}\right) ;$ HRMS-(APCI) m/z: found at $505.0846\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{I}\right]^{+}\right.$ calculates to be 505.0846$]$; $[\alpha]^{20}{ }_{\mathrm{D}}:-175.5^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; \quad$ m.p. $126-131^{\circ} \mathrm{C}$

37 (minor):

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.63$ (m, 2H), $7.16-7.09$ (m, 2H), 5.17 (ddd, $J=14.3$, $10.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 3 \mathrm{H}), 4.93-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{dq}, J=12.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$), $4.27\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\left.\mathbf{C F}_{\mathbf{3}}\right), 3.41(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{qd}, J=11.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 5 \mathrm{H}), 1.57$ $-1.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.12, 137.81, 136.02, 133.64, 132.41, 131.80, 131.40, 131.18, 130.60, 130.60, 129.40, 122.87 (q, J=277.4 Hz, C of CF ${ }_{3}$), 93.38, $65.86,60.39$ ($q, J=36.6 \mathrm{~Hz}$, C of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), 56.70, 47.21, 35.84, 32.22, 32.19, 32.13, $31.96,29.71,15.28$; IR: 2912, 2844, 1753, 1485, 1436, 1404, 1279, 1168, 1128, 1063, 1007, 978, $958\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $505.0846\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{I}\right]^{+}\right.$ calculates to be 505.0846]; $\quad[\alpha]^{20} \mathrm{D}:+103.2^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; \quad$ m.p. $85-87^{\circ} \mathrm{C}$

General Procedure for bis-allylic-insertion

To a 16 ml glass reaction vial was added stir bar, 1,5-cyclooctadiene (COD) ($0.3 \mathrm{mmol}, 1.0$ equiv, 32 mg) and $\mathrm{Rh}_{2}(2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}(0.1 \mathrm{~mol} \%)$. The vial was degassed and filled with Ar for several times. 2 mL anhydrous DCM was then added to the vial and the solution was kept stirring at $40^{\circ} \mathrm{C}$ for 5 min . Aryl diazo ester (0.9 mmol , 3.0 equiv) was dissolved in 4 ml DCM and added dropwisely to the vial over 3 h via syringe pump. The reaction was kept running for 2 h after the addition of diazo compound is finished. The solution was concentrated to give oil crude, ${ }^{1} \mathrm{HNMR}$ was obtained for dr analysis. Further purification was done by column chromatography ($2-4 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) or $5 \% \mathrm{AgNO}_{3}$ on silica column chromatography ($4-10 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane), giving product as sticky oil or white solid.

28
dimethyl 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)(2R,2'R)-bis(2-(4-
bromophenyl)acetate) 28: Derived from the reaction of diazo II ($0.9 \mathrm{mmol}, 230 \mathrm{mg}, 3.0$ equiv) and COD ($0.3 \mathrm{mmol}, 32 \mathrm{mg}, 1.0$ equiv) following general procedure, major dr purified by normal column chromatography ($6-8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $141 \mathrm{mg}, 84 \%$ yield; $>99 \%$ ee.; $\mathrm{dr}=6.5: 1$, white foam solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.44$ (ddd, J $=11.6,7.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{dd}, J=11.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.41-3.35(\mathrm{~m}, 2 \mathrm{H})$, 3.37 (d, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.11(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.25$, $136.21,131.62,130.44,130.38,128.37,121.50,57.37,52.15,42.03,32.66$. IR: 2950, 1734, 1590, 1488, 1434, 1407, 1339, 1264, 1156, 1073, 1011, 908, $819\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m / z : found at $561.0275\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Br}_{2}\right]^{+}\right.$calculates to be 561.0271$] ; \quad[\alpha]^{20}{ }_{\mathrm{D}}$: -55.8° (c=1.00, CHCl_{3}); m.p. $66-70^{\circ} \mathrm{C}$

29
(2R,2'R)-bis(2,2,2-trichloroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)acetate) 29: Derived from the reaction of diazo $\mathbf{I}(0.9 \mathrm{mmol}, 335 \mathrm{mg}, 3.0$ equiv) and COD ($0.3 \mathrm{mmol}, 32 \mathrm{mg}, 1.0$ equiv) following general procedure, major dr purified by normal column chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $152 \mathrm{mg}, 55 \%$ yield; $>99 \%$ ee.; $\mathrm{dr}=3.2: 1$, white foam solid. A larger scale of reaction at COD (0.8 mmol , 86 mg) and diazo 3 ($2.4 \mathrm{mmol}, 3.0$ equiv. 893 mg) was performed, given 340 mg product, 53% yield , $>99 \%$ ee. $\mathrm{dr}=3.2: 1$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 4 \mathrm{H}), 5.51-5.41(\mathrm{~m}, 2 \mathrm{H})$, $5.04(\mathrm{dd}, J=11.3,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.76\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\left.\mathbf{C C l}_{3}\right), 4.68(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, H of CH2 next to $\left.\mathbf{C C l}_{3}\right), 3.67(\mathrm{qd}, J=10.1,8.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.14$ (ddd, $J=15.9,12.5,8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.81,135.21,131.79,130.58,129.95,128.56,121.94,94.66,74.30,57.71$, 41.11, 33.38. IR: 2924, 1750, 1489, 1408, 1371, 1262, 1216, 1136, 1074, 1012, 826, 762, $719\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $792.8262\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Br}_{2} \mathrm{Cl}_{6}\right]^{+}\right.$calculates to be 792.8245]; $[\alpha]^{20}{ }_{\mathrm{D}}:+21.8^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; \quad$ m.p. $48-52{ }^{\circ} \mathrm{C}$

29 (meso minor dr.)
(2R,2'S)-bis(2,2,2-trichloroethyl) 2,2'-((1R,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)acetate) 29 (meso minor dr): Originally isolated from the reaction that give 29. Larger preparation is derived from mono insertion product $17(0.4 \mathrm{mmol}, 181 \mathrm{mg}$, 1.0 equiv) and diazo $\mathbf{I}(0.8 \mathrm{mmol}, 298 \mathrm{mg}, 2.0$ equiv) following general procedure using the different enantiomer of catalyst. Purify this meso product with column chromatography (2% $\mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $168 \mathrm{mg}, 53 \%$ yield, white foam solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 4 \mathrm{H}), 5.57$ (dtd, $J=10.7$, $8.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{dd}, J=11.7,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.53$ (ddd, $J=13.9,9.1,4.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.46-2.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.10, 135.26, 131.81, 130.89, 130.64, 127.33, 121.97, 94.63, 74.21, 56.04, 43.21, 30.23. IR: 2952, 2874, 1748, 1488, 1447, 1408, 1371, 1331, 1269, 1206, 1130, 1074, $1011\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $792.8262\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Br}_{2} \mathrm{Cl}_{6}\right]^{+}\right.$calculates to be 792.8245$] ;$ m.p. $50-55^{\circ} \mathrm{C}$

(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)acetate) 30: Derived from the reaction of diazo III ($0.9 \mathrm{mmol}, 290 \mathrm{mg}$, 3.0 equiv) and COD ($0.3 \mathrm{mmol}, 32 \mathrm{mg}, 1.0$ equiv) following general procedure, major dr purified by AgNO_{3} column chromatography ($4-8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $160 \mathrm{mg}, 76 \%$ yield; $>99 \%$ ee.; $\mathrm{dr}=6.5: 1$, sticky oil to half solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.14$ (m, 4H), 5.46 (ddd, $J=12.6$, $7.9,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.04$ (dd, $J=11.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{ddd}, J=13.1,8.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$), 4.44 (ddd, $J=12.7,8.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), $3.58-3.47$ (m, 3H), $3.46(\mathrm{~d}, ~ J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{dt}, J=15.4,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14$ (ddd, $J=15.5,12.0$, $8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{cdcl}_{3}$) $\delta 171.02,134.97,131.80,130.36,129.80,128.54$, 122.79 (q, J=277.7 Hz, C of $\mathbf{C F}_{3}$), 121.97, $60.54\left(q, J=36.6 \mathrm{~Hz}, \mathbf{C}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), 56.96, 41.60, 32.68. IR: 3017, 1753, 1489, 1408, 1282, 1168, 1138, 1074, 1012, 978, 817, $760,644\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $694.9880\left[(\mathrm{M}-\mathrm{H})^{-}:\left[\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Br}_{2} \mathrm{~F}_{6}\right]^{+}\right.$ calculates to be 694.9873]; $[\alpha]^{20}{ }_{\mathrm{D}}:-10.2^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$;

(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-iodophenyl)acetate) 31: Derived from the reaction of diazo IV ($0.9 \mathrm{mmol}, 333 \mathrm{mg}, 3.0$ equiv) and COD ($0.3 \mathrm{mmol}, 32 \mathrm{mg}, 1.0$ equiv) following general procedure, major dr purified by AgNO_{3} column chromatography ($4-8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $156 \mathrm{mg}, 66 \%$ yield; $>99 \%$ ee.; $\mathrm{dr}=6.8: 1$, white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 4 \mathrm{H}), 5.46$ (ddd, $J=12.4$, $7.8,5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.04(\mathrm{dd}, J=11.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.50\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), $4.43\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), $3.55-3.47(\mathrm{~m}, 2 \mathrm{H})$, $3.44(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{dt}, J=15.3,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{ddd}, J=15.6,12.3,8.2 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.02,137.78,135.66,130.62,129.83,128.56$, 122.81(q, J=277.7 Hz, C of $\mathbf{C F}_{3}$), $93.61,60.56\left(\mathrm{q}, \mathrm{J}=36.7 \mathrm{~Hz}, \mathbf{C}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), 57.08 ,
41.57, 32.67. IR: $3017,1752,1485,1405,1281,1168,1138,1063,1007,978,815,757$, $644\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $792.9745\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~F}_{6} \mathrm{I}_{2}\right]^{+}\right.$calculates to be 792.9741]; $\quad[\alpha]^{20} \mathrm{D}:-7.1^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$; m.p. $113-116^{\circ} \mathrm{C}$;

(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-methoxyphenyl)acetate) 32: Derived from the reaction of diazo $\mathbf{V}(0.9 \mathrm{mmol}, 247 \mathrm{mg}$, 3.0 equiv) and COD ($0.3 \mathrm{mmol}, 32 \mathrm{mg}, 1.0$ equiv) following general procedure, major dr purified by AgNO_{3} column chromatography ($4-8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $96 \mathrm{mg}, 53 \%$ yield; $>99 \%$ ee.; $\mathrm{dr}=4.2: 1$, white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.23$ (m, 4H), $6.90-6.83$ (m, 4H), 5.45 (ddd, $J=12.1$, $7.7,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=11.5,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.49\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), $4.42\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), 3.80 (s, 6 H), 3.63 $3.52(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.31$ (dt, $J=15.4,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19$ (ddd, $J=15.7$, $12.3,8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.78,159.17,130.32,129.69,128.18$, 122.92 (q, J=277.7 Hz, C of CF3), 114.06, 60.39 (q, J=36.6 Hz, C of $\mathbf{C H}_{2}$ next to CF3), 56.94, 55.21, 41.56, 32.93. IR: 2962, 2839, 1750, 1610, 1511, 1464, 1408, 1283, 1249, 1164, 1133, 1034, $977\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $601.2021\left[(\mathrm{M}+\mathrm{H})^{+}\right.$: $\left[\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~F}_{6}\right]^{+}$calculates to be 601.2029]; $\quad[\alpha]^{20}{ }_{\mathrm{D}}:-17.2^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; \quad$ m.p. $89-93$ ${ }^{\circ} \mathrm{C}$

(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-(trifluoromethyl)phenyl)acetate) 33: Derived from the reaction of diazo VI (0.9 mmol , $281 \mathrm{mg}, 3.0$ equiv) and COD ($0.3 \mathrm{mmol}, 32 \mathrm{mg}, 1.0$ equiv) following general procedure, major dr purified by AgNO_{3} column chromatography ($3-6 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: 123 $\mathrm{mg}, 61 \%$ yield; $>99 \%$ ee.; $\mathrm{dr}=7.9: 1$, white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 5.49$ (ddd, J $=11.7,8.0,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{dd}, J=11.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}$, H of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), $4.44\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), $3.59(\mathrm{~d}, J=9.7$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.58-3.50(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{dt}, J=14.4,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16$ (ddd, $J=15.1,11.6,8.4$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{cdcl}_{3}$) $\delta 170.77,139.84,130.13$ (q, J=32.5 Hz, C on Ar ring next to CF3), 129.61, $129.14,128.70,125.57(q, J=3.6 \mathrm{~Hz}$, \mathbf{C} on Ar ring next to the $\mathbf{1 3 0 . 1 3}$ C), 123.97 ($\mathrm{q}, \mathrm{J}=272.3 \mathrm{~Hz}, \mathbf{C}$ of $\mathbf{C F}_{3}$ on the $\mathbf{A r}$ ring), $122.74\left(\mathrm{q}, \mathrm{J}=277.4 \mathrm{~Hz}, \mathbf{C}\right.$ of $\mathbf{C F}_{3}$ in the ester), $60.60\left(\mathrm{q}, \mathrm{J}=36.7 \mathrm{~Hz}, \mathbf{C}\right.$ of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$ in ester), $57.22,41.75,32.52$. IR: $3021,1754,1619,1422,1325,1285,1163,1127,1069,1020,979,827,723\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $677.1551\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~F}_{12}\right]^{+}\right.$calculates to be 677.1556$]$; $[\alpha]^{20} \mathrm{D}:-35.8^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; \quad$ m.p. $96-101^{\circ} \mathrm{C}$

(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-(tert-butyl)phenyl)acetate) 34: Derived from the reaction of diazo VII ($0.9 \mathrm{mmol}, 270$ $\mathrm{mg}, 3.0$ equiv) and COD ($0.3 \mathrm{mmol}, 32 \mathrm{mg}, 1.0$ equiv) following general procedure, major dr purified by AgNO_{3} column chromatography ($2-6 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $150 \mathrm{mg}, 76 \%$ yield; >99 \% ee.; $\mathrm{dr}=6.8: 1$, sticky oil to half solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 4 \mathrm{H}), 5.45$ (ddd, $J=12.6$, $7.6,5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.07 (dd, $J=11.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.51\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{2}$ next to $\mathbf{C F}_{3}$), $4.37\left(\mathrm{dq}, J=12.7,8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{3}$), $3.53(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.19(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.75$, $150.59,132.91,130.36,128.24,128.08,125.53,122.90\left(\mathrm{q}, \mathrm{J}=277.6 \mathrm{~Hz}, \mathbf{C}\right.$ of $\mathbf{C F}_{3}$), 60.36 (q , $\mathrm{J}=36.5 \mathrm{~Hz}$, \mathbf{C} of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C F}_{\mathbf{3}}$), $57.18,41.59,34.47,32.56$. IR: 2965, 1753, 1509, 1408, 1365, 1283, 1167, 1134, 1065, 1019, 978, 842, $823\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $653.3066\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{+}\right.$calculates to be 653.3060]; $\quad[\alpha]^{20}{ }_{\mathrm{D}}:-31.0^{\circ} \quad(\mathrm{c}=1.00$, CHCl_{3});

35
(2R,2'R)-bis(2,2,2-trichloroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-(tert-butyl)phenyl)acetate) 35: Derived from the reaction of diazo XII ($0.9 \mathrm{mmol}, 315$ $\mathrm{mg}, 3.0$ equiv) and COD ($0.3 \mathrm{mmol}, 32 \mathrm{mg}, 1.0$ equiv) following general procedure, major dr purified by normal column chromatography ($4-8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane). Product: $231 \mathrm{mg}, 72 \%$ yield; >99 \% ee.; dr = 4.5:1, white foam solid. (Single crystal structure obtained for the reduction product of this compound.)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.27(\mathrm{~m}, 9 \mathrm{H}), 5.46$ (ddd, $J=11.9,7.2,4.9 \mathrm{~Hz}, 2 \mathrm{H}$), $5.08(\mathrm{dd}, J=11.6,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.73\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{H}\right.$ of $\mathbf{C H}_{2}$ next to $\left.\mathbf{C C l}_{3}\right), 4.69(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{H}$ of $\mathbf{C H}_{\mathbf{2}}$ next to $\mathbf{C C l}_{3}$), $3.78-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52$ $-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.22$ (ddd, $J=15.8,12.2,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.56,150.60,133.19,130.53,128.47,128.12,125.53,94.82,74.25,58.00,41.03$, $34.51,33.43,31.32$. IR: 2963, 1749, 1516, 1461, 1366, 1269, 1200, 1131, 1058, 915, 827, $771,721\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $749.1296\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Cl}_{6}\right]^{+}\right.$ calculates to be 749.1287]; $\quad[\alpha]^{20} \mathrm{D}$: $+10.2^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$; m.p. $72-77^{\circ} \mathrm{C}$

Derivatization for Bis-insertion C2 symmetric chiral COD ligand

41
(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)acetic acid) 41: Bis-insertion compound 29 ($0.053 \mathrm{mmol}, 41.9 \mathrm{mg}, 1.0$ equiv.) was dissolved in 1 $\mathrm{mL} \mathrm{AcOH} . \mathrm{Zn}$ powder ($34.4 \mathrm{mg}, 10$ equiv.) was added to the solution, and the suspension was kept stirring overnight. Crude material was obtained by filtration and concentration under reduced pressure. Further column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane with 0.5% AcOH) gave pure product as white powder $17.2 \mathrm{mg}, 61 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.58-5.37$ (m, 2H), $5.18-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.40-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.31(\mathrm{~m}$, $2 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.89,135.49,131.75,130.45$, $130.30,128.50,121.83,57.01,42.16,31.86,20.58$. IR: 2921, 2851, 1725, 1488, 1409, 1263, 1098, 1012, 800, $730\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at 530.9817 [(M-H) : $\left[\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{Br}_{2}\right]^{-}$calculates to be 530.9812]; [$\left.\alpha\right]^{20}{ }^{\mathrm{D}}:-14.0^{\circ} \quad$ (c=1.00, acetone); m.p. >200 ${ }^{\circ} \mathrm{C}$

42
(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)ethan-1ol) 42: Bis-insertion compound 29 ($0.065 \mathrm{mmol}, 51.9 \mathrm{mg}, 1.0$ equiv.) was dissolved in 1 mL anhydrous THF, and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. $\mathrm{LiAlH}_{4}(1.0 \mathrm{M} \mathrm{THF}$ solution) (0.18 $\mathrm{mL}, 2.5$ equiv.) was slowly added to the stirring solution. The reaction was kept running for 2 h at $-78^{\circ} \mathrm{C}$, then raised to r.t. for 15 min and quenched with 1 mL sodium potassium tartrate solution(saturated) and $1.0 \mathrm{~mL} \mathrm{HCl}(1.0 \mathrm{M})$. The organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ multiple times, combined and dried over MgSO_{4}. Crude material was obtained through filtration and concentration under reduced pressure. Further column chromatography (60% $\mathrm{Et}_{2} \mathrm{O}$ in pentane) gave pure product 27.5 mg as white powder, 84% yield.
${ }^{1}{ }^{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.94$ (d, $\left.J=8.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 5.54$ (ddd, J $=11.4,9.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.32$ (dd, $J=11.4,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{dq}, J=7.5,4.1,3.5 \mathrm{~Hz}, 4 \mathrm{H})$, 2.73 (dp, $J=11.8,5.7 \mathrm{~Hz}, 4 \mathrm{H}$), 1.72 (ddd, $J=12.2,7.1,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{dt}, J=13.2,6.8$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.44,131.18,130.69,129.52,129.48,120.73$, 64.44, 53.00, 41.08, 31.63. IR: 3342 (broad OH), 3006, 2930, 2874, 1488, 1408, 1105, 1073, 1027, 1007, 819, $754\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $505.0376\left[(\mathrm{M}+\mathrm{H})^{+}\right.$: $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Br}_{2}\right]^{+}$calculates to be 505.0372]; [$\left.\alpha\right]^{20} \mathrm{D}$: $-129.2^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;$ m.p. 69-73 ${ }^{\circ} \mathrm{C}$

43
(1Z,3S,5Z,7S)-3,7-bis((R)-1-(4-bromophenyl)-2-((tert-
butyldimethylsilyl)oxy)ethyl)cycloocta-1,5-diene 43: The di-ol starting material 42 (0.063 $\mathrm{mmol}, 31.7 \mathrm{mg}, 1.0$ equiv.) was dissolved in 1 mL DCM , and the solution was cooled to 0 ${ }^{\circ} \mathrm{C}$. Imidazole ($0.158 \mathrm{mmol}, 10.8 \mathrm{mg}, 2.5$ equiv.) and TBSCl ($0.139 \mathrm{mmol}, 21.0 \mathrm{mg}, 2.2$ equiv.) was added to the solution, and the solution was kept stirring overnight. Crude material was obtained by filtration and concentration under reduced pressure. Further column chromatography gave pure product as white solid. $42.0 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.54$ (ddd, J $=11.3,8.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{dd}, J=11.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{dd}, J=10.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70$ (dd, $J=10.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{dq}, J=12.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79$ (dt, $J=12.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{td}, J=14.0,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 18 \mathrm{H}),-0.03(\mathrm{~s}, 6 \mathrm{H}),-0.04$ (s, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.82,130.72,130.67,129.92,129.47,120.14,64.52$, $52.96,39.99,32.09,25.86,18.21,0.00,-5.50$. IR: 3008, 2953, 2928, 2885, 2856, 1488, 1471, 1408, 1361, 1254, 1097, 1074, $1010\left(\mathrm{~cm}^{-1}\right) ;$ HRMS-(APCI) m/z: found at 733.2095 $\left[(\mathrm{M}+\mathrm{H})^{+}:\left[\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{Si}_{2}\right]^{+}\right.$calculates to be 733.2102]; $\quad[\alpha]^{20}{ }_{\mathrm{D}}:-109.0^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;$ m.p. $67-69^{\circ} \mathrm{C}$

44
(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)-1,1-diphenylethan-1-ol) 44: The bis-insertion compound $\mathbf{2 8}$ ($0.756 \mathrm{mmol}, 380 \mathrm{mg}, 1.0$ equiv)
was dissolved in 4 mL anhydrous THF. The solution was kept stirring under Ar at $78{ }^{\circ} \mathrm{C}$. $\mathrm{PhLi}(1.9 \mathrm{M}$ purchased from Sigma Aldrich) in THF 2.6 mL was slowly added to the stirring solution over 30 min . The reaction was maintained at $-78^{\circ} \mathrm{C}$ for 3 h . After that, the solution was diluted with $4 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and quenched with $\mathrm{HCl}(1.0 \mathrm{M})$. The organic layer was extracted 3 times with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$, combined and dried over MgSO_{4}. Flash cotton pipette (a layer of silica) plug and concentration under reduced pressure gave crude sticky oil. Flash column chromatography ($15 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane $)$ for the crude to remove nonpolar impurity and gave greenish yellow solid. Pure product was further obtained through recrystallization with ether/pentane system $\left(40^{\circ} \mathrm{C}\right.$ cool to $\left.0^{\circ} \mathrm{C}\right)$ as white solid, $275 \mathrm{mg}, 50 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.24-$ 7.19 (m, 6H), $7.18-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 8 \mathrm{H}), 6.93$ (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.48$ (dd, $J=$ $11.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.45-5.36(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 2 \mathrm{H}), 2.66-2.54(\mathrm{~m}$, $2 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.72,146.05,136.94,133.10$, $130.23,130.04,129.81,128.54,127.76,126.76,126.11,125.42,125.11,120.34,81.42$, 58.20, 40.19, 33.32. IR: 3586(Broad), 3057, 3021, 2974, 2868, 1597, 1488, 1447, 1157, 1112, 1075, 1068, $1010\left(\mathrm{~cm}^{-1}\right) ;$ HRMS-(ESI) m/z: found at $843.1261\left[(\mathrm{M}+\mathrm{Cl})^{-}\right.$:
$\left[\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{Cl}\right]^{-}$calculates to be 843.1246]; $\quad[\alpha]^{20} \mathrm{D}:-94.3^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; \quad$ m.p. >200 ${ }^{\circ} \mathrm{C}$

45
(1Z,3S,5Z,7S)-3,7-bis((R)-1-(4-bromophenyl)-2-methoxy-2,2-diphenylethyl)cycloocta-1,5-diene 45: The di-ol starting material $44(59.7 \mathrm{mg}, 0.074 \mathrm{mmol}, 1$ equiv) was dissolved in 1.5 mL anhydrous DCM. $\mathrm{NaH}(17.8 \mathrm{mg}, 60 \%$ wt in mineral oil, $0.74 \mathrm{mmol}, 10$ equiv) was added into the solution, and the suspension was kept stirring at $0{ }^{\circ} \mathrm{C} . \quad \mathrm{CH}_{3} \mathrm{I}(52.5 \mathrm{mg}, 0.37$ $\mathrm{mmol}, 5$ equiv) was then added to the solution. The reaction was let warm up to r.t. naturally and run overnight. After that, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ multiple times. The organic layer was combined and dried over MgSO_{4}. Crude material was obtained through filtration and concentration under reduced pressure. Further column chromatography gave pure product as white solid $50.8 \mathrm{mg}, 82 \%$ yield.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~s}, 10 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 10 \mathrm{H})$, $6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 5.09-4.97(\mathrm{~m}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.32(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78$ (s, $6 \mathrm{H}), 2.64-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{td}, J=13.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.29,137.95,133.89,130.74,129.57,128.95,127.97,127.48$, $127.38,127.35,127.16,120.08,87.29,60.76,52.53,40.52,34.10,29.70$. IR: 3021, 2929, 2826, 1488,1446, 1407, 1193, 1074, 1010, 828, 756, 729, $702\left(\mathrm{~cm}^{-1}\right) ;$ HRMS-(APCI) m/z: found at $871.1572\left[(\mathrm{M}+\mathrm{Cl})^{-}:\left[\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{Cl}\right]^{-}\right.$calculates to be 871.1559$] ; \quad[\alpha]^{20}{ }^{\mathrm{D}}:-75.7^{\circ}$ (c=1.00, CHCl_{3}); m.p. $91-96^{\circ} \mathrm{C}$

46
(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)-1,1-bis(4-(tert-butyl)phenyl)ethan-1-ol) 46: The bis-insertion compound 28 ($0.1 \mathrm{mmol}, 56.0$ $\mathrm{mg}, 1.0$ equiv.) was dissolved in 1 mL anhydrous THF, and the solution was cooled to -78 ${ }^{\circ} \mathrm{C}$. ${ }^{\dagger} \mathrm{BuPhLi}$ solution (prepared from Li and $\left.4-{ }^{\mathrm{t}} \mathrm{BuPhBr}, 0.94 \mathrm{M}\right)(0.6 \mathrm{~mL}, 5.5$ equiv.) was added to the stirring solution, and the reaction was let run for 2 h at $-78^{\circ} \mathrm{C}$. After that, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated) $1 \mathrm{~mL}, \mathrm{HCl}(1.0 \mathrm{M}) 1 \mathrm{~mL}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ multiple times. The organic phase was combined, dried over MgSO_{4}, filtered and concentrated to obtain crude material. Further column purification ($5-8 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) gave pure product as white powder $43.5 \mathrm{mg}, 42 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 8 \mathrm{H}), 5.52(\mathrm{dd}, J=11.3,7.2 \mathrm{~Hz}$, 2 H), $5.46-5.35(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 2 \mathrm{H}), 2.56-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.36-$ $1.31(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}), 1.15(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.24,148.64$, $143.59,143.29,137.25,133.14,130.06,129.71,125.25,125.12,124.81,124.57,120.13$, $81.20,58.51,40.33,34.35,34.12,33.20,31.35,31.17$. IR: $3580,2962,2867,1509,1487$, 1404, 1363, 1269, 1109, 1076, 1010, 909, $839\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $1050.4424\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}:\left[\mathrm{C}_{64} \mathrm{H}_{78} \mathrm{O}_{2} \mathrm{NBr}_{2}\right]^{+} \text {calculates to be 1050.4394]; [} \alpha\right]^{20}{ }_{\mathrm{D}}:-98.5^{\circ}$ (c=1.00, CHCl_{3}); m.p. $>200{ }^{\circ} \mathrm{C}$

(1Z,3S,5Z,7S)-3,7-bis((R)-1-(4-bromophenyl)-2,2-bis(4-(tert-butyl)phenyl)-2-methoxyethyl)cycloocta-1,5-diene 47: The di-ol starting material 46 ($37.9 \mathrm{mg}, 0.037 \mathrm{mmol}$, 1 equiv) was dissolved in 1.5 mL anhydrous DCM. $\mathrm{NaH}(15 \mathrm{mg}, 60 \% \mathrm{wt}$ in mineral oil, $0.37 \mathrm{mmol}, 10$ equiv) was added into the solution, and the reaction was kept stirring at 0
${ }^{\circ} \mathrm{C} . \mathrm{CH}_{3} \mathrm{I}(20.8 \mathrm{mg}, 0.148 \mathrm{mmol}, 4$ equiv) was then added to the solution and the reaction
was let warm up to r.t. overnight. After that, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated) 1 mL and extracted with $\mathrm{Et}_{2} \mathrm{O}$ multiple times. The organic layer was combined and dried over MgSO_{4}, filtered and concentrated to yield crude material. Further column chromatography purification gave pure product $33.2 \mathrm{mg}, 90 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.24$ (dd, $J=8.8,1.8 \mathrm{~Hz}, 9 \mathrm{H}$), 7.09 $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 8 \mathrm{H}), 5.12(\mathrm{qd}, J=11.6,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.15(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.82 ($\mathrm{s}, 6 \mathrm{H}$), $2.29-2.19$ (m, 2H), 1.30 (s, 18H), 1.24 (s, 18H), $1.11-0.95$ (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.94,149.56,139.54,138.40,137.95,134.15,130.42$, $129.68,129.57,128.41,128.22,124.35,123.90,119.99,87.70,60.93,52.92,41.22,34.39$, 34.30, 33.07, 31.37, 31.25. IR: 2962, 2903, 2868, 1508, 1486, 1403, 1363, 1271, 1110, 1083, 1011, 966, $833\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $1083.4276\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$: $\left[\mathrm{C}_{66} \mathrm{H}_{78} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{Na}\right]^{+}$calculates to be 1083.4261$] ; \quad[\alpha]^{20} \mathrm{D}:-132.7^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;$ m.p. $159-163{ }^{\circ} \mathrm{C}$

48
(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)-1,1-bis(3,5-dimethylphenyl)ethan-1-ol) 48: Bis-insertion ester 28 ($0.1 \mathrm{mmol}, 56.0 \mathrm{mg}, 1.0$ equiv.) was dissolved in 1 mL anhydrous THF, and the solution was cooled to $-78{ }^{\circ} \mathrm{C} .3$,5diMePhLi solution (prepared from Li and 3,5-di-Methyl-4-Br-benzene, 0.73 M$)(0.75 \mathrm{~mL}$, 5.5 equiv.) was slowly added to the stirring solution, and the reaction was let run for 2 h at $78{ }^{\circ} \mathrm{C}$. After that, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated) $1 \mathrm{~mL}, \mathrm{HCl}(1.0 \mathrm{M}) 1 \mathrm{~mL}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ multiple times. The organic phase was combined, dried over MgSO_{4}, and concentrated to give crude material. Further column purification ($2-5 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) gave pure product as white solid $52.1 \mathrm{mg}, 56 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{~s}, 4 \mathrm{H}), 7.11-6.98(\mathrm{~m}, 4 \mathrm{H})$, 6.82 (d, $J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 6.56(\mathrm{~s}, 2 \mathrm{H}), 5.51(\mathrm{dd}, J=11.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-5.33(\mathrm{~m}, 2 \mathrm{H})$, $3.51(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 12 \mathrm{H}), 2.10(\mathrm{~s}, 12 \mathrm{H}), 1.38$ - 1.27 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.75, 146.21, 137.70, 137.40, 136.92, 133.13, 130.09, 130.03, 129.69, 128.33, 127.73, 123.38, 122.84, 120.11, 81.28, 58.39, 40.38, 33.36, 21.69, 21.45. IR: 3586, 2007, 2916, 1597, 1487, 1408, 1376, 1216, 1157, 1111, 1075, 1010, $843\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $920.2830\left[(\mathrm{M}):\left[\mathrm{C}_{56} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{Br}_{2}\right]\right.$ calculates to be 920.2809$] ; \quad[\alpha]^{20} \mathrm{D}$: $-121.0^{\circ} \quad\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ; \quad$ m.p. $140-144{ }^{\circ} \mathrm{C}$

(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)-1,1-bis(3,5-di-tert-butylphenyl)ethan-1-ol) 49: Bis-insertion ester 28 ($0.1 \mathrm{mmol}, 56.0 \mathrm{mg}, 1.0$ equiv.) was dissolved in 1 mL anhydrous THF, and the solution was cooled to $-78{ }^{\circ} \mathrm{C} .3,5-$ ditBuPhLi solution (prepared from Li and 3,5-di-tBu-4-Br-benzene, 1.1 M) ($0.5 \mathrm{~mL}, 5.5$ equiv.) was slowly added to the stirring solution, and the reaction was let run for 4 h at -78 ${ }^{\circ} \mathrm{C}$. After that, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated) $1 \mathrm{~mL}, \mathrm{HCl}(1.0 \mathrm{M}) 1 \mathrm{~mL}$. The organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ multiple times, combined, dried over MgSO_{4}, and concentrated to give crude material. Further column purification ($0-2 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) gave pure product as white solid $55.3 \mathrm{mg}, 44 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.96$ (dd, $J=13.7,1.7 \mathrm{~Hz}, 10 \mathrm{H}), 5.46$ (dd, $J=11.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.43-5.37$ (m, 2 H), 3.36 (d, $J=3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.60-2.53$ (m, 2H), 2.55 (s, 2H), $1.44-1.32$ (m, 4H), 1.30 (s, $36 \mathrm{H}), 1.09(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.17,149.36,145.00,144.92$, 137.31, 133.18, 130.16, 129.82, 129.59, 120.30, 120.23, 120.20, 120.02, 119.79, 82.28, $60.07,40.76,34.95,34.70,33.53,31.55,31.29$. IR: 3609, 2962, 2904, 2866, 1598, 1487, 1477, 1393, 1362, 1248, 1109, 1076, 1011, $879\left(\mathrm{~cm}^{-1}\right)$; HRMS-(APCI) m/z: found at $1279.6415\left[(\mathrm{M}+\mathrm{Na})^{+}:\left[\mathrm{C}_{80} \mathrm{H}_{106} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{Na}\right]^{+}\right.$calculates to be 1279.6452$][\alpha]^{20}{ }_{\mathrm{D}}:-35.8^{\circ}$ (c=1.00, CHCl_{3}); m.p. $128-131{ }^{\circ} \mathrm{C}$

General Procedure for conjugate addition test (Arylation of cyclohex-2-enone)

To an oven dried 4 mL vial with a stir bar was weighed di- μ-chlorotetraethylene dirhodium (0.025 equiv) and cyclooctadiene derived ligand (0.055 equiv). The vial was wrapped with Teflon ${ }^{\mathrm{TM}}$ thread tape, fitted with a septum cap and the atmosphere was exchanged for a dry N_{2} atmosphere (3 cycles, 1 minute per cycle). Dry, nitrogen sparged 1,4dioxane (1.8 mL) was then added to the vial and placed on a preheated hotplate at $50^{\circ} \mathrm{C}$ to stir for 20 minutes under N_{2}. Aqueous potassium hydroxide $(0.18 \mathrm{~mL}, 56.1 \mathrm{mg} / \mathrm{mL}, 0.50$ equiv, sparged with N_{2}) was added to the reaction vial via syringe and allowed to stir for an additional 10 minutes at temperature. The vial was opened for addition of solid phenylboronic acid (3 equiv), then quickly resealed and the headspace was purged under positive pressure with addition of a vent needle for 1 minute. To the vial was added cyclohex-2-enone (0.2 mmol, 1 equiv) via syringe and the vial was fitted with a N_{2} balloon and allowed to stir at temperature for 12 hours. The reaction was removed from heat, allowed to cool, and diluted with diethyl ether and passed through a silica plug. The combined organics were dried over sodium sulfate and concentrated under reduced pressure. The crude mixture was then purified by flash chromatography on silica gel in a gradient of Hexanes: EtOAc (97:3 \rightarrow 90:10) to afford the pure 3-phenylcyclohexan-1-one.

Ligand	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$
yield	67	84	81	~ 2	68	60	45	43	61	78	58	32	69	81	63	$\mathbf{6 3}$
ee.	39	34	36	45	30	33	22	27	26	53	47	60	69	59	41	76

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ spectra of mono- insertion products

	$\stackrel{\sim}{\sim}$	㿽哭	\％		产笓	¢\％

$\stackrel{\text {＋}}{\underset{\sim}{\circ}} \stackrel{\circ}{i}$
命华
$\stackrel{\infty}{\oplus}$
ヘू̃
\iint
$\int /$
\int
／ 1
\longrightarrow

-171.46

$\begin{array}{ll}8 \\ 0 \\ 0 \\ 0 & 0 \\ 1\end{array}$

22

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

25

27

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ spectra of di-insertion products

28

$\stackrel{\substack{18}}{\text { ¢ }}$	¢	$\stackrel{\%}{6}$	$\stackrel{\text { ¢o8 }}{\substack{\text { ¢ }}}$			$\stackrel{\substack{4 \\ \text { i }}}{\text { d }}$
)			

-170.81

$\int^{135.21}$
$\int_{-131.79}^{130.58}$
$\bigcup_{129.95}^{128.56}$
-121.94
-94.66
N

$\stackrel{\text { ? }}{\text { ¢ }}$

-94.63

-74.21

$\stackrel{\substack{8 \\ 1}}{\substack{1}}$	¢	$\stackrel{\text { ¢ }}{\substack{\text { a }}}$	$\stackrel{\circ}{8}$		- NTフ
	/)	11	/1	$1 /$

33

in in in in

$\int\|\|\|$

N

35

${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ spectra of derivatization products.

42

44

$\stackrel{\stackrel{\circ}{\infty}}{\substack{\infty \\ 1}}$

$\left.\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$

 $\stackrel{\Im}{\stackrel{9}{\infty}} \underset{\substack{\infty \\ 1}}{1}$ $\begin{array}{ll}\text { o } & \text { n } \\ 0 & \text { n } \\ 0 & \text { ñ } \\ 1 & 1\end{array}$
$\begin{array}{lll}\text { n } & \text { O } & \text { o } \\ \text { O} & \text { j } \\ 1 & 1 & \text { i } \\ 1 & 1\end{array}$

| 80 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 10 |
| :--- |

$\stackrel{\rightharpoonup}{n} \underset{\sim}{\infty}$
in
$\stackrel{\text { min }}{1}$

$\underbrace{-81.28}$
-58.39
-40.38
-33.36
$\zeta_{21.45}^{21.69}$

HPLC analysis for mono-insertion products

$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad(\mathrm{R}, \mathrm{R})$-whelk_30min_0.5mL/min_1\% racemic
(old machine, the system says S 4900 column but actually we put RRw column there)

Chromatogram :

zbw_N5_88_1_rac_rrw_0.5ml_1\%11_channel1
System : Prostar LC System
Method : S4900_30min_0.5mL_1\%_210_230
Acquired : 9/9/2018 11:47:45 PM
Method : S4900_30min_0.5mL_1\%_210_230 Processed : 11/28/2018 3:54:37 PM
User : User1

Peak results :

Index	Name	Time [Min]				Quantity [\% Area]
	Height [mAU]			Area [mAU.Min]	Area \% [\%]	
1	UNKNOWN	23.85	46.38	807.5	471.2	46.377
2	UNKNOWN	29.81	53.62	705.1	544.8	53.623
Total			100.00	1512.6	1016.0	100.000

$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad(\mathrm{R}, \mathrm{R})$-whelk_30min_0.5mL/min_1\% 72\% ee.
(old machine, the system says S 4900 column but actually we put RRw column there)

Chromatogram :

zbw_N5_88_1_R_rrw_0.5ml_1\%29_channel1

System : Prostar LC System
Method : S4900_30min_0.5mL_1\%_210_230
User: User1

Peak results:

Index	Name	Time [Min]								Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	23.60	85.95	1099.7	646.5	85.947							
2	UNKNOWN	29.85	14.05	148.9	105.7	14.053							
Total			100.00	1248.6	752.2	100.000							

$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}$
(R,R)-whelk_30min_0.5mL/min_0.5\%
racemic
(old machine, the system says S 4900 column but actually we put RRw column there)

Chromatogram : zbw_N5_55_racemic72_channel1

System : Prostar LC System
Method: S4900_30min_0.5mL_0.5\%_210_230 User: User1

Acquired : 7/24/2018 7:56:46 PM
Processed : $11 / 28 / 2018$ 2:57:54 PM Printed : 11/28/2018 2:58:29 PM

Peak results :

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	20.91	52.35	760.5	350.6	52.347
2	UNKNOWN	23.52	47.65	573.4	319.1	47.653
Total			100.00	1333.9	669.7	100.000

$\mathrm{Rh}_{2}(S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad(\mathrm{R}, \mathrm{R})$-whelk_30min_0.5mL/min_0.5\% $\quad \mathbf{9 1 \%}$ ee.
(old machine, the system says S 4900 column but actually we put RRw column there)

Small scale (0.3 mmol diazo compound)

```
Chromatogram :
zbw_N5_55_s-2Cl5Br_rrw_30min_0.5mL_0.5\%_2
40-m230:MESH22 channel1 Acquired :712512018 8:59:49 PM Method : S4900_30min_0.5mL_0.5\%_210_230 Processed : 7/30/2018 10:08:23 AM User : User1 Printed : 11/28/2018 3:01:14 PM
```


Peak results :

Index	Name	Time [Min]	Quantity [\% Area]	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Area } \\ \text { [mAU.Min] } \end{array}$	Area \% [\%]
1	UNKNOWN	20.81	95.63	1003.9	484.7	95.627
2	UNKNOWN	23.62	4.37	44.0	22.2	4.373
Total			100.00	1047.9	506.8	100.000

$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad(\mathrm{R}, \mathrm{R})$-whelk_30min_0.5mL/min_0.5\% $\quad \mathbf{8 9 \%}$ ee.
(old machine, the system says S 4900 column but actually we put RRw column there)

Large scale ($\mathbf{3} \mathbf{~ m m o l}$ diazo compound)

Chromatogram : zbw_N5_60_Rcat.2_channel1

System : Prostar LC System
Method : S4900_30min_0.5mL_0.5\%_210_230 User : User1

Acquired : 7/30/2018 1:02:21 AM
Processed : 7/30/2018 10:06:02 AM Printed: 11/28/2018 3:06:12 PM

Peak results:

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	$\begin{array}{r} \text { Area } \\ \text { [mAU.Min] } \end{array}$	$\begin{array}{\|r} \hline \text { Area \% } \\ {[\%]} \\ \hline \hline \end{array}$
1	UNKNOWN	21.80	5.36	66.2	31.2	5.358
2	UNKNOWN	24.55	94.64	910.1	550.5	94.642
Total			100.00	976.3	581.6	100.000

19
$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}$
(R,R)-whelk_30min_0.5mL/min_0.5\%

racemic

(old machine, the system says S 4900 column but actually we put RRw column there)

```
Chromatogram :
zbw_N5_95_(1)_rac_p-Br_TFE_RRW_0.5ml_0.3%
42enchanme\{\tem _ - _ _cquired :9/2012018 1:23:37 PM
Method : S4900_30min_0.5mL_0.5%_210_230 Processed : 11/28/2018 4:00:04 PM
Method:S4900_30min_0.5mL_0.5%_210_230
```

zbw_N5_95_(1)_rac_p-Br_TFE_RRW_0.5ml_0.3\%12.DATA - Prostar 325 Absorbance Channel 1 LC1006M831

Peak results:

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	17.21	50.88	292.8	230.5	50.882
2	UNKNOWN	19.19	49.12	357.7	222.5	49.118
Total			100.00	650.5	453.0	100.000

(old machine, the system says S 4900 column but actually we put RRw column there)

Chromatogram :

zbw_N5_95_(1)_R_p-Br_TFE_RRW_0.5ml_0.3\%1

```
5 stchanned 1 ystem
Method : S4900_30min_0.5mL_0.5\%_210_230
Acquired : 9/20/2018 3:11:43 PM
User : User1
```

Processed : 11/28/2018 4:00:59 PM
Printed : 11/28/2018 4:01:08 PM
zbw_N5 95_(1)_R_p-Br_TFE_RRW_0.5ml_0.3\%15.DATA - Prostar 325 Absorbance Channel 1 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	$\begin{array}{r} \text { Area } \\ \text { [mAU.Min] } \end{array}$	Area \% [\%]
1	UNKNOWN	17.08	96.74	519.5	436.9	96.736
2	UNKNOWN	19.19	3.26	27.3	14.7	3.264
Total			100.00	546.8	451.7	100.000

$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}$
(R,R)-whelk_30min_0.5mL/min_0.5\%
racemic
(old machine, the system says S 4900 column but actually we put RRw column there)

Chromatogram :

zbw_N5_94_1_pl-tfe_rac_rrw_0.5ml_0.3\%33_cha
nel- $\mathrm{Prostar} L \mathrm{LC}$ System \quad Acquired :9/16/2018 1:43:04 AM
Method: S4900_30min_0.5mL_0.5\%_210_230 Processed : 11/28/2018 3:35:34 PM
User: User1

Peak results :

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	20.05	50.27	1096.8	608.0	50.270
2	UNKNOWN	22.31	49.73	1029.3	601.5	49.730
Total			100.00	2126.1	1209.5	100.000

$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad(\mathrm{R}, \mathrm{R})$-whelk_30min_ $0.5 \mathrm{~mL} / \mathrm{min}_{-} 0.5 \% \quad \mathbf{9 5 \%}$ ee.
(old machine, the system says S 4900 column but actually we put RRw column there)

Chromatogram :

zbw_N5_87_2_R_rrw_0.5ml_0.5\%26_channel1

System : Prostar LC System
Method: S4900_30min_0.5mL_0.5\%_210_230 User: User1

Acquired : 9/10/2018 6:57:05 PM Processed : 11/28/2018 3:38:43 PM Printed: 11/28/2018 3:38:54 PM

Peak results :

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	$\begin{array}{r} \text { Area } \\ \text { [mAU.Min] } \end{array}$	Area \% [\%]
1	UNKNOWN	19.69	97.49	1057.2	826.3	97.488
2	UNKNOWN	22.19	2.51	34.4	21.3	2.512
Total			100.00	1091.6	847.6	100.000

$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}$
(R,R)-whelk_30min_0.5mL/min_0.5\%
racemic
(old machine, the system says S 4900 column but actually we put RRw column there)

Chromatogram :
 zbw_N5_93_2_p-OMe_rac_rrw_0.5ml_0.5\%12_ch

Qninepfostar LC System
Acquired : 9/17/2018 6:40:29 PM
Method : S4900_30min_0.5mL_0.5\%_210_230
Processed : $11 / 28 / 2018$ 3:57:10 PM
User: User1
zbw_N5_93_2_p-OMe_rac_rrw_0.5ml_0.5\%12.DATA - Prostar 325 Absorbance Channel 1 LC1006M831

Peak results:

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \%
1	UNKNOWN	30.65	46.98	297.3	232.5	46.979
2	UNKNOWN	34.29	53.02	300.2	262.4	53.021
Total			100.00	597.5	494.9	100.000

(old machine, the system says S 4900 column but actually we put RRw column there)

Chromatogram :

 zbw_N5_93_2_p-OMe_R_rrw_0.5ml_0.5\%15_cha
Method : S4900_30min_0.5mL_0.5\%_210_230 Processed : 11/28/2018 3:58:29 PM

Peak results :

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	$\begin{array}{r} \text { Area } \\ \text { [mAU.Min] } \end{array}$	Area \% [\%]
1	UNKNOWN	30.41	90.38	690.9	566.3	90.380
2	UNKNOWN	34.40	9.62	79.5	60.3	9.620
Total			100.00	770.4	626.5	100.000

22
$\operatorname{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}$
(R,R)-whelk_60min_0.5mL/min_1\%
racemic
(new machine, the column is correct)

$\operatorname{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad(\mathrm{R}, \mathrm{R})$-whelk_60min_ $0.5 \mathrm{~mL} / \mathrm{min}_{-} 1 \% \quad \mathbf{9 4 \%}$ ee.

(new machine, the column is correct)

Data File C: \Chem32\...9-Oct-2018\30-Oct-2018 2018-10-30 20-48-32\030-4-zbw_N5_108_CF3_R.D Sample Name: zbw_N5_108_CF3_R

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: DAD1 A, Sig=210, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	11.601		0.3693	2.81255 e 4	1269.22559	97.1638
2	12.977		0.3790	820.99097	36.10427	2.8362
Totals	s :			2.89465 e 4	1305.32986	

$\mathrm{Rh}_{2}(\mathrm{R} / \mathrm{S}-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad(\mathrm{R}, \mathrm{R})$-whelk $60 \mathrm{~min} 0.25 \mathrm{~mL} / \mathrm{min} 0.1 \%$
racemic
(new machine, the column is correct)
The racemic contains impurity peak, but not influence determination of $\mathbf{2}$ ee. peaks

```
Data File C:\Chem32\...Oct-2018\30-Oct-2018 2018-10-30 20-48-32\048-5-zbw_N5_111_tBu_rac.D
Sample Name: zbw_N5_111_tBu_rac
```



```
Additional Info : Peak(s) manually integrated
```



```
            Area Percent Report
    ========================================================================
\begin{tabular}{lll} 
Multiplier & \(:\) & 1.0000 \\
& Dilution & 1.0000
\end{tabular}
Dilution : 1.0000
Use Multiplier \& Dilution Factor with ISTDs
Signal 2: DAD1 B, Sig=230, 4 Ref=off
```


$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad(\mathrm{R}, \mathrm{R})$-whelk $60 \mathrm{~min} _0.25 \mathrm{~mL} / \mathrm{min} _0.1 \% \quad \mathbf{8 8 \%}$ ee.
(new machine, the column is correct)
Data File C: \Chem32\...t-2018\01(2)-Novt-2018 2018-11-01 19-14-25 \003-6-zbw_N5_111_tBu_R.D Sample Name: zbw _N5_111_tBu_R

Area Percent Report

Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier \& Dilution Factor with ISTDs				
Signal 2: DAD1 B, Sig=230, 4 Ref=off				
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area 8
121.480 MM	0.6193	3.11359 e 4	837.87689	94.3840
223.555 MM	0.6690	1852.63745	46.15164	5.6160
Totals :		3.29886 e 4	884.02853	

$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad(\mathrm{R}, \mathrm{R})$-whelk_60min_0.5mL/min_2\% racemic
(new machine, the column is correct)
(ee. measured after hydrolysis of the OAc to $\mathbf{O H}$)

```
Data File C:\Chem32\...-Novt-2018 2018-11-02 15-16-30\003-7-zbw_N5_109_OAc_rac_reduction.D
Sample Name: zbw_N5_109_OAc_rac_reduction
```



```
Area Percent Report
\begin{tabular}{lcc} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000 \\
Use Multiplier \& Dilution Factor with ISTDs
\end{tabular}
Signal 1: DAD1 A, Sig=210, 4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{\star} \mathrm{s}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & Area
\[
8
\] \\
\hline 1 & 37.766 & & 0.9443 & 1.95137 e 4 & 241.85922 & 45.7811 \\
\hline 2 & 40.195 & & 1.1899 & 2.31102 e 4 & 227.06458 & 54.2189 \\
\hline Totals & \(s\) : & & & 4.26239 e 4 & 468.92380 & \\
\hline
\end{tabular}
```

$\mathrm{Rh}_{2}(\mathrm{R}-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad(\mathrm{R}, \mathrm{R})$-whelk_60min_0.5mL/min_2\% 79\% ee.
(new machine, the column is correct)

Data File C: \Chem32\...02-Novt-2018 2018-11-02 15-16-30\006-8-zbw_N5_108_OAc_R_reduction.D Sample Name: zbw_N5_108_OAc_R_reduction

Area Percent Report
===1

Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier \&	lution	Factor wit	ISTDs	
Signa 2 : DAD B,	$g=\angle 30$	4 Rer=oIt		
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[m i n] \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~S}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area 8
138.278 BV	0.7143	5703.19141	93.73991	10.2297
239.725 VB	1.3202	5.00479 e 4	443.09872	89.7703
Totals :		5.57511 e4	536.83864	

25

$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}$
(R,R)-whelk_60min_0.5mL/min_1\%

racemic
(new machine, the column is correct)

$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad(\mathrm{R}, \mathrm{R})$-whelk_60min_0.5mL/min_1\% $\mathbf{8 7 \%}$ ee. (new machine, the column is correct)

26


```
Data File C:\Chem32\...ust-29-2018 2019-08-29 12-58-49\018-4-zbw-EN27-0085-mBrTFE_mono_R.D
Sample Name: zbw-EN27-0085-mBrTFE_mono_R
```



```
Acq. Operator : SYSTEM Seq. Line : 18
Acq. Instrument : Agilent 1100
Injection Date : 8/29/2019 8:17:46 PM
    Location : 4
    Inj : 1
                            Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\29-Aug-2019\August-29-2018 2019-08-29 12-58-49\wHELK_60min
                _0.25ML_0.5%.M (Sequence Method)
    Last changed : 6/29/2017 3:15:04 PM by SYSTEM
Additional Info : Peak(s) manually integrated
    DAD1 B, Sig=230,4 Ref=0ff (29-Aug-201\ldots-29-2018 2019-08-29 12-58-49018-4-zbw-EN27-0085-mBrTFE_mono_R.D)
    ========================================================================
                Area Percent Report
    ==========================================================================
    Sorted By : Signal
    Multiplier : 1.0000
    Dilution : 1.0000
    Use Multiplier & Dilution Factor with ISTDs
    Signal 2: DAD1 B, Sig=230,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak
\# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{gathered}
\text { width } \\
{[\mathrm{min}]}
\end{gathered}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & Height
[mAU] & Area
\[
8
\] \\
\hline 1 & 19.942 & MF & 0.5108 & 9565.97754 & 312.13907 & 17.2750 \\
\hline 2 & 21.193 & FM & 0.6580 & 4.58088 e 4 & 1160.35608 & 82.7250 \\
\hline Total & \(s\) : & & & \(5.53747 e 4\) & 1472.49515 & \\
\hline
\end{tabular}
```


27
$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad(\mathrm{R}, \mathrm{R})$-whelk_60min_ $0.25 \mathrm{~mL} / \mathrm{min}_{-} 0.5 \% \quad$ racemic


```
Data File C:\Chem32\1\Data\Bowen_1_29_2019 2019-01-29 11-59-02\006-71-zbw_EN27_0005_R.D
Sample Name: zbw_EN27_0005_R
```



```
    Acq. Operator : SYSTEM Seq. Line : 6
    Acq. Instrument : Agilent 1100
    Location : 71
Injection Date : 1/29/2019 2:25:18 PM
                                    Inj : 1
                            Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\Bowen_1_29_2019 2019-01-29 11-59-02\WHELK_60min_0.25ML_0.5
                8.M (Sequence Method)
    Last changed : 6/29/2017 3:15:04 PM by SYSTEM
    Additional Info : Peak(s) manually integrated
        DAD1 C, Sig=254,4 Ref=off (Bowen_1_29_2019 2019-01-29 11-59-02l006-71-zbw_EN27_0005_R.D)
    *)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline Use Multiplier \& Signal 3: DAD1 \(C\), & \begin{tabular}{l}
lution \\
\(i g=254\)
\end{tabular} & \begin{tabular}{l}
Factor wit \\
4 Ref=off
\end{tabular} & ISTDs & \\
\hline Peak RetTime Type \# [min] & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area
\[
8
\] \\
\hline 128.739 MM & 1.4017 & 9993.36816 & 118.82793 & 6.0822 \\
\hline 233.811 MM & 1.3512 & \(1.54310 \mathrm{e5}\) & 1903.36523 & 93.9178 \\
\hline Totals : & & \(1.64304 \mathrm{e5}\) & 2022.19316 & \\
\hline
\end{tabular}
```


37 (major)
$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}$
(R,R)-whelk_60min_0.5mL/min_0.1\%
racemic
(new machine, the column is correct)


```
Data File C:\Chem32\...01(2) -Novt-2018 2018-11-01 19-14-25\015-15-zbw_N5_Triene_spot_2_R.D
Sample Name: zbw_N5_Triene_spot_2_R
    ===========================================================================
\begin{tabular}{llrl} 
Acq. Operator : SYSTEM & Seq. Line : & 15 \\
Acq. Instrument : Agilent 1100 & Location : & 15 \\
Injection Date : \(11 / 2 / 20184: 43: 47 \mathrm{AM}\) & Inj : & 1
\end{tabular}
Injection Date : 11/2/2018 4:43:47 AM
    Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\29-Oct-2018\01(2)-Novt-2018 2018-11-01 19-14-25\WHELK_
    60min_0.50ML_0.18.M (Sequence Method)
    Last changed : 6/29/2017 3:15:25 PM by SYSTEM
Additional Info : Peak(s) manually integrated
        DAD1 B, Sig=230,4 Ref=off (29-Oct-201...2)-Novt-2018 2018-11-01 19-14-251015-15-zbw_N5_Triene_spot_2_R.D)
```



```
            Area Percent Report
\begin{tabular}{|c|c|c|}
\hline Sorted By & : & Signal \\
\hline Multiplier & : & 1.0000 \\
\hline Dilution & : & 1.0000 \\
\hline \multicolumn{3}{|l|}{Use Multiplier \& Dilution Factor with ISTDs} \\
\hline
\end{tabular}
Signal 2: DAD1 B, Sig=230,4 Ref=off
```


37 (minor)
$\mathrm{Rh}_{2}(R / S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}$
(R,R)-whelk_60min_0.5mL/min_0.1\%
racemic

(new machine, the column is correct)

```
Data File C:\Chem32\...(2) -Novt-2018 2018-11-01 19-14-25\006-12-zbw_N5_Triene_spot_1_rac.D
Sample Name: zbw_N5_Triene_spot_1_rac
=====================================================================
Acq. Operator : SYSTEM
Acq. Instrument : Agilent 1100
Injection Date : \(11 / 1 / 201811: 34: 18 \mathrm{PM}\)
Inj Volume : \(10.000 \mu \mathrm{l}\)
Method : C:\Chem32\1\Data\29-Oct-2018\01(2)-Novt-2018 2018-11-01 19-14-25\WHELK_ 60min_0.50ML_0.1\%.M (Sequence Method)
Last changed : 6/29/2017 3:15:25 PM by SYSTEM
Additional Info : Peak(s) manually integrated
```



```
Area Percent Report
```



```
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}
Use Multiplier \& Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=210, 4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
\%
\end{gathered}
\] \\
\hline 1 & 20.808 & & 0.7756 & 4.41631 e 4 & 948.97925 & 49.5297 \\
\hline 2 & 22.259 & & 1.0038 & 4.50017 e 4 & 747.17798 & 50. \\
\hline
\end{tabular}
Totals : 8.91648e4 1696.15723
```

Data File C: \Chem32\...01(2)-Novt-2018 2018-11-01 19-14-25\009-13-zbw_N5_Triene_spot_1_R.D Sample Name: zbw_N5_Triene_spot_1_R

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000

Signal 1: DAD1 A, Sig=210,4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU]] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	20.698	BB	0.5894	1.52595 e 4	357.16669	98.0558
2	22.854	BB	0.4122	302.55719	8.61666	1.9442
Total	s :			1.55621 e 4	365.78335	

HPLC analysis for di-insertion products

* For 29, the pre-mixed racemic catalyst can generate isolable racemic sample, for others, the racemic reaction either give meso dr as major or too difficult to separate, therefore R and S catalyst were used to measure ee.

$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad \mathrm{OD}_{-} 60 \mathrm{~min}_{-} 1 \mathrm{~mL} / \mathrm{min}_{-} 10 \% \quad>\mathbf{9 9 \%}$ ee.

(new machine, the column is correct)

(ee. measured after reduction of di-ester to di-ol)

```
Data File C:\Chem32\...2019 2019-05-24 17-36-55\036-3-zbw_EN27_0068_DipBrMeCOD_reduce_OH.D
Sample Name: zbw_EN27_0068_DipBrMeCOD_reduce_OH_R
```



```
    Area Percent Report
```



```
    Sorted By : Signal
    Multiplier : 1.0000
    Dilution : 1.0000
    Use Multiplier & Dilution Factor with ISTDs
    Signal 1: DAD1 A, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak
\# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & width
[min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area
g \\
\hline 1 & 25.531 & & 2.1037 & 2.33753 e 4 & 185.18878 & 99.9371 \\
\hline 2 & 38.072 & MM & 0.6951 & 14.71724 & \(3.52856 e-1\) & 0.0629 \\
\hline
\end{tabular}
    Totals :
    2.33900e4 185.54164
```


$\mathrm{Rh}_{2}(S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. \quad OD_60min_1mL/min_10\% $\quad>99 \%$ ee.

(new machine, the column is correct)

 Sample Name: zbw_N5_pBr_tce_di_reduc_rac

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: DAD1 A, Sig=210, 4 Ref=off

(new machine, the column is correct)

Data File C: \Chem32\.....Oct.10.S(3) 2018-10-12 21-44-00\002-86-zbw_N5_pBr_tce_di_reduc_R.D Sample Name: zbw_N5_pBr_tce_di_reduc_R

Area Percent Report				
Sorted By : Signal				
Multiplier : 1.0000				
Dilution : 1.0000				
Use Multiplier \& Dilution Factor with ISTDs				
Signal 2: DAD1 B, Sig=230,4 Ref=off				
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
125.225 MM	2.5663	7.66544 e 4	497.81952	99.6906
237.381 MM	1.3720	237.93073	2.89031	0.3094
Totals :		7.68923 e 4	500.70983	

$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. \quad OD_60min_ $1 \mathrm{~mL} / \mathrm{min}_{-} 10 \% \quad>99 \%$ ee.

(new machine, the column is correct)

(ee. measured after reduction of di-ester to di-ol)

$\mathrm{Rh}_{2}(S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. \quad OD_60min_1mL/min_10\% $\quad>99 \%$ ee.

(new machine, the column is correct)

Data File C: \Chem32\...1.21 2018-11-21 17-38-05\006-34-zbw_N5_118_reduce_S_pBrTFE_di_pur.D Sample Name: zbw _N5_118_reduce_S_pBrTFE_di_pure
$==1$

Area Percent Report
$===1$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 2: DAD1 B, Sig=230, 4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { of } \end{gathered}$
1	25.264	MM	0.7843	192.38348	4.08837	0.1762
2	35.937	BB	2.2251	1.08982 e 5	572.45422	99.8238
Total	s :			1.09174 e 5	576.54260	

$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. \quad OD_60min_ $1 \mathrm{~mL} / \mathrm{min}_{-} 10 \% \quad>99 \%$ ee.

(new machine, the column is correct)

(ee. measured after reduction of di-ester to di-ol)

(new machine, the column is correct)

Data File C: \Chem32\...Oct.18. 2018-10-19 12-12-32 \010-87-zbw N5 p-I-TFE di reduc_S-pure.D Sample Name: zbw_N5_p-I-TFE_di_reduc_S-pure

Area Percent Report		
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multipl		ctor with

Signal 1: DAD1 A, Sig=210,4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	22.360		1.4991	634.29938	7.05196	0.3710
2	44.058	MM	3.9277	1.70334 e 5	722.78461	99.6290
Total	s :			1.70969 e 5	729.83657	

$\mathrm{Rh}_{2}(\mathrm{R}-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad \mathrm{OD}_{-} 60 \mathrm{~min} _1 \mathrm{~mL} / \mathrm{min}_{-} 10 \% \quad \mathbf{9 8 \%}$ ee. (new machine, the column is correct)
(ee. measured after reduction of di-ester to di-ol)
in \mathbf{R} product an impurity peak overlap with minor ee. peak position therefor influences the ee. see S cat. result for determining the correct ee.

```
Data File C:\Chem32\...18.Oct.15. 2018-10-16 09-06-54\028-90-zbw_N5_p-OMe_tfe_di_reduc_R.D
Sample Name: zbw_N5_p-OMe_tfe_di_reduc_R
============================================================================
Acq. Operator : SYSTEM
Seq. Line : 28
Acq. Instrument : Agilent 1100
Injection Date : 10/16/2018 10:48:45 PM
    Location : 90
Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\16-Oct-2018\2018.Oct.15. 2018-10-16 09-06-54\OD_60min_1.
    0ML_108.M (Sequence Method)
Last changed : 6/29/2017 2:56:25 PM by SYSTEM
Additional Info : Peak(s) manually integrated
```



```
            Area Percent Report
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000
\end{tabular}
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 2: DAD1 B, Sig=230,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{aligned}
& \text { RetTime } \\
& {[\mathrm{min}]}
\end{aligned}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[m A U^{*} s\right]}
\end{gathered}
\] & Height [mAU] & \[
\begin{gathered}
\text { Area } \\
\text { \& }
\end{gathered}
\] \\
\hline 1 & 35.148 & & 3.9087 & 1.16348 e 5 & 496.10794 & 99.3850 \\
\hline 2 & 43.426 & MM & 1.6622 & 720.00049 & 7.21956 & 0.6150 \\
\hline
\end{tabular}
Totals : 1.17068e5 503.32750
```


$\mathrm{Rh}_{2}(S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. \quad OD_60min_1mL/min_10\% $\quad>99 \%$ ee.

(new machine, the column is correct)

```
Data File C:\Chem32\....15. 2018-10-16 09-06-54\022-88-zbw_N5_p-OMe_tfe_di_reduc_S_15to2.D
Sample Name: zbw_N5_p-OMe_tfe_di_reduc_S_15to20
=============================================================================
\begin{tabular}{llrl} 
Acq. Operator : SYSTEM & Seq. Line : & 22 \\
Acq. Instrument : Agilent 1100 & Location : & 88 \\
Injection Date : 10/16/2018 7:22:06 PM & Inj :
\end{tabular}
Injection Date : 10/16/2018 7:22:06 PM Inj : 1
Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\16-Oct-2018\2018.Oct.15. 2018-10-16 09-06-54\oD_60min_1.
OML_108.M (Sequence Method)
Last changed : 6/29/2017 2:56:25 PM by SYSTEM
Additional Info : Peak(s) manually integrated
DAD1 B, Sig=230,4 Ref=off (16-Oct-201\ldots.. 2018-10-16 09-06-541022-88-zbw_N5_p-OMe_tfe_di_reduc_S_15to2.D)
\begin{tabular}{|c|c|c|c|c|}
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline \multicolumn{5}{|l|}{Use Multiplier \& Dilution Factor with ISTDs} \\
\hline \multicolumn{5}{|l|}{Signal 2: DAD1 B, Sig=230, 4 Ref=off} \\
\hline \[
\begin{aligned}
& \text { Peak RetTime Type } \\
& \# \quad[\mathrm{~min}]
\end{aligned}
\] & Width
[min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{\star} \mathrm{s}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & Area of \\
\hline 135.390 MM & 1.2737 & 271.08316 & 3.54726 & 0.3394 \\
\hline 242.439 MM & 4.1005 & 7.95942 e 4 & 323.51260 & 99.6606 \\
\hline Totals : & & 7.98653 e 4 & 327.05986 & \\
\hline
\end{tabular}
```


$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. \quad OD_60min_1.5mL/min_10\% $\quad>\mathbf{9 9 \%}$ ee.
(new machine, the column is correct)
(ee. measured after reduction of di-ester to di-ol)

```
Data File C:\Chem32\...18\2018.11.14.S(2) 2018-11-14 18-29-27\003-63-zbw_n5_116_reduce_R.D
Sample Name: zbw_n5_116_reduce_R
```



```
Additional Info : Peak(s) manually integrated
```



```
Area Percent Report
\begin{tabular}{|c|c|c|}
\hline Sorted By & : & Signal \\
\hline Multiplier & : & 1.0000 \\
\hline Dilution & : & 1.0000 \\
\hline
\end{tabular}
Signal 1: DAD1 A, Sig=210, 4 Ref=off
```


(new machine, the column is correct)

$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. \quad OD_60min_ $1 \mathrm{~mL} / \mathrm{min}_{-} 5 \% \quad \mathbf{9 8 . 5 \%} \mathbf{e e}$.

(new machine, the column is correct)

(ee. measured after reduction of di-ester to di-ol)

minor ee. peak slightly overlap with impurity, see S cat. for ee. determining

```
Data File C:\Chem32\...Nov-2018\2018.11.5 2018-11-08 16-15-43\006-61-zbw_N5_112_reduce_R.D
Sample Name: zbw_N5_112_reduce_R
```



```
            Area Percent Report
\begin{tabular}{lcc} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000 \\
Use Multiplier \& Dilution Factor with ISTDs
\end{tabular}
Signal 1: DAD1 A, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU} U^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\text { \& }
\end{gathered}
\] \\
\hline 1 & 16.248 & & 1.5131 & 1.26113 e 5 & 1389.08105 & 99.2762 \\
\hline 2 & 41.155 & MM & 0.8866 & 919.45898 & 12.11218 & 0.7238 \\
\hline
\end{tabular}
Totals : 1.27032e5 1401.19324
```


(new machine, the column is correct)

$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. \quad OD_60min_1mL/min_5\% $\quad \mathbf{9 9 \%}$ ee.

(new machine, the column is correct)

(ee. measured after reduction of di-ester to di-ol)

(new machine, the column is correct)

HPLC for the derivatized product:

*42 is the reduced alcohol that has been shown before.

*43 is treated with TBAF, goes back to 42 and e.e. still over 99\%
*for 41, 44-49 HPLC below, when it's no longer over 99\% e.e. due to the derivatization, it's later on recrystallized to $\mathbf{> 9 9 \%}$ ee. for conjugate addition test.

41
$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. \quad ADH_60min_1mL/min_10\% $\quad \mathbf{9 9 \%}$ ee.

```
Data File C:\Chem32\...\28-May-2019 2019-05-29 14-39-08\018-2-zbw_EN27_0068_DiCOOH_Rcat..D
Sample Name: zbw_EN27_0068_DiCOOH_Rcat.
=========================================================================
Acq. Operator : SYSTEM Seq. Line : 18
Acq. Instrument : Agilent 1100 Location : 2
Injection Date : 5/29/2019 10:59:40 PM Inj : 1
Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\2019-05-29\28-May-2019 2019-05-29 14-39-08\ADH_60min_1.0ML
                        _108.M (Sequence Method)
    Last changed : 6/29/2017 2:31:38 PM by SYSTEM
    Additional Info : Peak(s) manually integrated
    DAD1 B, Sig=230,4 Ref=0ff (2019-05-29\ldots..-May-2019 2019-05-29 14-39-08l018-2-zbw_EN27_0068_DiCOOH_Rcat.D)
    Area Percent Report
    Sorted By : Signal
    Multiplier : 1.0000
    Dilution : 1.0000
    Use Multiplier & Dilution Factor with ISTDs
    Signal 2: DAD1 B, Sig=230,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & ```
RetTime
    [min]
``` & Type & \[
\begin{gathered}
\text { Width } \\
\text { [min] }
\end{gathered}
\] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
\text { \& }
\end{gathered}
\] \\
\hline 1 & 22.543 & MM & 0.8508 & 429.64722 & 8.41681 & 0.4017 \\
\hline 2 & 26.480 & BB & - 80 & & & \\
\hline
\end{tabular}
 Totals : 1.06969e5 1566.88104
```

$\mathrm{Rh}_{2}(S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. ADH_60min_1mL/min_10\% 98\% ee.



44
$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad$ ADH $\_30 \mathrm{~min} \_1 \mathrm{~mL} / \mathrm{min}_{-} 10 \% \quad>\mathbf{9 9 \%}$ ee.

```
Data File C:\Chem32\...b-2019\19-Feb-2019 2019-02-19 06-59-02\035-63-zbw_EN27_0012_R_2nd.D
Sample Name: zbw_EN27_0012_R_2nd
```



```
Acq. Operator : SYSTEM Seq. Line : }3
Acq. Instrument : Agilent 1100
 Location : 63
Injection Date : 2/19/2019 8:15:01 PM
 Inj : 1
 Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\15-Feb-2019\19-Feb-2019 2019-02-19 06-59-02\ADH_30min_1.
 0ML_108.M (Sequence Method)
Last changed : 6/28/2017 4:48:38 PM by SYSTEM
Additional Info : Peak(s) manually integrated
DAD1 A, Sig=210,4 Ref=off (15-Feb-2019\19-Feb-2019 2019-02-19 06-59-021035-63-zbw_EN27_0012_R_2nd.D)
===
 Area Percent Report
```



```
\begin{tabular}{lll}
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}
Use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=210,4 Ref=off
\begin{tabular}{cccccc}
\begin{tabular}{c}
Peak RetTime Type \\
[Width \\
[min]
\end{tabular} & \begin{tabular}{c}
Area \\
[min]
\end{tabular} & \begin{tabular}{c}
Height \\
[mAU*s]
\end{tabular} & Area \\
[mAU] & \&
\end{tabular}
```

```
Data File C:\Chem32\...5-Feb-2019\16-Feb-2019 2019-02-17 23-03-21\002-61-zbw_EN27_0010_S.D
Sample Name: zbw_EN27_0010_S
```



```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline Use Multiplier \& & lution & Factor with & ISTDs & \\
\hline Signal 1: DAD1 A, & ig \(=210\) & 4 Ref=off & & \\
\hline Peak RetTime Type \# [min] & width
[min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area
\[
8
\] \\
\hline 111.378 MM & 0.5171 & 2464.46997 & 79.42877 & 2.6445 \\
\hline 217.016 MF & 0.9282 & 9.07294 e4 & 1629.08740 & 97.3555 \\
\hline Totals : & & 9.31939 e 4 & 1708.51617 & \\
\hline
\end{tabular}
```



45
$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad$ ADH_30min_ $0.5 \mathrm{~mL} / \mathrm{min} \_0.3 \% \quad>99 \%$ ee.

```
Data File C:\Chem32\...5-Feb-2019\19-Feb-2019 2019-02-20 13-22-06\017-64-zbw_EN27_0010_R.D
Sample Name: zbw_EN27_0010_R
```



```
Acq. Operator : SYSTEM Seq. Line : 17
Acq. Instrument : Agilent 1100 Location : 64
Injection Date : 2/20/2019 7:19:34 PM Inj : 1
Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\15-Feb-2019\19-Feb-2019 2019-02-20 13-22-06\ADH_30min_0.
50ML_0.38.M (Sequence Method)
Last changed : 7/26/2017 9:17:15 AM by SYSTEM
Additional Info : Peak(s) manually integrated
DAD1 A, Sig=210,4 Ref=off (15-Feb-201919-Feb-2019 2019-02-20 13-22-061017-64-zbw_EN27_0010_R.D)
==
Area Percent Report
```



```
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=210,4 Ref=off
\begin{tabular}{cccccc}
\begin{tabular}{c}
Peak \\
RetTime Type \\
[min]
\end{tabular} & \begin{tabular}{c}
Width \\
[min]
\end{tabular} & \begin{tabular}{c}
Area \\
[mAU*s]
\end{tabular} & \begin{tabular}{c}
Height \\
[mAU]
\end{tabular} & Area & on
\end{tabular}
Totals :
 2.87109e4 1079.50212
```

$\mathrm{Rh}_{2}(\mathrm{~S}-2-\mathrm{Cl}, 5-\mathrm{Br} \mathrm{TPCP})_{4} \quad$ chiral. $\quad$ ADH $30 \mathrm{~min} 0.5 \mathrm{~mL} / \mathrm{min} 0.3 \% \quad>99 \%$ ee.

```
Data File C:\Chem32\...5-Feb-2019\19-Feb-2019 2019-02-20 13-22-06\020-65-zbw_EN27_0013_S.D
Sample Name: zbw_EN27_0013_S
===
Acq. Operator : SYSTEM Seq. Line : 20
Acq. Instrument : Agilent 1100 Location : 65
Injection Date : 2/20/2019 8:32:39 PM Inj : 1
 Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\15-Feb-2019\19-Feb-2019 2019-02-20 13-22-06\ADH_30min_0.
 50ML_0.38.M (Sequence Method)
 Last changed : 7/26/2017 9:17:15 AM by SYSTEM
 Additional Info : Peak(s) manually integrated
 DAD1 A, Sig=210,4 Ref=off (15-Feb-2019l19-Feb-2019 2019-02-20 13-22-06\020-65-zbw_EN27_0013_S.D)
 *200:
 ==
 Area Percent Report
 ==
\begin{tabular}{lll}
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}
Use Multiplier & Dilution Factor with ISTDs
 Signal 1: DAD1 A, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area
\[
8
\] \\
\hline 1 & 11.991 & MM & 0.4632 & 27.17001 & \(9.77655 \mathrm{e}-1\) & 0.1368 \\
\hline 2 & 19.258 & BB & 0.7901 & 1.98394 e4 & 294.23596 & 99.8632 \\
\hline
\end{tabular}
Totals : 1.98665e4 295.21362
```


$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad \mathrm{ADH} \_60 \mathrm{~min} \_0.5 \mathrm{~mL} / \mathrm{min} \_5 \% \quad>99 \%$ ee.


```
Data File C:\Chem32\...optimization 2019-06-17 14-58-00\063-5-zbw_EN27_0074_Di_tBuPhLi_S.D
Sample Name: zbw_EN27_0074_Di_tBuPhLi_S
```




```
gnal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=210,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & Width
[min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\text { \& }
\end{gathered}
\] \\
\hline 1 & 10.857 & MM & 0.6811 & 4.17079 e 4 & 1020.57922 & 99.8968 \\
\hline 2 & 23.262 & MM & 0.2153 & 43.09983 & 3.33621 & 0.1032 \\
\hline
\end{tabular}
Totals : 4.17510e4 1023.91543
```


$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad$ OD_30min_ $0.25 \mathrm{~mL} / \mathrm{min} \_0 \%$
(should be $>\mathbf{9 9 \%}$ ee.) but the minor peak could be shielded by the tail of the major peak, therefore refer to the $S$ catalyst product for ee. ( 2 peaks are close)

```
Data File C:\Chem32\...29-Jul-2019-YTB 2019-07-29 09-34-04\056-4-zbw_EN27_4tBuPh_DiOMe_R.D
Sample Name: zbw_EN27_4tBuPh_DiOMe_R
```



```
Acq. Operator : SYSTEM Seq. Line : 56
Acq. Instrument : Agilent 1100 Location : 4
Injection Date : 7/30/2019 7:03:13 AM Inj : 1
 Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\29-July-2019\29-Jul-2019-YTB 2019-07-29 09-34-04\OD_30min_
 0.25ML_08.M (Sequence Method)
 Last changed : 6/26/2017 4:19:42 PM by SYSTEM
 Additional Info : Peak(s) manually integrated
 DAD1 A, Sig=210,4 Ref=off (29-July-20...Jul-2019-YTB 2019-07-29 09-34-04l056-4-zbw_EN27_4tBuPh_DiOMe_R.D)
 *)
```



```
 Area Percent Report
 Sorted By : Signal
 Multiplier : 1.0000
 Dilution : 1.0000
 Use Multiplier & Dilution Factor with ISTDs
 Signal 1: DAD1 A, Sig=210,4 Ref=off
```



```
 Totals : 1.20266e5 1711.87549
```




48
$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad$ ADH_30min_0.5mL/min_1\% $>\mathbf{9 9 \%}$ ee.

```
Data File C:\Chem32\...22-Jul-2019-YTB 2019-07-22 15-54-54\069-2-zbw EN27 3,5DiMe DiOH R.D
Sample Name: zbw_EN27_3,5DiMe_DiOH_R
\begin{tabular}{llrl}
Acq. Operator : SYSTEM & Seq. Line : & 69 \\
Acq. Instrument : Agilent 1100 & Location : & 2 \\
Injection Date : \(7 / 23 / 20197: 27: 55 \mathrm{PM}\) & Inj : 1
\end{tabular}
 Inj Volume : 10.000 \mul
Method : C:\Chem32\1\Data\22-July-2019\22-Jul-2019-YTB 2019-07-22 15-54-54\ADH_30min
 0.50ML 1%.M (Sequence Method)
Last changed : 6/26/2017 4:49:12 PM by SYSTEM
Additional Info : Peak(s) manually integrated
 DAD1 B, Sig=230,4 Ref=off (22-July-20...Jul-2019-YTB 2019-07-22 15-54-54\069-2-zbw_EN27_3,5DiMe_DiOH_R.D)
 *)
 Area Percent Report
```



```
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 2: DAD1 B, Sig=230,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\text { \& }
\end{gathered}
\] \\
\hline 1 & 10.033 & MM & 0.5953 & 4.13893 e 4 & 1158.73865 & 99.6635 \\
\hline 2 & 18.357 & MM & 0.3862 & 139.75879 & 6.03107 & 0.3365 \\
\hline Totals & \(s\) : & & & 4.15291 e 4 & 1164.76972 & \\
\hline
\end{tabular}
```

```
Data File C:\Chem32\...22-Jul-2019-YTB 2019-07-22 15-54-54\072-3-zbw_EN27_3,5DiMe_DiOH_S.D
Sample Name: zbw_EN27_3,5DiMe_DiOH_S
\begin{tabular}{|c|c|c|}
\hline Acq. Operator & : SYSTEM & Seq. Line : 72 \\
\hline Acq. Instrument & : Agilent 1100 & Location : 3 \\
\hline Injection Date & : 7/23/2019 8:41:01 PM & Inj : 1 \\
\hline & & j Volume : \(10.000 \mu \mathrm{l}\) \\
\hline Method & : C: \Chem32\1\Data\22-July-2019\ _0.50ML_18.M (Sequence Method) & \[
2-J u l-2019-Y T B \quad 2019-07-22 \text { 15-54-54\ADH_30min }
\] \\
\hline Last changed & : 6/26/2017 4:49:12 PM by SYSTEM & \\
\hline Additional Info & : Peak(s) manually integrated & \\
\hline
\end{tabular}
Additional Info : Peak(s) manually integrated
```



$\mathrm{Rh}_{2}(R-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad$ OD_30min_ $0.5 \mathrm{~mL} / \mathrm{min} \_0.3 \% \quad \mathbf{9 9 \%}$ ee.

```
Data File C:\Chem32\...ul-2019-YTB 2019-07-29 09-34-04\023-13-zbw_EN27_3,5DitBuPh_DiOH_R.D
Sample Name: zbw_EN27_3,5DitBuPh_DiOH_R
```



[^0]

```
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier \& Dilution Factor with ISTDs
Signal 2: DAD1 B, Sig=230,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{gathered}
\text { Width } \\
\text { [min] }
\end{gathered}
\] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & Area 8 \\
\hline 1 & 6.108 & & 0.2552 & 97.61575 & 6.37577 & 0.5393 \\
\hline 2 & 9.742 & & 0.9276 & 1.80017 e 4 & 323.44415 & 99.4607 \\
\hline Totals & \(s\) : & & & 1.80993 e 4 & 329.81992 & \\
\hline
\end{tabular}
```

$\operatorname{Rh}_{2}(S-2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4} \quad$ chiral. $\quad$ OD_30min_ $0.5 \mathrm{~mL} / \mathrm{min}_{-} 0.3 \% \quad>99 \%$ ee.

```
Data File C:\Chem32\...ul-2019-YTB 2019-07-29 09-34-04\026-14-zbw_EN27_3,5DitBuPh_DiOH_S.D
Sample Name: zbw_EN27_3,5DitBuPh_DiOH_S
```



```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Signal & & \\
\hline Multiplier & : & 1.0000 & & \\
\hline Dilution & : & 1.0000 & & \\
\hline Use Multiplier \& & lution & Factor with & ISTDs & \\
\hline Sıgnal \(2: ~ D A D 1 B\), & \(1 \mathrm{~g}=230\) & 4 ReI=OII & & \\
\hline Peak RetTime Type \# [min] & \[
\begin{gathered}
\text { Width } \\
\text { [min] }
\end{gathered}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & Area
\& \\
\hline 16.098 MM & 0.4497 & 1.41452 e 4 & 524.25287 & 99.8329 \\
\hline \(2 \quad 9.659 \mathrm{MM}\) & 0.2084 & 23.67523 & 1.89338 & 0.1671 \\
\hline Totals : & & 1.41689 e 4 & 526.14625 & \\
\hline
\end{tabular}
```


## HPLC analysis for conjugate addition test (column: OJH_30min_1ml/min _1\%)

1. test with 1,5-Cyclooctadiene (racemic reaction)



50 (racemic)

Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak   RetTime Type	Width	Area	Height	Area	
\#	[min]	[min]	[mAU*s]	[mAU]	\%


2. test with C2-symmetric chiral COD ligands and their derivatives


50
(1). $L=28, \quad 39 \%$ ee.

Signal 2: DAD1 C, Sig=210,4 Ref=off

Peak \#	```RetTime [min]```	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height   [mAU]	Area \%
1	15.289	VB	0.3740	1.20196 e 4	497.26553	30.7100
2	18.298	BB	0.5639	2.71193 e 4	757.13055	69.2900
Totals	S :			3.91388 e 4	1254.39609	




50
(2). $\mathrm{L}=29, \quad 34 \%$ ee.

29

Signal 1: DAD1 C, Sig=210,4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { *s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	15.450	BB	0.3744	1.46869 e 4	602.50049	32.7329
2	18.630	BB	0.5526	3.01820 e 4	837.23248	67.2671
Total	$s$ :			4.48690e4	1439.73297	




50
(3). $L=30, \quad 36 \%$ ee.


30

Signal 1: DAD1 C, Sig=210,4 Ref=off

$\begin{gathered} \text { Peak } \\ \quad \# \end{gathered}$	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { *s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.412	BB	0.3902	1.58306 e 4	623.60895	32.2460
2	18.445	BB	0.5778	$3.32627 e 4$	882.38849	67.7540
Totals :				4.90934 e 4	1505.99744	




50

## (4). $\mathrm{L}=31, ~ 45 \%$ ee.

$\mathrm{L}=$

31

Signal 1: DAD1 C, Sig=210,4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { *s }]} \end{gathered}$	Height   [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.590	BB	0.3171	329.31805	15.67247	27.6779
2	18.876	BB	0.3805	860.50415	34.32642	72.3221
Total	s :			1189.82220	49.99889	




50
(5). $\mathrm{L}=32, \quad 30 \%$ ee.


32

Signal 1: DAD1 C, Sig=210,4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.384	BB	0.3969	1.98576 e 4	770.04730	35.1377
2	18.369	BB	0.5576	$3.66560 e 4$	968.45874	64.8623
Total	:			5.65136 e 4	1738.50604	




50
(6). $L=33, \quad 33 \%$ ee.


33

Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak F	RetTime   [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height   [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.319	BB	0.3681	1.16148 e 4	483.75128	33.6101
2	18.342	BB	0.5086	2.29427 e 4	681.73700	66.3899
Totals	s :			3.45575 e 4	1165.48828	



50
(7). $\mathrm{L}=34, \quad 22 \%$ ee.
$\mathrm{L}=$

34

Signal 1: DAD1 C, Sig=210,4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { * }]} \end{gathered}$	Height   [mAU]	Area \%
1	15.610	BB	0.4381	2.67188 e 4	949.94879	39.1501
2	18.772		0.5890	4.15284 e 4	1037.52234	60.8499
Totals	s :			6.82472 e 4	1987.47113	




50
(9). $\mathrm{L}=41, \quad 27 \%$ ee.

Signal 1: DAD1 C, Sig=210,4 Ref=off

$\begin{gathered} \text { Peak } R \\ \# \end{gathered}$	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { * }]} \end{gathered}$	Height   [mAU]	Area \%
1	15.292	BB	0.3646	8040.54785	341.64832	36.5930
2	18.450	BB	0.4848	1.39324 e 4	440.72278	63.4070
Totals	S :			2.19729 e 4	782.37109	




50
(8). $L=42, \quad 26 \%$ ee.
$\mathrm{L}=$


Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak \#	RetTime   [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height   [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.293	BB	0.3648	9337.66113	396.40738	36.7708
2	18.398	BB	0.4906	1.60566 e 4	500.13208	63.2292

Totals :
2.53942 e 4896.53946



50
(12). $\mathrm{L}=43, ~ 53 \%$ ee.

Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak \#	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height   [mAU]	Area \%
1	15.304	BB	0.3619	1.01920 e 4	434.13281	23.5753
2	18.193	BB	0.5715	3.30398 e 4	897.48987	76.4247
Total	s :			4.32319 e 4	1331.62268	




50
(10). $L=44, \quad 47 \%$ ее.

Eignal 1ı DAD1 C, aig-210, 4 Ref=off


Peak	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\text { mad* }]} \end{gathered}$	Height   [mAU]	Area 8
1	15.551	BE	0.3571	529.52753	22.13255	26.4121
2	18.953		0.4298	1475.34106	52.82749	73.5879
Total	51			2004.86859	74.96004	




50
(11). $L=45, \quad 60 \%$ ee.

Signal 1: DAD1 C, Sig-210, 4 Ref-off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime   [min]	Type	width   [min]	$\begin{gathered} \text { Area } \\ {[\text { mads }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	16.694	BB	0.3768	1534.34827	60.72484	19.8006
2	20.110	BB	0.4812	6214.63330	199.64850	80.1994
Total	8 :			7748.98157	260.37334	




50
(13). $L=46, \quad 69 \%$ ee.

Signal 1: DAD1 C, Sig=210,4 Ref=off


Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height   [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.430	VB	0.3499	6226.05908	273.17520	15.2606
2	18.297	BB	0.5817	3.45722 e 4	917.27521	84.7394
Total	S :			4.07982 e 4	1190.45041	




50
(14). $\mathrm{L}=47, ~ 59 \%$ ее.

Signal 1: DAD1 C, Sig=210,4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { *s }]} \end{gathered}$	Height   [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.151	BB	0.3686	1.14708 e 4	480.38049	20.4964
2	17.951	VB	0.5870	4.44942 e 4	1130.92139	79.5036
Total	s :			5.59650 e 4	1611.30188	




50
(15). $L=48, \quad 41 \%$ ee.

Signal 1: DAD1 C, Sig=210,4 Ref=off
$\mathrm{L}=$


$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime   [min]	тype	Width   [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.587	BB	0.3432	3716.06152	164.74695	29.6503
2	18.804	vB	0.4713	8816.89844	291.16553	70.3497
Total	s :			1.25330 e 4	455.91248	




50
(15). $\mathrm{L}=49, \quad 76 \%$ ee.

Signal 1: DAD1 C, Sig=210,4 Ref=off


$\begin{gathered} \text { Peak I } \\ \# \end{gathered}$	RetTime [min]	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height   [mAU]	Area $\%$
1	15.450	BB	0.3402	4872.13184	220.15059	11.9691
2	18.223	BB	0.5714	3.58338 e 4	964.50671	88.0309
Totals	S :			4.07059 e 4	1184.65730	



## Catalyst screen result for the initial mono-insertion test




Left multiplet as the insertion C-H of the vinylogous site, right doublet as the benzylic C-H after the insertion.

As can be seen from the catalyst screening crude ${ }^{1}$ HNMR, all catalyst indeed can generate the vinylogous insertion product, but the trichloroethyl $\mathbf{C H}_{2}$ region can show the difference.
$\mathrm{Rh}_{2}(\mathbf{2 - C l}, 5-\mathrm{BrTPCP})_{4}$ give the cleanest diastereotopic set of doublets, suggesting it to be the optimized catalyst for the reaction.

Single crystal structure for compound 22, 37 (major), $\mathbf{3 5}$ [after reduction]

## 22 crystal structure



37 (major) crystal structure


35 after reduction structure


## dr. in crude ${ }^{\mathbf{1}} \mathbf{H N M R}$ for di-insertion product


$31 \mathrm{dr}=6.8: 1$


## Comparison with other cyclic alkene \& triene catalyst screening

(1) Cyclohexene catalyst screening: cyclo:vinyl \& vinyl dr from crude proton NMR
(dr. peaks of vinylogous insertion)
(cyclopropanation peak)


* $\mathrm{Rh}_{2}(\text { Tribic })_{4}$ is a catalyzed originally developed by our group for primary C-H insertion ${ }^{4}$

(2) 1E, 5E, 9E-Cyclododecatriene catalyst screening: (dr. ratio)



## (3) cis-Cyclooctene catalyst screening:


*The arrow peaks are for the cyclopropanation product. All catalysts give clean formation of cyclopropane.

## References

1. Wenbin Liu et.al., J. Am. Chem. Soc., 2018, 140, 12247-12255
2. Liangbing Fu et.al., Chem. Eur. J. 2017, 23, 1
3. David M. Guptill et.al. J. Am. Chem. Soc. 2014, 136, 17718
4. Liao, K.; Yang, Y.-F.; Li, Y.; Sanders, J. N.; Houk, K. N.; Musaev, D. G.; Davies, H. M. L. Nature Chem. 2018, 10, 1048.

# C-H Functionalization Approach for the Synthesis of Chiral $\mathrm{C}_{2}$ Symmetric 1,5-Cyclooctadiene Ligands 

Bowen Zhang, Michael R. Hollerbach, Simon Blakey* and Huw M. L. Davies*<br>Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322<br>Supporting Information Placeholder




#### Abstract

Chiral cyclooctadiene (COD) derivatives are readily prepared by rhodium-catalyzed allylic C-H functionalization of COD. Either mono or difunctionalization of COD is possible generating the products in high yield, diastereoselectivity and enantioselectivity. The double $\mathrm{C}-\mathrm{H}$ functionalization generates $\mathrm{C}_{2}$ symmetric COD derivatives with four new stereogenic centers in $>99 \%$ ee, which can be readily converted to a series of chiral COD ligands. Preliminary evaluations revealed that the COD ligands can be used in rhodium-catalyzed asymmetric arylation of cyclohex-2-enone, leading to the conjugate addition products in up to $76 \%$ ee.


1,5-Cyclooctadiene (COD) is widely used as a ligand in transition metal complexes. ${ }^{1}$ Metal-COD complexes are useful because many are sufficiently stable to be isolated and easily handled, often more robust than the related ethylene complexes because of chelation. Even though the metal-COD complexes were initially considered as stable precursors to active catalysts, it became clear in many instances that the COD ligand was not lost and was an integral part of the catalytic cycle. ${ }^{2-4}$ Consequently, there became interest in designing chiral COD ligands for chiral catalysis. The Chiral COD ligands 1 and 2 have shown considerable promise but their synthesis requires a multistep synthesis and a resolution. ${ }^{4 b}$ This has led to the synthesis of other skipped cyclic dienes as chiral ligands, ${ }^{4-6}$ including a number of $\mathrm{C}_{2}$ symmetric ligands 3-6. However, all require a multistep synthesis and most involve a racemic synthesis followed by resolution ${ }^{4-6}$ (Scheme 1). In this paper we describe an enantioselective $\mathrm{C}-\mathrm{H}$ functionalization method for the direct synthesis of $\mathrm{C}_{2}$ symmetric COD derivatives 7, with four stereogenic centers. Furthermore, we describe their derivatization to other $\mathrm{C}_{2}$ symmetric COD derivatives $\mathbf{8}$ and their initial evaluation as chiral ligands for rhodium-catalyzed conjugate addition.

The motivation for this study was the realization that COD would be an intriguing substrate to challenge catalystcontrolled $\mathrm{C}-\mathrm{H}$ functionalization by rhodium-stabilized donor/acceptor carbenes (Scheme 2). ${ }^{7,8}$ We have recently shown that dirhodium catalysts of defined shapes are capable of selecting between primary, secondary and tertiary unactivated
Scheme 1 Chiral cyclic diene ligands
A. Previous cyclic chiral diene:




B. This work

$\mathrm{C}-\mathrm{H}$ bonds. ${ }^{8 \mathrm{a}-\mathrm{e}}$ We have also shown that catalysts can be designed that would select between different secondary $\mathrm{C}-\mathrm{H}$ bonds. ${ }^{8 c, f, g}$ COD was considered to be an interesting substrate because even though the methylene sites are allylic and relatively activated, the cis alkene would be expected to be a competing site for cyclopropanation. Therefore, we would need to identify a catalyst that would lead to selective $\mathrm{C}-\mathrm{H}$ functionalization instead of cyclopropanation. Then, ideally once the mono $\mathrm{C}-\mathrm{H}$ functionalization has occurred, the catalyst would select the C5 site for a second C-H functionalization, over the two other allylic methylene sites at C3 and C6 to generate the COD derivative 9. For the overall
scheme to be useful we would need to be able to control the stereochemistry of the four newly formed stereogenic centers so that the $\mathrm{C}_{2}$-symmetric form of 7 is generated.
Scheme 2. Synthetic Challenge


The first stage of the study focused on the mono-C-H functionalization reactions using the most promising catalysts in our tool box for selective reactions at methylene sites (Scheme 3). $\quad \mathrm{Rh}_{2}(S \text {-DOSP })_{4}(\mathbf{1 0})$ is our original catalyst and has been shown to be broadly applicable for functionalization of activated methylene sites. ${ }^{76} \mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ (11) is an uncrowded catalyst that can give different stereochemical results to $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ at methylene $\mathrm{C}-\mathrm{H}$ functionalization. ${ }^{7 \mathrm{~b}} \quad \mathrm{Rh}_{2}(R \text {-TPPTTL })_{4}$ (12) has shown remarkable site selectivity for C3 over C4 C-H functionalization of alkylcyclohexanes. ${ }^{8 f}$ The triphenylcyclopropanecarboxylates (TPCP) derivatives generate the most sterically crowded dirhodium tetracarboxylate catalysts. $\mathrm{Rh}_{2}(R-p \text { - } \mathrm{BrTPCP})_{4}(\mathbf{1 3})$ was the first member of this class and preferentially reacts at less crowded $\mathrm{C}-\mathrm{H}$ bonds. ${ }^{8 \mathrm{ab}} \mathrm{Rh}_{2}(R-3,5-$ $\left.\left(p-{ }^{-} \mathrm{BuC}_{6} \mathrm{H}_{4}\right) \mathrm{TPCP}\right)_{4}\left(\mathbf{1 4 )}\right.$ and $\mathrm{Rh}_{2}(R-2-\mathrm{Cl}-5-\mathrm{BrTPCP})_{4}$ (15) selectively react at the most accessible unactivated methylene site in linear alkanes. ${ }^{8 \mathrm{c}, g}$ We have recently found that $\mathrm{C}-\mathrm{H}$ functionalization with donor/acceptor carbenes tend to proceed in higher yields when the acceptor group is a trihaloethyl derivative. ${ }^{8 \mathrm{~b}}$ Therefore, the test reaction was initially conducted with the trichloroethyl aryldiazoacetate $\mathbf{1 6}$ and 2.5 equiv of COD. Most of the catalysts gave an undefined mixture of products, consisting of cyclopropanation, diastereomeric monoinsertion and likely diastereomeric and/or regioisomeric diinsertion products (see supplementary information for details). In contrast, the $\mathrm{Rh}_{2}(R-2-\mathrm{Cl}-5-\mathrm{BrTPCP})_{4}$-catalyzed reaction was relatively clean and the desired mono $\mathrm{C}-\mathrm{H}$ functionalization product $\mathbf{1 7}$ could be isolated in $72 \%$ yield, $>30: 1 \mathrm{dr}$ and $91 \%$ ee.

## Scheme 3 Catalyst screening



The scope of the reaction was then examined with a range of aryldiazoacetates as summarized in Scheme 4. The first three systems examined the influence of the ester functionality. The methyl ester gave the $\mathrm{C}-\mathrm{H}$ functionalization product $\mathbf{1 8}$ with lower diastereoselectivity and enantioselectivity compared to the trichloroethyl ester 17, further underscoring the advantage of the trihaloethyl esters in $\mathrm{C}-\mathrm{H}$ functionalization reactions. The trifluoroethyl derivative $\mathbf{1 9}$ was formed with the highest yield and enantioselectivity and retained the high diastereoselectivity. Therefore, the further studies focused on the trifluoroethyl derivatives. A series of $p$-substituted aryl (20-24) and a pyridyl derivative (25) were prepared and they were formed in high yield and dr, with the asymmetric induction in the range of $79-95 \%$ ee. The reaction with a metasubstituted aryldiazoacetate gave the mono-insertion product 26 but with decreased enantioselectivity ( $63 \%$ ee). We also examined the reaction with the styryldiazoacetate and it similarly gave an effective reaction to form 27 in $67 \%$ yield, $>30: 1 \mathrm{dr}, 88 \%$ ee.

Scheme 4. Mono C-H functionalization of COD					
  2.5 equiv.		$\mathrm{R}_{2}$   mol	$\frac{15(1 \mathrm{~mol} \%)}{\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \text {-r.t. }}$		
product	$\mathrm{R}_{1}$	$\mathrm{R}_{2}$	yield, \%	dr	ee, \%
17	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{CCl}_{3}$	72/80*	>30:1	91/89*
18	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{3}$	73	11.6:1	72
19	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	83	>30:1	93
20	$p-1 \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	78	>30:1	95
21	$p$-(MeO) $\mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	72	>30:1	81
22	$p-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	78	>30:1	94
23	$p$ - $\mathrm{BuC}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	85	>30:1	88
24	$p-(\mathrm{AcO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	70	>30:1	79
25	6 -(2-Clpyridine)	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	72	>30:1	87
26	$m-\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	64	>30:1	63
27	styryl	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	67	>30:1	88
* larger scale reaction at 3.0 mmol of diazo compound					

With the vision of designing chiral COD ligands, we decided to explore whether a double $\mathrm{C}-\mathrm{H}$ functionalization could be achieved because this could be a direct way for the synthesis of $\mathrm{C}_{2}$ symmetric ligands. At the onset of this work, it was considered to be a challenging $\mathrm{C}-\mathrm{H}$ functionalization because a stereoselective reaction would be required at a specific allylic methylene site in the presence of two other allylic methylene sites and two cis-alkenes. Nevertheless, the double C-H functionalization turned out to be very effective (Scheme 5). The reaction was conducted using 3 equiv of the diazo compound at elevated temperature ( $40{ }^{\circ} \mathrm{C}$ ), and under these conditions the bis $\mathrm{C}-\mathrm{H}$ functionalization products $\mathbf{2 8 - 3 5}$ were formed in good yield. All the products are produced with very high levels of enantioselectivity ( $>99 \%$ ee) even though the enantiomeric purity of the mono $\mathrm{C}-\mathrm{H}$ functionalization products was considerably lower $(72-95 \%$ ee $)$. This is because the minor enantiomer of the mono-insertion product is primarily transformed into the meso diastereomer of the final bis $\mathrm{C}-\mathrm{H}$ insertion product during the second insertion. Also, imperfect asymmetric induction of the major enantiomer of the mono insertion product generates a diastereomer rather than an enantiomer of the final bis $\mathrm{C}-\mathrm{H}$ insertion products. Consequently 28-35 are produced with very high enantioselectivity but with moderate diastereoselectivity. Fortunately, the desired major diastereomer is easily purified on silver-impregnated silica.

## Scheme 5. Double C-H functionalization of COD



$80 \%$ yield,$>99 \%$ ee $6.5: 1 \mathrm{dr}$

$53 \%$ yield, $>99 \%$ ee, 4.2 : 1 dr

$61 \%$ yield, >99\% ee, 7.9:1 dr

$76 \%$ yield, $>99 \%$ ee, $6.5: 1 \mathrm{dr}$

$76 \%$ yield, $>99 \%$ ee, $6.8: 1 \mathrm{dr}$

$66 \%$ yield, $>99 \%$ ee, 6.8 :1 dr

$72 \%$ yield, $>99 \%$ e.e, $4.5: 1 \mathrm{dr}$
${ }^{*}$ minor dr. is meso compound, the minor dr. for 29 is isolated and characterized in supporting information.
** larger scale of reaction at 0.8 mmol scale of COD

In order to understand the unprecedented site selectivity exhibited by COD, control experiments were conducted on related substrates using $\mathrm{Rh}_{2}(2-\mathrm{Cl}, 5-\mathrm{BrTPCP})_{4}(\mathbf{1 5})$ as catalyst (Scheme 6). 1E,5E,9E-Cyclododecatriene (36) was found to be an effective substrate, forming the allylic $\mathrm{C}-\mathrm{H}$ functionalization product 37 with poor diastereoselectivity but high enantioselectivity. The diastereomeric ratio could be altered slightly ( $2: 1-1: 2$ ) with different dirhodium catalysts, but no catalyst rendered the reaction highly diastereoselective. The reaction with cyclohexene gave a mixture of cyclopropanation (38) and $\mathrm{C}-\mathrm{H}$ functionalization products (39), ranging from 1.27:1 to $1: 2.85$, and the diastereoselectivity was also poor ranging from 3.11:1 to 1:3.12 dr (see supporting information for details). The reaction with cis-cyclooctene, however, was very clean but the only product formed was the cyclopropane (40) (scheme 3). These results indicate that the structural features of COD are ideally suited for stereoselective allylic C-H functionalization, and other cycloalkenes can have a very different reactivity profile.
Scheme 6. Evaluation of related cycloalkenes

$\left(\mathrm{Rh}_{2}\right.$ catalyst screening give dr. ranging from 1:2 to 2:1)



3 equiv.



79\% yield, $>20: 1 \mathrm{dr}$
( $\mathrm{Rh}_{2}$ catalyst screening all gave 40)

The bis $\mathrm{C}-\mathrm{H}$ functionalization products can be further derivatized by either ester hydrolysis, ester reduction, or aryllithium addition, and the resulting alcohol products can be either methylated or silylated (See supporting information for details), leading to the formation of a variety of $\mathrm{C}_{2}$-symmetric chiral COD ligands (41-49). A preliminary exploratory study was conducted to determine if these chiral COD ligands were compatible with rhodium-catalyzed conjugate addition of phenylboronic acid to cyclohexenone (Scheme 7). The reactions with all of the ligands, except for the aryl iodide derivative 31 resulted in the formation of conjugate addition product 50 in reasonable yield (32-84\%) and variable levels of enantioselectivity ( $26-76 \%$ ee). Most of the direct double CH insertion products gave about $30-40 \%$ ee but some of the ligands derived from the aryllithium addition gave higher levels of enantioselectivity. The most promising ligand to date has been $\mathbf{4 9}$, which resulted in the formation of 50 in $63 \%$ yield and $76 \%$ ee.

## Scheme 7. Enantioselective conjugate addition



In conclusion, a one-step enantioselective synthesis of $\mathrm{C}_{2}{ }^{-}$ symmetric chiral COD ligands was achieved by means of a double allylic $\mathrm{C}-\mathrm{H}$ functionalization of COD. This transformation illustrates the capacity of $\mathrm{C}-\mathrm{H}$ functionalization to rapidly generate synthetic complexity from a simple starting material. Initial evaluation of these chiral COD ligands along with their derivatives revealed they were effective in the rhodium-catalyzed asymmetric arylation of cyclohex-2enone.

## ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge on the ACS Publications website.
Complete experimental procedures and compound characterization are available in the Supporting Information. (PDF)
CIF file for 22 (CCDC 1960982), 35 (after reduction) (CCDC 1960983), 37 (major) (CCDC 1960993)

## AUTHOR INFORMATION

## Corresponding Author

*hmdavie@emory.edu
*sblakey@emory.edu

## Notes

HMLD is a named inventor on a patent entitled, Dirhodium Catalyst Compositions and Synthetic Processes Related Thereto (US 8,974,428, issued March 10, 2015). The other authors have no competing financial interests.

## ACKNOWLEDGMENT

We thank Dr. John Bacsa for the X-ray structure determination. Financial support was provided by NSF under the CCI Center for Selective C-H Functionalization (CHE-1700982). Funds to purchase the NMR and X-ray spectrometers used in these studies were supported by NSF (CHE 1531620 and CHE 1626172).

## REFERENCES

(1) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: Sausalito, CA., 2010; pp 48.
(2) Hesp, K. D.; Tobisch, S.; Stradiotto, M. $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ as a Catalyst Precursor for the Intramolecular Hydroamination of Unactivated Alkenes with Primary Amines and Secondary Alkyl- or Arylamines: A Combined Catalytic, Mechanistic, and Computational Investigation. J. Am. Chem. Soc. 2010, 132, 413-426.
(3) Cooze, C.; Dada, R.; Lundgren, R. J. Direct Formic Acid Mediated Z-Selective Reductive Coupling of Dienes and Aldehydes. Angew. Chem. Int. Ed. 2019, 58, 12246-12251.
(4) (a) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. A Chiral Chelating Diene as a New Type of Chiral Ligand for Transition Metal Catalysis: Its Preparation and Use for the Rhodium-Catalyzed Asymmetric 1,4-Addition. J. Am. Chem. Soc. 2003, 125, 11508-11509. (b) Otomaru, Y.; Kina, A.; Shintani, R.; Hayashi, T. C2-Symmetric Bicyclo[3.3.1]nona-2,6-diene and Bicyclo[3.3.2]deca-2,6-diene: New Chiral Diene Ligands Based on the 1,5-Cyclooctadiene Framework. Tetrahedron Asymm. 2005, 16, 1673-1679. (c) Otomaru, Y.; Okamoto,
K.; Shintani, R.; Hayashi, T. Preparation of $C_{2}$-Symmetric Bicyclo[2.2.2]octa-2,5-diene Ligands and Their Use for RhodiumCatalyzed Asymmetric 1,4-Addition of Arylboronic Acids. J. Org. Chem. 2005, 70, 2503-2508. (d) Nishimura, T.; Nagaosa, M.; Hayashi, T. Chiral Tetrafluorobenzobarrelenes as Highly Efficient Ligands for the Rhodium-catalyzed Asymmetric 1,4-Addition of Arylboronic Acids. Chem. Lett. 2008, 37, 860-861. (e) Helbig, S.; Sauer, S.; Cramer, N.; Laschat, S.; Baro, A.; Frey, W., Chiral Bicyclo[3.3.0]octa-2,5dienes as Steering Ligands in Substrate-Dependent RhodiumCatalyzed 1,4-Addition of Arylboronic Acids to Enones. Adv. Synth. Catal. 2007, 349, 2331-2337. (f) Feng, C. -G.; Wang, Z. -Q.; Tian, P.; Xu, M. -H.; Lin, G. -Q. Easily Accessible $C_{2}$-Symmetric Chiral Bicyclo[3.3.0]dienes as Ligands for Rhodium-Catalyzed Asymmetric 1,4-Addition. Chem. Asian J. 2008, 3, 1511-1516.
5. Defieber, C.; Grutzmacher,H.; Carreira, E. M., Chiral Olefins as Steering Ligands in Asymmetric Catalysis. Angew. Chem. Int. Ed. 2008, 47, 4482-502.
6. Nagamoto M.; Nishimura, T., Asymmetric Transformations under Iridium/Chiral Diene Catalysis. ACS Catal. 2017, 7, 833-847.
(7) (a) Davies, H. M. L.; Liao, K., Dirhodium Tetracarboxylates as Catalysts for Selective Intermolecular C-H Functionalization. Nat. Rev. Chem. 2019, 3, 347-360. (b) Davies, H. M. L.; Morton, D. Guiding Principles for Site Selective and Stereoselective Intermolecular C-H Functionalization by Donor/Acceptor Rhodium Carbenes. Chem. Soc. Rev. 2011, 40, 1857-1869.
8. (a) Qin, C. M.; Davies, H. M. L. Role of Sterically Demanding Chiral Dirhodium Catalysts in Site-Selective C-H Functionalization of Activated Primary C—H Bonds. J. Am. Chem. Soc. 2014, 136, 97929796. (b) Guptill, D. M.; Davies, H. M. L. 2,2,2-Trichloroethyl Aryldiazoacetates as Robust Reagents for the Enantioselective C-H Functionalization of Methyl Ethers. J. Am. Chem. Soc. 2014, 136, 17718-17721. (c) Liao, K. B.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Site-selective and Stereoselective Functionalization of Unactivated C-H Bonds. Nature 2016, 533, 230-234. (d) Liao, K. B.; Pickel, T. C.; Oyarskikh, V. B.; Acsa, J. B.; Usaev, D. G. M.; Davies, H. M. L. Site-selective and Stereoselective Functionalization of Non-activated Tertiary C-H Bonds. Nature 2017, 551, 609-613. (e) Liao, K.; Yang, Y.-F.; Li, Y.; Sanders, J. N.; Houk, K. N.; Musaev, D. G.; Davies, H. M. L. Design of Catalysts for Site-Selective and Enantioselective Functionalization of Non-activated Primary C-H Bonds. Nature Chem. 2018, 10, 1048-1055. (f) Fu, J.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Davies, H. M. L. Desymmetrization of Cyclohexanes by Site- and Stereoselective C-H Functionalization. Nature 2018, 564, 395-399. (g) Liu, W.; Ren, Z.; Bosse, A. T.; Liao, K.; Goldstein, E. L.; Bacsa, J.; Musaev, D. G.; Stoltz, B. M.; Davies, H. M. L. Catalyst-Controlled Selective Functionalization of Unactivated C-H Bonds in the Presence of Electronically Activated CH Bonds. J. Am. Chem. Soc. 2018, 140, 12247-12255.


[^0]:    
    Area Percent Report

