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Ligand-Enabled y-C(sp®)-H Olefination of Free Carboxylic Acids

Kiron Kumar Ghosh,* Alexander Uttry,” Francesca Ghiringhelli, Arup Mondal, Manuel van Gemmeren*

Dedication

Abstract: We report the ligand enabled C—H activation/olefination of
free carboxylic acids in the y-position. Through an intramolecular
Michael-addition, &-lactones are obtained as products. Two distinct
ligand classes are identified that enable the challenging palladium-
catalyzed activation of free carboxylic acids in the y-position. The
developed protocol features a wide range of acid substrates and olefin
reaction partners and is shown to be applicable on a preparatively
useful scale. Insights into the underlying reaction mechanism
obtained through kinetic studies are reported.

The synthesis of complex carboxylic acid derivatives from simple
and readily available carboxylic acids is highly attractive, due to
the prevalence of the carboxylic acid moiety in compounds such
as pharmaceuticals, odors, flavors, etc.Y However, despite some
recent progress, the direct C—H activation and functionalization of
free carboxylic acids remains highly challenging, due to the weak
directing ability of the carboxylate group and competing
coordination modes amongst other reasons, and thus requires the
identification of suitable ligands and a careful fine-tuning of the
associated reaction conditions.”) These challenges can be
circumvented through the introduction of more strongly directing
exogenous directing groups, a strategy that has enabled a variety
of highly useful transformations.® One highly attractive synthetic
target in the field has been the C—H olefination of carboxylic acid
derivatives. Yu and coworkers have developed conditions for the
B-olefination of aliphatic amides bearing a perfluorinated arene
substituent on the nitrogen, which delivered y-lactams through a
C-H-olefination followed by an intramolecular Michael addition
(Scheme 1A)." Later, the same group developed ligands that
allowed them to expand this reactivity to the C—H olefination of
the substantially more challenging y-position giving access to -
lactams (Scheme 1B).5! In parallel to the development of methods
relying on exogenous directing groups, substantial efforts by
ourselves and others have recently been directed towards the use
of free carboxylic acids in C-H activation processes and the
identification of suitable ligands enabled several highly useful
transformations.® Amongst these, Yu and coworkers have
reported a direct synthesis of y-lactones through the B-(Csp®)-H
olefination of free carboxylic acids, followed by an intramolecular
cyclization (Scheme 1C).®1 While constituting a synthetically
highly attractive approach towards the valuable &-lactone motif,[”
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the analogous y-olefination/cyclization has remained elusive to
date. It should be noted that research towards the direct y-C(sp®)—
H activation of free carboxylic acids is still at its infancy and to the
best of our knowledge only two synthetic methods relying on this
type of process have been reported to date by the groups of Maiti
and Shi, in both cases enabling the y-arylation of free carboxylic
acids through Pd(Il)/Pd(IV)-catalytic cycles, albeit with
complementary acid scopes.®l We thus became interested in
developing a method for the synthesis of d-lactones through the
direct y-C(sp®)-H olefination of free carboxylic acids. Herein we
report the realization of this goal enabled through the identification
of two suitable ligand-classes: N-acetyl anthranilic acid-
derivatives and N-acetyl amino acids.

B-C(sp®)-H Olefination of
Carboxylic Acid Derivatives
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Scheme 1. Key advances in the C(sp3)-H olefination of carboxylic acid
derivatives.

Based on our experience in the development of challenging -
C(sp®)—H functionalization processes for free carboxylic acids, we
expected that the identification of suitable ligands would be key in
order to establish the desired protocol. We thus initiated our
studies using 3,3-dimethylbutyric acid (1a) and ethyl acrylate (2a)
as model substrates. After an initial identification of L10 as
particularly promising ligand, we optimized the reaction conditions
using this ligand (for details see the Supporting Information). After
identifying the otherwise best reaction conditions, we re-
evaluated representatives of common ligand classes in the
C(sp®)—H activation (Scheme 1). We found that the anthranilic
acid derivative L10 continues to deliver superior results compared
to pyridone L1, pyridine L2,59- 19 and the bidentate ligands L3-
L7.169 6. 111 Stryctural variants of the anthranilic acid motif L8 and
L9 gave no further improvements. Finally, a re-investigation of
amino acid-derived ligands L11-L 14" 8 8 showed that N-Ac-B-
alanine L14 gave equally good results as L10. Notably this ligand
performed substantially worse than L10 in an initial comparison
under non-optimized conditions. Having identified two suitable
ligands for the y-olefination of free carboxylic acids, we chose to
investigate the scope of this transformation using L14, simply
based on the broader availability of this ligand.
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Scheme 2. Identification of suitable ligands for the y-C(sp3)—H olefination of free
carboxylic acids. Reactions were conducted on a 0.2 mmol scale. Yields were
determined by 'H-NMR analysis of the crude reaction mixture with 1,3,5-
trimethoxy benzene as internal standard.

It should be noted however, that the discovery of anthranilic acid
ligand L10, which has not previously been used in C—H activation
to the best of our knowledge may prove helpful in future related
studies. We began by studying the substrate scope with respect

to the acid substrate (Scheme 3).
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Scheme 3. Acid scope of the ligand-enabled y-C(sp3)-H olefination of free
carboxylic acids. Reactions were conducted on a 0.2 mmol scale. a. 2a (2.5
equiv) and Ag2COs (1.75 equiv) were used with 40 h reaction time. b. 2a (7
equiv) and Ag2COs (2.5 equiv) were used with 72 h reaction time. c. The yield
in parentheses was obtained on a 5 mmol scale.
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As expected based on our optimization studies, the model product
3a could be obtained in good yield (64%). This example was also
used to probe the scalability of our protocol. Importantly, a virtually
identical yield of 62% was obtained on a 5 mmol scale. For
structurally more complex acid substrates we found that an
increased reaction time and acrylate loading were required to
obtain optimal yields and used these conditions for the remainder
of the acid scope. The alkyl substituted products 3b-e were
obtained in good yields and with moderate diastereoselectivities
in favor of the cis-configured isomer. The spirocyclic products 3f
and 3g, as well as 3h, bearing two non-methyl substituents were
all obtained in synthetically useful yields. Finally, products 3i-m,
containing aromatic substituents were again obtained in good
yields and moderate to good diastereoselectivities.

We proceeded to study the scope of this transformation with
respect to the olefinic reaction partner (Scheme 4).
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Scheme 4. Olefin scope of the ligand-enabled y-C(sp3)-H olefination of free
carboxylic acids. Reactions were conducted on a 0.2 mmol scale. a. Diethyl
vinylphosphate (7 equiv) was used with 72 h reaction time.

Various acrylates were found to react smoothly, giving products
4a-d in good yields. Olefins bearing other electron withdrawing
groups, such as methyl vinyl ketone (4e), acrylonitrile (4f), phenyl
vinyl sulfone (4g), ethenesulfonyl fluoride (4h), diethyl
vinylphosponate (4i) could all be used as reaction partners.
Finally, olefins containing structurally more complex subunits
were also successfully employed in the reaction, giving product
4j-l in good vyields.

Having studied the scope of this transformation, we became
interested in obtaining basic insights into the underlying reaction
mechanism. We began by evaluating whether the C—H activation
contributes to the overall rate of the transformation (Scheme 5A).
The clear primary kinetic isotope effect observed both in a
competition experiment and in parallel experiments indicates that
the C—H activation is indeed rate-determining.l?
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Scheme 5. Preliminary mechanistic studies. Experiments in Scheme 5A and B
were conducted on a 0.2 mmol scale. The reversibility experiments were
conducted on a 0.1 mmol scale.

To obtain further knowledge about this step, we proceeded to
determine the kinetic orders in both reaction partners and the
catalyst (Scheme 5B). We began by determining the initial rates
of the reaction varying one of the starting concentrations. The
results were then analyzed using the method described by
Burés.'® The analysis revealed an order of 0.55 in catalyst, which
is indicative of monomer-dimer-equilibria in which the monomer is
the active species.***4 The existence of such equilibria is well
documented for palladium catalysts with amino acid-derived
ligands and both the monomers and the dimers have been shown
to be the active species depending on the system at hand.l*®
When we attempted to determine the order with respect to the
acid component, we found that both an increase and a decrease
in acid concentration were detrimental to the reaction outcome.
Having already discovered that the catalyst exists in an
equilibrium between active and inactive states, this result can
easily be rationalized: The rate of product formation is influenced
by the amount of substrate-palladium pre-reactive complex
formed, which in turn depends more on the acid-base balance of
the reaction mixture than on the actual substrate concentration.
Since we optimized the acid and base amounts during our
optimization studies, deviations in both directions are detrimental.
Finally, we found a small, but non-zero (0.1) order in the olefin
reaction partner. This result was unexpected, due to the previous
identification of the C—H activation as rate-determining step,
which implies a zero order in the olefin that enters the catalytic

cycle after this step. We hypothesized that this result can be
explained by a reversibility of the C—H activation step, together
with a lower, but comparable barrier for a subsequent step
involving the olefin. In such a scenario, the C—H activation step
would determine the overall rate of product formation, but a small
fraction of the palladacycle formed could statistically revert to the
starting material, when the subsequent reaction with the olefin
does not occur fast enough. In order to probe this hypothesis, we
conducted two reversibility experiments (Scheme 5C), one during
the product forming reaction with 1la-dg as substrate and one in
the absence of the olefin reaction partner. In both cases the
deuteration of the remaining starting material was analyzed.
When no olefin is available, a strong de-deuteration was
observed, showing that the C-H activation is in principle
reversible under the reaction conditions. However, the result in
the presence of olefin clearly demonstrates that when product
formation is possible, it mostly outcompetes the retro-C-H
activation, while a small but measurable backwards reaction
occurs. These results are in good agreement with the observed
0.1 order in olefin. Overall, we propose the mechanism shown in
Scheme 6A, which takes into account the observations discussed

above.
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Scheme 6. Proposed catalytic cycle and mechanism for side product formation.

Accordingly, the reaction would proceed through a (mostly) rate-
determining C—H activation by a mononuclear Pd(ll)-catalyst.
Next, a sequence of ligand exchange, carbopalladation, B-H-
elimination and reductive elimination would result in the formation
of the product, concomitantly giving a Pd(0)-species, which would
then be re-oxidized by the silver salt employed as terminal
oxidant. A final mechanistic feature of our protocol concerns a
side product observed in small quantities throughout these
studies (5, Scheme 6B). We could isolate and characterize this
side product in two cases, 5e and 5m. Since the formation of
these compounds requires a second oxidation event, we
hypothesize that they are formed through a carboxylate directed



C-H activation/oxidation starting from the open form of the
primary product.

In summary, we have developed a protocol for the palladium-
catalyzed y-C(sp®)—H olefination of free carboxylic acids. Through
an in situ Michael addition &-lactones are obtained without the
need to install/remove exogenous directing groups. Our protocol
features a broad scope of both reaction partners. Mechanistic
experiments support a Pd(I1)/Pd(0)-catalytic cycle, which renders
this study the first report on a direct y-C(sp®)-H activation/
functionalization of free carboxylic acids through this redox
manifold. We expect that these results will serve as a proof of
principle and inspire research towards further transformations of
this kind.
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General Information

Solvents, Reagents and Techniques

Unless otherwise noted, all reactions were conducted in glassware previously dried in an oven at
120°C. Reaction temperatures are reported as the temperature of the oil bath or the metal block
surrounding the reaction vessel. The following solvents were dried by fractional distillation: pentane,
ethyl acetate, CH,Cl,. Additional anhydrous solvents (<50 ppm water) were purchased from Acros
Organics, Sigma-Aldrich, or Carl Roth and stored over molecular sieves under an argon atmosphere.
Commercially available chemicals were obtained from ABCR, Acros Organics, Aldrich Chemical Co., Alfa
Aesar, Combi-Blocks, Fluorochem, and TCI Europe and used as received unless otherwise stated.

Chromatography

Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 aluminum plates
(Merck). The compounds were visualized by the exposure to ultraviolet light (254 nm and 366 nm)
and/or by staining. For staining the TLC plates were dipped into a solution of KMnO4 (1 g KMnQ4, 6 g
K,CO; and 0.1 g KOH in 100 mL H,0) or bromocresol green (40 mg bromocresol green in 100 mL EtOH;
addition of 0.1Maq. NaOH until the blue colors appears in the solution) and developed with a heat gun
if necessary. Flash column chromatography was performed on silica gel (35-70um mesh, 60 A, Acros)
with a positive argon overpressure.

Nuclear Magnetic Resonance (NMR) Spectroscopy

'H-, 13C-, and F-NMR spectra were measured at r.t. on a Bruker Avance Il 300 MHz, Avance |l 400
MHz, or Agilent DD2 600 MHz spectrometer. Chemical shifts (8) of *H-and *C-NMR spectra are given
in ppm relative to tetramethyl silane (TMS) using the residual solvent peaks for calibration (CDCls: §
H= 7.26 ppm, 6 C= 77.16 ppm).’°F-NMR spectra are not externally calibrated and chemical shifts is
given relative to CCIsF as received from the automatic data processing. Chemical shifts are reported
with two (*H) or one (all other nuclei) digits after the decimal point. Exceptions are done when
requivuired to annotate clearly distinguishable signals observed in very close proximity to one another.
NMR-data are reported as follows: chemical shift (multiplicity [s = singlet, d = doublet, t = triplet, q =
guartet, quint = quintet, sept = septet, m = multiplet, br = broad], coupling constants (J, Hz) and
integration). All spectra were processed using the MestReNova 12.0.4 program. For the spectra of
diastereomeric mixtures signals clearly assigned to a particular diastereomer are labelled with a
superscript at the integration. The number of protons in such cases refers to the number of protons of
the respective isomer. The 3*C-NMR spectra of mixtures are reported as observed. Due to the low signal
intensity and potentially an overlap of signals, the number of signals can deviate from the hypothetical
value, however, the signals of the major component are clearly recognizable in all cases.



Gas Chromatography with Flame lonization Detection (GC-FID)

GC-FID analysis was done on an Agilent Technologies 6890A equipped with an HP-5 column (0.32 mm
x 30 m, film: 0.25 pm) using flame ionization detection.

Mass Spectrometry (MS)

High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics MicroTof or on a Thermo-
Fisher Scientific Orbitrap LTQ XL spectrometer using electron spray ionization (ESI).

Infrared Spectroscopy (IR)

Infrared spectra were recorded neat on a Shimadzu FTIR 8400S or a Varian Associates FTIR 3100
Excalibur spectrometer. The wave numbers (v) of recorded IR-signals are quoted in cm™.



Preparation of Ligands

General Procedure A: Synthesis of N-acetylated Anthranilic Acid Ligands
The N-acetylation of anthranilic acids was done via a modified procedure of Roberts et al.*

Anthranilic acid was dissolved in dry THF (0.25 M), acetyl chloride (1.0 equiv) was added slowly and the
reaction mixture was cooled to 0 °C. EtsN (1.5 equiv) was added dropwise and the reaction mixture
was allowed to slowly warm up to r.t.. The reaction mixture was stirred for 16 h and THF was removed
under reduced pressure. The reaction mixture was cooled to 0 °C and aqg. HCI (1.0 M) was added until
the pH was between 1 and 5. All volatiles were removed under reduced pressure and the crude product
was purified by column chromatography (CH,Cl;:MeOH = 99:1 to 90:10).

2-Acetamido-6-fluorobenzoic acid (L10):
F

[:i:I:COOH

NHAc

L10 Following the general procedure A on a 32.2 mmol scale the target compound L10 was

obtained as colorless solid (5.09 g, 25.8 mmol, 80%).

'H-{**F}-NMR (500 MHz, DMSO-dg): 6 = 10.12 (s, 1H), 7.63 (dd, J = 8.3, 1.0 Hz, 1H), 7.48 (t, J = 8.3 Hz,
1H), 7.03 (dd, J = 8.3, 1.0 Hz, 1H), 2.05 (s, 3H) ppm.

13C-{1F}-NMR (126 MHz, DMSO-d¢): 6 = 168.5, 165.5, 160.2, 138.6, 132.4, 118.8, 113.6, 111.4, 23.9
ppm.

19¢_{'H}NMR (470 MHz, DMSO-ds): 5 = -110.9 ppm.
HRMS (ESIpos) m/z: Calcd for CsHsFNNaOs* 220.0380, Found 220.0381.

IR (cm™): 2922, 2253, 1686, 1653, 1472, 1375, 903, 723.

trans-2-Acetamidocyclohexane-1-carboxylic acid (L12):

0
O:JJ\OH
NHAc

L12 trans-2-Aminocyclohexane-1-carboxylic acid (300 mg, 2.10 mmol) was dissolved in water

(5 mL), acetic anhydride (396 L, 428 mg, 2.0 equiv) was added slowly and the mixture was stirred for
6 h. All volatiles were removed under reduced pressure and the crude product was purified by column

chromatography (CH2Cl,:MeOH = 90:10). The product L12 was obtained as a colorless solid (174 mg,
0.942 mmol, 49 %).

H-NMR (400 MHz, DMSO-de): § = 11.59 (s, 1H), 7.78 (d, J = 8.7 Hz, 1H), 3.74 (tdd, J = 10.8, 8.7, 4.1 Hz,
1H), 2.25 - 2.11 (m, 1H), 1.89 — 1.54 (m, 7H), 1.45 — 0.99 (m, 4H) ppm.

13C-NMR (101 MHz, DMSO-ds): 6 = 175.3, 168.0, 48.7, 48.3, 32.0, 28.6, 24.3, 24.2, 22.8 ppm.



HRMS (ESIpos) m/z: Calcd for CoH1sNNaOs* 208.0944, Found 208.0956.

IR (cm™): 2949, 2920, 1721, 1375, 1254, 1184, 997.

2-Fluoro-6-(2,2,2-trifluoroacetamido)benzoic acid (L15):
F
i :COOH
NHCOCF;

L15 6-fluoroanthranilic acid (155 mg, 1 mmol) was dissolved in dry THF (0.33 M),
trifluoroacetic anhydride (970 uL, 7.00 mmol) was added slowly at 0 °C. Then the reaction mixture was
allowed to warm up to r.t. and was stirred for 16 h. The reaction mixture was cooled to 0 °C and aq.
HCI (1.0m) was added until the pH was between 1 and 5. All volatiles were removed under reduced

pressure and the crude product was purified by column chromatography (CH2Cl>:MeOH = 99:1 to
90:10) to obtain the target compound L15 as colorless solid (122 mg, 0.486 mmol, 49%).

'H-{*°F}-NMR (500 MHz, DMSO-d¢): § = 13.76 (s, 1H), 11.71 (s, 1H), 7.62 (t, J = 8.3 Hz, 1H), 7.53 (dd, J
=8.3,1.1 Hz, 1H), 7.27 (dd, J = 8.3, 1.1 Hz, 1H) ppm.

13C-{19F}-NMR (126 MHz, DMSO-ds): & = 165.0, 160.2, 155.0, 135.5, 133.0, 120.8, 115.9, 115.8, 114.6
ppm.

F-{'H}-NMR (470 MHz, DMSO-d¢): 6§ = -74.7, -110.1 ppm.
HRMS (ESIpos) m/z: Calcd for C13H22NaO4* 265.1410, Found 265.1423.

IR (cm™): 1732, 1707, 1616, 1580, 1449, 1246, 1157, 957.

2-((tert-Butoxycarbonyl)atranso)-6-fluorobenzoic acid (L16):
F
@COOH
NHBoc
L16 6-fluoroanthranilic acid (155 mg, 1 mmol) was dissolved in dry THF (0.33 ™M), Boc,0 (240
mg, 1.1 mmol) was added slowly and the reaction mixture was cooled to 0 °C. EtsN (2.0 equiv) was
added dropwise and the reaction mixture was allowed to slowly warm up to r.t.. The reaction mixture
was stirred for 16 h and all volatiles were removed under reduced pressure. The crude product was

purified by column chromatography (CH,Cl,:MeOH =99:1 to 90:10) to obtain the target compound L16
as colorless solid (102 mg,0.400 mmol, 40%).

1H-{*°F}-NMR (500 MHz, CDCls): & = 9.75 (s, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.48 (t, J = 8.5 Hz, 1H), 6.79 (d,
J=8.5Hz, 1H), 1.53 (s, 9H) ppm.

13C-{}FNMR (126 MHz, CDCl5): 6 = 170.0, 163.0, 152.8, 143.4, 135.5, 115.3, 109.7, 81.5, 28.4 ppm.
19E_NMR (376 MHz, CDCl3): & = -104.7 ppm.
HRMS (ESlIpos) m/z: Calcd for C1,H13FNNaO,* 278.0799, Found 278.0812.

IR (cm™): 2984, 1726, 1670, 1580, 1472, 1250, 1153, 966, 887.



2-Fluoro-6-(((2,2,2-trichloroethoxy)carbonyl)atranso)benzoic acid (L17):

F

COOH
0
Jj\ Cl
N O
H Cl
cl
L7 6-fluoroanthranilic acid (155 mg, 1 mmol) was dissolved in dry CH,Cl, (0.33 m),

2,2,2-trichloroethoxycarbonyl chloride (150 pL, 1.10 mmol) was added slowly and the reaction mixture
was cooled to 0 °C. Pyridine (160 pL, 2.00 mmol) was added dropwise and the reaction mixture was
allowed to slowly warm up to r.t.. The reaction mixture was stirred for 16 h and CH,Cl, was removed
under reduced pressure and all volatiles were removed under reduced pressure. The crude product
was purified by column chromatography (CH2Cl,:MeOH = 99:1 to 90:10) to obtain the target compound
L17 as colorless solid (137 mg, 0.414 mmol, 41%).

H-NMR (400 MHz, CDCls): & = 7.72 (td, J = 8.2 Hz, Jur= 5.6 Hz, 1H), 7.27 (dt, J = 8.1, 1.0 Hz, 1H), 7.10
(ddd, J = 8.3, 1.0 Hz, Jur= 9.5 Hz, 1H), 5.08 (s, 2H) ppm.

13C-NMR (101 MHz, CDCls): & = 162.6 (d, Jc.r = 269.1 Hz), 154.4, 154.1 (d, Jc-r = 5.3 Hz), 149.0, 138.0 (d,
Jer=10.7 Hz), 121.5 (d, Jcr = 4.0 Hz), 113.9 (d, Jcr = 20.2 Hz), 104.4 (d, Jcr = 8.3 Hz), 93.7, 78.1 ppm.

9F-NMR (376 MHz, CDCl3): 6 = -106.3 ppm.
HRMS (ESIpos) m/z: Calcd for C13H2,NaO4* 265.1410, Found 265.1423.

IR (cm™): 2959, 2253, 1784, 1645, 1622, 1578, 1483, 1377, 1327, 1302, 1252, 905, 725.

2-Fluoro-6-formamidobenzoic acid (L18):

©:COOH
NHAc

L18 Following the general procedure A on a 1.50 mmol scale the target compound L18 was
obtained as colorless solid (197 mg, 1.02 mmol, 68%).

'H-NMR (400 MHz, DMSO-ds): § = 9.63 (s, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.05 (d,
J=7.7Hz, 1H), 2.34 (s, 3H), 2.00 (s, 3H) ppm.

13C-NMR (101 MHz, DMSO-d¢): 6 = 168.9, 168.4, 136.0, 135.7, 129.6, 129.5, 127.8, 126.7, 122.1, 23.6,
20.4 ppm.

HRMS (ESIpos) m/z: Calcd for C1oH1:NNaOs* 216.0631, Found 216.0641.

IR (cm™): 2926, 2857, 1730, 1684, 1466, 1371, 1250, 1103, 907, 729.

2-Acetamido-6-methoxybenzoic acid (L19):

o

©iCOOH
NHAc
L19 Following the general procedure A on a 1.50 mmol scale the target compound L19 was

obtained as colorless solid (151 mg, 0.722 mmol, 48%).
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'H-NMR (400 MHz, DMSO-d): § =12.92 (s, 1H), 9.50 (s, 1H), 7.34 (t, J = 8.2 Hz, 1H), 7.20 (d, J = 8.2 Hz,
1H), 6.88 (d, J = 8.2 Hz, 1H), 3.77 (s, 3H), 1.99 (s, 3H) ppm.

13C-NMR (101 MHz, DMSO-d¢): & = 168.5, 167.1, 156.7, 136.2, 130.3, 118.0, 116.8, 107.9, 55.9,
26.1 ppm.

HRMS (ESlIpos) m/z: Calcd for C13H,2NaO4* 265.1410, Found 265.1423.

IR (cm™): 2934, 1730, 1692, 1645, 1609, 1470, 1375, 1267, 1090, 907, 729.

2-Acetamido-6-(trifluoromethyl)benzoic acid (L20):

CFs
@icow
NHAc

L20 Following the general procedure A on a 488 umol scale the target compound L20 was

obtained as colorless solid (47.1 mg, 190 umol, 39%).

'H-{*F}-NMR (599 MHz, DMSO-dg): 6 = 10.03 (s, 1H), 8.12 —7.99 (m, 1H), 7.52 — 7.39 (m, 2H), 2.04 (s,
3H) ppm.

13C-{*F}-NMR (151 MHz, DMSO-d): 6 = 168.5, 167.0, 135.8, 128.3, 127.0, 126.1, 123.9, 121.5, 23.9
ppm.

¥F-{'H}-NMR (564 MHz, DMSO-d¢): 6 -57.8 ppm.
HRMS (ESIpos) m/z: Calcd for Ci3H22NaO4* 265.1410, Found 265.1423.

IR (cm™): 2944, 1705, 1684, 1472, 1321, 1271, 1140, 1111, 1024.

2-Acetamido-6-chlorobenzoic acid (L21):

C
COOCH

NHAc

L1 Following the general procedure A on a 1.10 mmol scale the target compound L21 was

obtained as colorless solid (0.15 g, 0.70 mmol, 70%).

'H-NMR (300 MHz, DMSO-d¢): & = 13.56 (s, 1H), 9.68 (s, 1H), 7.58 — 7.24 (m, 3H), 2.01 (s, 3H) ppm.
13C-NMR (75 MHz, DMSO-d¢): 6 = 168.8, 166.1, 136.3, 130.4, 129.9, 125.9, 124.5, 23.2 ppm.
HRMS (ESIpos) m/z: Calcd for C13H22NaO4* 265.1410, Found 265.1423.

IR (cm™): 3750, 3217, 3055, 2986, 2778, 2631, 2477, 1950, 1682, 1543, 1451, 1373, 1296, 1188, 1150,
1127, 1057, 1019, 980, 903, 802, 756, 710, 671, 610.



2-Acetamido-3,4,5,6-tetrafluorobenzoic acid (L22):

F
F COOH

F NHAc
F

L22 Following the general procedure A on a 2.10 mmol scale the target compound L22 was

obtained as colorless solid (326 mg, 1.30 mmol, 62%).
'H-NMR (500 MHz, DMSO-d;): & = 13.91 (s, 1H), 10.01 (s, 1H), 2.03 (s, 3H) ppm.

13C-{19F}-NMR (151 MHz, DMSO-d¢): & 168.7, 161.9, 144.3, 142.4, 141.1, 138.0, 120.9, 116.8,
22.5 ppm.

19F-NMR (470 MHz, DMSO-ds): 5 -141.4 (ddd, J = 23.9, 10.0, 3.5 Hz), -144.4 (dd, J = 23.0, 10.0 Hz),
~153.9 (t, J = 22.4 Hz), -158.7 (t, J = 22.8 Hz) ppm.

HRMS (ESIpos) m/z: Calcd for C13H22NaO4* 265.1410, Found 265.1423.

IR (cm™): 2951, 2918, 1707, 1458, 1375, 1103, 905, 727.



Optimization of the Reaction Conditions

General Procedure for the optimization reactions:

An oven dried 10 mL Schlenk tube was charged with Pd(OAc),, Ac-B-Ala-OH, silver salt, base, 3,3-
dimethylbutyric acid or 3,3-dimethylpentanoic acid, acrylate and HFIP. The reaction mixture was
stirred in a preheated aluminum block. After the indicated time the reaction was allowed to cool to
r.t.. The reaction mixture was filtered over a pad of Celite®, the residue was washed with CH,Cl, (30 mL)
to complete elution and all volatiles were removed under reduced pressure. 1,3,5-trimethoxybenzene
(33.6 mg, 0.200 mmol) and CDCl; (0.8 mL) were added. All yields during the optimization study were
determined via *H-NMR of the crude reaction using 1,3,5-trimethoxybenzene as internal standard.

Pd(OAc), (10 mol%) (o]
i o,
><\COOH NCOOE Ligand (20 mol%) 5
+

Ag,CO3 (1.0 eq.)

KZHPO4 (1.0 eq.) COOEt
HFIP (2.0 mL)
110 °C, 13 h

(0.2 mmol) (2.5eq.)

ACHN"SCOOH  AcHN™>~CC0H AcHN/[COOH AcHN™ S0

L13 L14 (23%) (3%)
(20%) (19%)
PO3H SPh COOH N
AcHN™ >3 AcHN™ >~ Acs” > AcHN > NMez
(4%) (10%)" (0%) (8%)

SMe COOH 0

AcHN
I (5[ Ay
AcHN S NHAc NHAc ::\<

2%)’ (5%)’ (19%) (4%)
F
FQ e dﬁ
AcHN >N NHAC N" o
F
(7%) L10 (0%)
(35%)

"10% ligands were used.

Scheme S1: Screening of ligands.



Pd(OAc); (10 mol%) o}

| | 0,
><\COOH /\COOEt Ac-Gly-OH (20 mol%) o
+
Silver salt (1.0 eq.)
0.2 mmol 2.5eq.
( ) (2:5eq) KoHPO, (1.0 eq.) COOEt
HFIP (2.0 mL)
110 °C, 13 h
Entry Silver salt Yield (%)
1 Ag,CO3 21
2 Ag,0 28
3 AgOAc 17

Scheme S2: Screening of silver salts.

Pd(OAc), (10 mol%) o
H 0,
><\COOH A NCOOE Ligand (20 mol%) o
+
Silver salt (1.0 eq.)
(0.2 mmol) (25eq) NaHFIP (1.0 eq.) COOEL
HFIP (2.0 mL)
110 °C, 13 h
Entry Ligand Silver salt Yield (%)
1 L10 Ag,0 23
2 L13 Ag,0 8
3 L13 Ag,CO; 39
4 L10 Ag,CO; 54

Scheme $3: Compatibility of ligands with silver salts.

Pd(OAc), (10 mol%) o
0,
><\COOH ~COOE L13 (20 mol%) o

Ag,CO3 (1.0 eq.)

Bases (1.0 eq.) COOEt
HFIP (2.0 mL)
110 °C, 13 h

(0.2 mmol) (2.5€eq.)

Entry Bases Yield (%)

1 LiHFIP 8
2 NaHFIP 37
3 KHFIP 22

Scheme S$4: Screening of bases with varied counter-cations.
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Pd(OAc), (10 mol%) o}

0,
><\000H NCOOE L10 (20 mol%) o
+
Ag,CO3 (1.0 eq.)
(0:2 mmel (@5 ea) Bases (1.0 eq.) COOE
HFIP (2.0 mL)
110 °C, 20 h
Entry Bases Yield (%)
1 NaHFIP 54
2 NaHCO3 28
3 NaOAc 37
4 NaOMe 40

Scheme S5: Screening of bases.

Pd(OAc), (10 mol%) o
0,
><\COOH GO0 L10 (20 mol%) o
+
Ag,CO;3 (1.0 eq.)
(0.2 mmol) (25eq.) NaHFIP (x eq.) COOEt
HFIP (2.0 mL)
110 °C, 16 h
Entry X (eq.) Yield (%)

1 0.20 25
2 0.40 50
3 0.60 56
4 0.80 58
5 1.00 53
6 1.25 39
7 1.50 31
8 1.75 25
9 2.00 24

Scheme S6: Screening of the amount of NaHFIP.

Pd(OAc), (10 mol%) o
><\COOH GO0k L10 (20 mol%) o
.
Ag,CO3 (x eq.
(0.2 mmol) (2.5 eq.) NaEIJ-I2FIP3(t().8 sq)‘) .
HFIP (2.0 mL)
T°C,16 h
Entry x (eq.) T (°C) Yield (%)
1 0.50 10 33
2 0.75 110 47
3 1.00 10 56
4 1.25 10 59
5 1.50 110 59
6 1.75 110 63
7 2.00 10 63
8 1.00 100 58"
9 1.00 90 43
10 1.00 80 30
11 1.00 70 17
12 1.00 120 54

Scheme S7: Screening of the amount of Ag,COs and temperature. * In contrast to this result, better/
more reproducible results were obtained with 110 °C, such that 110°C were used further.
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Pd(OAc), (x mol%) o

><\COOH NCOOE L10 (y mol%) °
+
(0.2 mmol) (2.5 eq.) /ﬁ:ﬁg;(gd?aseeqq_')) .
HFIP (2.0 mL)
110 °C, 16 h
Entry x (mol%) y (mol%) Yield (%)

1 10 10 53

2 10 12 53

3 10 15 59

4 10 20 61

5 10 30 56

6 5 10 47

7 5 10 46"

8 25 5.0 40

Scheme $8: Screening of the amount of catalyst. *reaction time =72 h

Pd(OAc), (10 mol%) o
L1 9
><\COOH /\COOEt 0 (20 mol%) o
+

Ag,CO3 (1.75 eq.)
NaHFIP (x eq.) COOEt
HFIP (2.0 mL)
110 °C, 16 h

(0.2 mmol) (2.5€eq.)

Entry x (eq.) Yield (%)
0.4 44
0.5 52
0.6 61
0.7 62
0.8 58
0.9 57
1.0 53
1.5 43

0 N O O~ wWN =

Scheme S$9: Screening of the amount of NaHFIP.

Pd(OAc), (10 mol%) o
><\COOH Z > COOEt 110 (20 mo®) ?
+
Ag,CO; (1.75 eq.
(0.2 mmol) (xeaq.) r\?efHH;((OJ eqq.)) COOEt
HFIP (2.0 mL)
110 °C, 16 h
Entry x (eq.) Yield (%)
1 1.0 48
2 1.0 51
3 1.4 56
4 1.6 61
5 1.8 60
6 2.0 61
7 25 66
8 3.0 65

Scheme S$10: Screening of the amount of ethyl acrylate.
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Pd(OAG), (10 mol%) o}

><\COOH > COOEt 110 (20 mot%) ?
+
(0.2 mmol) (2.5eq.) /ﬁiﬁgi(gd?feeq%) COOEt
HFIP (x mL)
110 °C, 24 h
Entry x (mL) Yield (%)

1 0.50 36

2 1.00 59

3 1.25 59

4 1.50 61

5 1.75 61

6 2.00 62

7 2.25 63

8 2.50 62

9 275 61

10 3.00 61

11 4.00 61

Scheme S11: Screening of the amount of solvent.

Pd(OAc), (10 mol%) (o]
H 0,
><\COOH Z COOEt Ligand (20 mol%) o
+
A 1.75 eq.
(0.2 mmol) (2.5eq.) 92C03 (1.75 eq.)
Base COOEt
HFIP (2.25 mL)
110 °C, 26 h
Bases L10 L14
NaHFIP (0.70 eq.) 58% 47%
Na,HPO,-7H,0 (0.70 eq.) 53% 66%
Na,HPO,-7H,0 (0.30 eq.) 66% 67%
Na,HPO, 7H,0 (0.25 eq.) 66% 66%
Na,HPO,4 7H,0 (0.20 eq.) 65% 67%
Na,HPO, 7H,0 (0.15 eq.) 53% 60%
Na,HPO,4 7H,0 (0.10 eq.) 38% 60%
Na,HPO,4-7H,0 (0 eq.) 2% 9%

Scheme S12: Screening of the amount and type of base with different ligands.
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Pd(OAc), (10 mol%) o

i o,
><\COOH ™ COOE Ligand (20 mol%) 5
+
Ag,CO3 (1.75 eq.)
(0.2 mmol) (x eq.) Na,HPO,4 7H,0 (0.2 eq.) COOE
HFIP (2.25 mL)
110 °C, 48 h
X (eq.) L10 L14
25 68% 67%
0,
2.0 67% 63%
1.6 61% 63%

Scheme $13: Screening of the amount of acrylate.

Further optimization for substituted 3,3-dimethylbutyric acid derivatives

Pd(OAc), (10 mol%) %
/><\COOH Z>co0n-Bu 110 (20 moi®) ?
+
Ag,CO3 (1.75 eq.
(0.2 mmol) (xeq.) l\?:HFIISD((OJ eqq.)) COOn-Bu
HFIP (2.25 mL)
110 °C, 40-48 h
Entry x (eq) T(°C) Yield (%)
1 15 110 24
5 25 110 29
3 35 110 39
4 45 110 47
5 75 110 60
5 9.0 110 53
7 45 100 47
8 4.5 90 31
o 45 120 46

Scheme $14: Screening of the amount of butyl acrylate and temperature.

Pd(OAc), (10 mol%) o}

0y
K coon | Acoonsa  _H10ROM) 5
Ag2CO;3 (x eq.)
NaHFIP (0.7 eq.) COOn-Bu
HFIP (2.25 mL)
110 °C, 50 h

(0.2 mmol) (7.5eq.)

Entry X (eq.) Yield (%)
1.50 54
1.75 56
2.00 56
2.50 60
3.00 60
3.50 60
4.00 60

N O g~ WN =

Scheme S15: Screening of the amount of Ag,COs.
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Pd(OAc), (10 mol%) o
L10 9
/><\COOH . ~co0on-Bu (20 mol%) o

Ag,CO;3 (2.5eq.)
NaHFIP (0.7 eq.) COOn-Bu
HFIP (2.25 mL)

110 °C, 50 h

(0.2 mmol) (xeq.)

Entry x (eq.) Yield (%)
45 46
55 52
6.0 52
6.5 58
7.0 59
7.5 59
8.0 59

~N o g~ ON =

Scheme S16: Screening of the amount of n-butyl acrylate.

Pd(OAc), (10 mol%) 0
L1 9
><\COOH /\COOn-Bu 0 (20 mol%) o
+
Ag,CO3 (2.5 eq.)
(0.2 mmol) (7 eq.) NaHFIP (0.7 eq.) Coon-Bu
HFIP (2.25 mL)
110 °C, 40 h
Entry Atmosphere Yield (%)
1 air 56
2 argon 56
3 oxygen 48

Scheme $17: Screening of the different atmospheres.

Pd(OAc), (10 mol%) 0
L10 (20 mol%)
P
/><\COOH . 7 COOR o
Ag,CO3 (2.5 eq.)
7 eq.
(0.2 mmol) (7eq) NaHFIP (0.7 eq.) COOR
HFIP (2.25 mL)
110 °C, 44 h
Entry R Yield (%)
1 Me 59
2 Et 59
3 Bn 49
4 n-Bu 59

Scheme S$18: Screening of the different acrylates.
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Pd(OAc), (10 mol%) o
H 0,
/><\COOH /\COOEt Ligand (20 mol%) o
Ag,CO3 (2.5 eq.)
(0.2 mmol) (7eq) NaHFIP (0.7 eq.) COOEt
HFIP (2.25 mL)
110 °C,64 h
F F F F
©:COOH ©:COOH ©:COOH ©:COOH
NHAc NHCOCF; NHBoc NHTroc
(66%) (15%) (0%) (14%)
F o CF4
©:COOH COOH ©:COOH ©:COOH
NHCHO NHAc NHAc NHAc
(19%) (57%)" (55%) (62%)"
Cl NPhth F
@ECOOH C[COOH F. COOH ©:COOH
NHAc NHAc F NHAc NHAc
F
(39%) (47%) (55%) (29%)
(;COOH O;‘COOH COOH COOH
NHAc NHAc [NHAC NHAc
F
(49%) (42%) (64%)" (56%)"
“Average yields are calculated (with repect to light, dark, longer time)
Scheme $19: Screening of Ligands.
Pd(OAc), (10 mol%) o
H 0,
/><\COOH /\COOEt Ligand (20 mol%) o
Ag,CO3 (2.5 eq.)
0.2 mmol 7 eq.
( ) (7 eq) NaHFIP (0.7 eq.) COOEt
HFIP (2.25 mL)
110 °C, 64 h
Bases L10 L14
NaHFIP (0.7 eq.) 67% 65%
NaHFIP (0.7 eq.) 55%" 55%"
Nay,HPO,4-7H,0 (0.7 eq.) 53% 52%
Nay,HPO4-7H,0 (0.4 eq.) 58% 56%
Na,HPO,47H,0 (0.3 eq.) 65% 66%
Na,HPO,4-7H,0 (0.2 eq.) 68% 68%

Scheme S520: Screening of the amount of bases. *Reaction time =46 h
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Pd(OAc), (10 mol%) o

i o
/><\COOH . 7 Cookt Ligand (20 mol%) o
Ag,CO3 (2.5 eq.)
0.2 mmol X eq.
( ) (ea) Na,HPO,4-7H,0 (0.2 eq.) COOE
HFIP (2.25 mL)
110 °C, 72 h
x (eq.) L10 L14
! 66% 69%
6 65% 67%
s 51% 61%
4 45% 57%
3 41% 48%

Scheme S21: Screening of the amount of ethyl acrylate.
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Preparation of Substrates

General procedure B: y—Arylation of 3,3-dimethylbutyric acid (1a)

An oven dried 150 mL Schlenk tube was charged with with Pd(OAc), (112 mg, 0.500 mmol, 10 mol%),
Ac-D-Phe-OH (207 mg, 1.00 mmol, 20 mol%), Ag,C0Os (1,38 g, 5.00 mmol, 1.0 equiv), Kz2HPO4 (871 mg,
5.00 mmol, 1.00 equiv), 3,3-dimethylbutyric acid (1a) (2.32 mg, 20.0 mmol, 4.0 equiv), aryl iodide (5.0
mmol, 1.0 equiv) and HFIP (50 mL). The reaction mixture was stirred for 24 h at 100 °C. The reaction
was allowed to cool to room temperature and filtered over a pad of Celite®, the residue was washed
with CH,Cl; (30 mL) to complete elution and all volatiles were removed under reduced pressure. The
crude product was dissolved in water (30 mL) and the aqueous solution was washed with CH,Cl, (2 x
40 mL). The aqueous phase was acidified with HCI (10 wt%) until the pH was between 1 and 4 and the
aqueous phase was extracted withCH,Cl> (3 x 40 mL). The combined organic phases were dried over
MgS04-H,0 and all volatiles were removed under reduced pressure. The crude product was purified
by silica column chromatography using CH,Cl,:AcOH (99.5:0.5).

General procedure C: Synthesis of B-quarternary carboxylic acids via 1,4 addition of Normann
cuprates?

R-MgCI o)
Cul aq NaOH/MeOH
| o~ OH
TMSCI
R

Methyl 3-methylbut-2-enoate (1.0 equiv) was dissolved in THF (0.5m), Cul (0.1 equiv) was added and
the mixture was cooled to -20 °C. TMSCI (1.2 equiv) was added slowly and the Grignard reagent (1.2
equiv) was added over 90 minutes via a syringe pump. The mixture was slowly allowed to warm up to
r.t. and was stirred for 16 h. The reaction was quenched by the addition of sat. aq. NH4Cl solution (30
mL) and the aqueous phase was extracted with Et,0O (3 x 50 mL). The combined organic phases were
washed with brine and dried over MgS04-H,0. All volatiles were removed and the residue was
transferred with MeOH (10 mL) to a Schlenk tube and ag. NaOH (10 wt%, 10 mL) was added. The
reaction mixture was heated to 60°C and stirred for 16h. The mixture was allowed to cool down to r.t.
and was concentrated under reduced pressure. Water (20 mL) was added and the aqueous solution
was washed with CH,Cl; (2 x 40 mL). The aqueous phase was acidified with HCI (10 wt%) until the pH
was between 1 and 4 and the aqueous phase was extracted withCH,Cl; (3 x 40 mL). The combined
organic phases were dried over MgS04-H,0 and the solvent was removed under reduced pressure. The
crude product was purified by silica gel column chromatography using CH,Cl,:AcOH (99.7:0.3).
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General procedure D: Synthesis of B-quarternary carboxylic acids via 1,4 addition with Gilman
reagent?

o o) o
_ MeyCuli _agq. NaOH/MeOH
ﬁo —_— o — OH
R R R R

In a dry argon filled schlenk tube Cul (2.0 equiv) and Et,0 (30 mL) were added and the suspension was
cooled to 0°C. Meli (1.6 M in Et;0, 4.0 equiv) was added dropwise and the mixture was stirred for 10
minutes. The solvent was removed at 0 °C under reduced pressure and CH,Cl, (15mL) was added. The
mixture was stirred for 5 minutes and CH,Cl, was removed at 0 °C under reduced pressure. CH,Cl, (15
mL) was added and the reaction mixture was cooled to -78 °C. TMSCI (2.0 equiv) and the a,pB-
unsaturated carbonyl compound (1.0 equiv) were added dropwise and the mixture was stirred for 1 h.
The reaction mixture was allowed to slowly warm up to r.t. and stirred for 16 h. The reaction was
quenched by the addition of sat. aq. NH4Cl solution (30 mL) and conc. ag. ammonia (30 mL) was added.
The aqueous phase was extracted with Et,0 (3 x 50 mL) and the combined organic phases were washed
with brine and dried over MgS04-H,0. All volatiles were removed and the residue was transferred with
MeOH (10 mL) to a Schlenk tube and ag. NaOH (10 wt%, 10 mL) was added. The reaction mixture was
heated to 60°C and stirred for 16h. The mixture was allowed to cooldown to r.t. and was concentrated
under reduced pressure. Water (20 mL) was added and the aqueous solution was washed with CH,Cl,
(2 x 40 mL). The aqueous phase was acidified with HCl (10 wt%) until the pH was between 1 and 4. The
aqueous phase was extracted with CH,Cl; (3 x 40 mL). The combined organic phases were dried over
MgS04-H,0and the solvent was removed under reduced pressure. The crude product was purified by
silica gel column chromatography using CH,Cl;:AcOH (99.7:0.3).

3,3-dimethylpentanoic acid (1b):

COOH

-~

1b Following the general procedure C in 25.0 mmol scale and using ethylmagnesium chloride
(2.0 M in THF, 15 mL, 30 mmol), the target compound 1b was obtained as a colorless oil (1.99 g, 15.2
mmol, 61%).

'H-NMR (300 MHz, CDCls): & = 11.58 (s, 1H), 2.21 (s, 2H), 1.37 (q, J = 7.5 Hz, 2H), 1.00 (s, 6H), 0.86 (t, J
=7.5Hz, 3H) ppm.

13C-NMR (75 MHz, CDCl3): & = 179.6, 45.7, 34.7, 33.5, 26.8, 8.6 ppm.

The data are in good agreement with those reported in the literature.*

19



3,3,4-trimethylpentanoic acid (1c):

COOH

£

1e Following the general procedure C in 8.00 mmol scale and using isopropylmagnesium
chloride (2.0 m in THF, 4.80 mL, 9.60 mmol) the target compound 1c was obtained as a colorless oil
(482 mg, 3.34 mmol, 42%).

1H-NMR (400 MHz, CDCl3): & = 11.63 (s, 1H), 2.25 (s, 2H), 1.63 (hept, J = 6.8 Hz, 1H), 0.99 (s, 6H), 0.87
(d,J=6.8 Hz, 6H) ppm.

13C-NMR (101 MHz, CDCl3): § = 179.6, 44.4, 36.5, 35.9, 24.3, 17.6 ppm.
HRMS (ESIpos) m/z: Calcd for CsH1sNaO," 167.1043, Found 167.1039.

IR (cm™): 2967, 1701, 1468, 1410, 1310, 1250, 905, 727.

3,3-dimethylheptanoic acid (1d):

COOH

n-Bu

1d Following the general procedure C in 8.00 mmol scale and using n-butylmagnesium

bromide (1.0 M in THF, 11.2 mL, 11.2 mmol) the target compound 1d was obtained as a colorless oil
(291 mg, 1.84 mmol, 23%).

'H-NMR (400 MHz, CDCl5): & = 11.38 (s, 1H), 2.22 (s, 2H), 1.39 — 1.20 (m, 6H), 1.01 (s, 6H), 0.90 (t,
J=6.8 Hz, 3H) ppm.

13C-NMR (101 MHz, CDCl3): 6 = 179.5, 46.1, 42.2, 33.3, 27.4, 26.4, 23.5, 14.2 ppm.
HRMS (ESIpos) m/z: Calcd for CsH1sNaO,* 181.1199, Found 181.1198.

IR (cm™): 2932, 1793, 1470, 1408, 1369, 1252, 1177, 905, 727.

4-cyclohexyl-3,3-dimethylbutanoic acid (1e):

jECOOH
Cy

Te Following the general procedure B and using iodobenzene (1.02 g, 5.00 mmol) the
intermediate 3,3-dimethyl-4-phenylbutanoic acid was obtained as a colorless oil (129 mg, 0.670 mmol,
13%). A hydrogenation vial was charged with 3,3-dimethyl-4-phenylbutanoic acid (91 mg, 0.47 mmol,
1 equiv), Rh/AlLOs3 (5 mol%) and acetic acid (1 mL). The reaction mixture stirred at r.t. under a H,
pressure of 10 bar at r.t. for 16 h. The catalyst was removed by filtration over Celite and the filtrate
was concentrated by evaporation. The crude product was purified by silica gel column chromatography
using (pentane:EtOAc = 90:10). The target compound was obtained as a colorless solid (93 mg, 0.47
mmol, 99%).
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1H-NMR (400 MHz, CDCls): & = 11.00 (s, 1H), 2.24 (s, 2H), 1.76 — 1.54 (m, 5H), 1.39 — 0.89 (m, 14H)
ppm.

13C-NMR (101 MHz, CDCl3): & = 178.26, 50.03, 46.55, 35.99, 34.05, 33.95, 27.66, 26.74, 26.36 ppm.
HRMS (ESlpos) m/z: Calcd for C1,H22Na0," 221.1512, Found221.1511.

IR (cm™): 2924, 1703, 1449, 1369, 907, 731.

2-(1-methylcyclohexyl)acetic acid (1f):

COOH

-

1f Following the general procedure D in 8.32 mmol scale and using ethyl 2-
cyclohexylideneacetate (1.40 g, 8.32 mmol) the target compound 1f was obtained as a colorless oil
(944 mg, 6.04 mmol, 73%).

'H-NMR (300 MHz, CDCl;): § = 11.59 (s, 1H), 2.26 (s, 2H), 1.56-1.20 (m, 10H), 1.05 (s, 3H) ppm.
13C-NMR (75 MHz, CDCl;): § = 179.6, 45.9, 37.9, 33.4, 26.2, 25.5, 22.1 ppm.
HRMS (ESIpos) m/z: Calcd for CsH16NaO,* 179.1043, Found 179.1034.

IR (cm™): 2928, 1703, 1447, 1408, 1235, 907, 731.

2-(4-methyltetrahydro-2H-pyran-4-yl)acetic acid (1g):
COOH

~~

19 Following the general procedure D in 5.88 mmol scale and using ethyl 2-(tetrahydro-4H-
pyran-4-ylidene)acetate (1.00 g, 5.88 mmol) the target compound 1g was obtained as a colorless oil
(562 mg, 3.55 mmol, 60%).

'H-NMR (400 MHz, CDCl5): & = 10.37 (s, 1H), 3.77-3.61 (m, 4H), 2.33 (s, 2H), 1.71-1.59 (m, 2H), 1.53—
1.42 (m, 2H), 1.15 (s, 3H) ppm.

13C-NMR (101 MHz, CDCl3): 6 = 177.7, 63.8, 45.9, 37.5, 31.0, 24.3 ppm.
HRMS (ESlIpos) m/z: Calcd for CsH14NaOs* 181.0835, Found 181.0840.

IR (cm™): 2932, 1705, 1227, 1105, 920, 839.

3-ethyl-3-methylpentanoic acid (1h):

COOH

K

Th Following the general procedure D in 0.998 mmol scale and using ethyl 3-ethylpent-2-enoate

(380 mg, 0.998 mmol) the target compound 1h was obtained as a colorless oil (48.1 mg, 0.308 mmol,
31%).
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'H-NMR (400 MHz, CDCl3): & = 2.22 (s, 2H), 1.38 (g, J = 7.5 Hz, 4H), 0.96 (s, 2H), 0.83 (t, J = 7.5 Hz, 6H)
ppm.

13C-NMR (101 MHz, CDCls): & = 179.1, 43.1, 36.1, 31.4, 24.1, 8.1 ppm.
HRMS (ESIneg) m/z: Calcd for CsHis0, 143.1067, Found143.1070.

IR (cm™):2967, 1703, 1458, 1265, 1232.

3,3-dimethyl-5-phenylpentanoic acid (1i):
COOH

K

i Following the general procedure Cin 8.00 mmol scale and using phenylethylmagnesium
bromide (1.0 M in THF, 11.2 mL, 11.2 mmol) the target compound 1i was obtained as a colorless oil
(121 mg, 0.587 mmol, 7%).

'H-NMR (300 MHz, CDCl;): § = 10.59 (s, 1H), 7.41-7.29 (m, 2H), 7.29-7.19 (m, 3H), 2.74-2.61 (m, 2H),
2.39 (s, 2H), 1.81-1.67 (m, 2H), 1.18 (s, 6H) ppm.

13C-NMR (75 MHz, CDCl;): § =179.0, 142.9, 128.5, 128.5, 125.8, 45.9, 44.5, 33.5, 30.9, 27.5 ppm.
HRMS (ESIpos) m/z: Calcd for C13H1sNaO,*229.1199, Found 229.1199.

IR (cm™): 2961, 1703, 1469, 1250, 1074, 905, 727.

4-(3-(ethoxycarbonyl)phenyl)-3,3-dimethylbutanoic acid (1j):

COOH

Et0,C [

1i Following the general procedure B and using ethyl 3-iodobenzoate (1.38 g, 5.00
mmol) the target compound 1j was obtained as a colorless oil (230 mg, 0.870 mmol, 17%).

H-NMR (400 MHz, CDCls): 6 = 11.08 (s, 1H), 7.95-7.87 (m, 1H), 7.86 (s, 1H), 7.42—7.32 (m, 2H), 4.37
(q,J=7.1Hz, 2H), 2.75 (s, 2H), 2.24 (s, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.05 (s, 6H) ppm.

13C-NMR (101 MHz, CDCl3): 6 = 178.1, 167.0, 138.7, 135.3, 131.8, 130.3, 128.0, 127.6, 61.1, 47.6, 45.3,
34.4,27.3,14.5 ppm.

HRMS (ESIpos) m/z: Calcd for CisH,0NaO4* 287.1254, Found 287.1260.
IR (cm™): 2932, 1705, 1468, 1369, 1283, 1200, 1107, 1026.

4-(3-acetylphenyl)-3,3-dimethylbutanoic acid (1k):

O

g :COOH

1k Following the general procedure B and using 1-(3-iodophenyl)ethan-1-one (1.23 g,
5.00 mmol) the target compound 1k was obtained as a colorless oil (296 mg, 1.26 mmol, 25%).
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'H-NMR (400 MHz, CDCls): 6 = 7.84 — 7.80 (dt, J = 6.8, 1.9 Hz, 1H), 7.79 (s, 1H), 7.43 — 7.35 (m, 2H),
2.77 (s, 2H), 2.60 (s, 3H), 2.24 (s, 2H), 1.06 (s, 6H) ppm.

13C-NMR (101 MHz, CDCl;): & = 198.6, 178.2, 139.0, 137.0, 135.6, 130.5, 128.3, 126.6, 47.5, 45.2, 34.4,
27.3, 26.8 ppm.

HRMS (ESlpos) m/z: Calcd for C14H1gNaOs* 257.1148, Found 257.1151.
IR (em™): 2961, 2255, 1705, 1684, 1437, 1275, 905, 727.

3,3-dimethyl-4-(4-(trifluoromethyl)phenyl)butanoic acid (1I):

COOH

CF3— >;

1 Following the general procedure B and using 1-iodo-4-(trifluoromethyl)benzene
(1.36 g, 5.00 mmol) the target compound 1l was obtained as a colorless oil (141 mg, 0.542 mmol, 11%).

'H-NMR (599 MHz, CDCl3): & = 7.54 (d, J = 7.9 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 2.77 (s, 2H), 2.24 (s, 2H),
1.06 (s, 6H) ppm.

13C-{*F}-NMR (151 MHz, CDCl3): 6 = 178.0, 142.6, 131.1, 128.8, 124.9, 124.5, 47.4, 45.1, 34.4, 27.4
ppm.

YF-{'H}-NMR (564 MHz, CDCl;): § = -62.4 ppm.
HRMS (ESIpos) m/z: Calcd for Ci3H1sFsNaO,* 283.0916, Found 283.0910.

IR (cm™): 2965, 1703, 1620, 1323, 1165, 1123, 1069, 1020, 853.

4-(3,5-bis(trifluoromethyl)phenyl)-3,3-dimethylbutanoic acid (1m):
COOH
CFs

CFs

m Following the general procedure B and using 1-iodo-3,5-bis(trifluoromethyl)benzene
(1.70 g, 5.00 mmol) the target compound 1m was obtained as a colorless oil (152 mg, 0.463 mmol,
9%).

'H-NMR (300 MHz, CDCl3): & = 11.34 (s, 1H), 7.77 (s, 1H), 7.68 (s, 2H), 2.87 (s, 2H), 2.25 (s, 2H), 1.08 (s,
6H) ppm.

1B3C-{F}NMR (126 MHz, CDCl5): 6 =178.9,141.0,131.4, 130.8,123.6, 120.6, 46.9, 45.2,34.4,27.3 ppm.
19F-{*H}-NMR (470 MHz, CDCls): 6 = -63.0 ppm.

The data are in good agreement with those reported in the literature.®
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Acid Scope

General procedure E:

An oven dried 10 mL Schlenk tube was charged with Pd(OAc), (4.5 mg, 0.020 mmol, 10 mol%), Ac-B-
Ala-OH (5.3 mg, 0.040 mmol, 20 mol%), Ag,COs (96.5 mg, 0.350 mmol, 1.75 equiv), Na;HPO, - 7 H,0
(10.7 mg, 0.04 mmol, 0.2 equiv), 3,3-dimethylbutyric acid (1a) (23.2 mg, 0.2 mmol), acrylate (0.5 mmaol,
2.5 equiv) and HFIP (2.25 mL). The reaction mixture was stirred for 24 h at 110 °C. The mixture was
filtered through a pad of Celite® using CH,Cl, (30mL) to complete the elution and all volatiles were
removed under reduced pressure. KMnQO, (31.6 mg, 0.200 mmol, 1.0 equiv), EtsBnNCI (9.1 mg, 0.040
mmol, 0.2 equiv) and acetone (3 mL) were added and the mixture was stirred for 30 minutes.
Concentrated ag. Na,;SOs was added until all permanganate was quenched. The mixture was filtered
over a pad of celite using CH,Cl; (30 mL) to complete the elution and all volatiles were removed under
reduced pressure. The residue was purified by silica gel column chromatography using (pentane:EtOAc
=80:20 - 50:50).

General procedure F:

An oven dried 10 mL Schlenk tube was charged with Pd(OAc), (4.5 mg, 0.020 mmol, 10 mol%), Ac-B-
Ala-OH (5.3 mg, 0.040 mmol, 20 mol%), Ag,C0Os (96.5 mg, 0.350 mmol, 1.75 equiv), Na;HPO, - 7 H,0
(10.7 mg, 0.04 mmol, 0.2 equiv), 3,3-dimethylbutyric acid (1a) (23.2 mg, 0.2 mmol), acrylate (0.5 mmaol,
2.5 equiv) and HFIP (2.25 mL). The reaction mixture was stirred for 24 h at 110 °C. The mixture was
filtered through a pad of Celite® using CH,Cl; (30 mL) to complete the elution and all volatiles were
removed under reduced pressure. The residue was purified by silica gel column chromatography using
(pentane:EtOAc = 80:20 — 50:50).

General procedure G:

An oven dried 10 mL Schlenk tube was charged with Pd(OAc); (4.5 mg, 0.020 mmol, 10 mol%), Ac-B-
Ala-OH (5.3 mg, 0.040 mmol, 20 mol%), Ag>C0O; (138 mg, 0.500 mmol, 2.5 equiv), NaHPO,4 - 7H,0 (10.7
mg, 0.04 mmol, 0.2 equiv), carboxylic acid (0.2 mmol), acrylate (1.40 mmol, 7.0 equiv) and HFIP (2.25
mL). The reaction mixture was stirred for 72 h at 110 °C. The mixture was filtered through a pad of
Celite® using CH,Cl; (30mL) to complete the elution and all volatiles were removed under reduced
pressure. KMnQ,4 (31.6 mg, 0.2 mmol, 1.0 equiv), EtsBnNCI (9.1 mg, 0.04 mmol, 0.2 equiv) and acetone
(3 mL) were added and the mixture was stirred for 30 minutes. Concentrated ag. Na,SOs; was added
until all permanganate was quenched. The mixture was filtered over a pad of celite using CH,Cl, (30
mL) to complete the elution and all volatiles were removed under reduced pressure. The residue was
purified by silica gel column chromatography using (pentane:EtOAc = 80:20 — 20:80).
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Ethyl 2-(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3a):

CO,Et
3a Following the general procedure E and using 3,3-dimethylbutyric acid (1a) (23.2 mg,

0.200 mmol) the target compound 3a was obtained as a colorless oil (27.4 mg, 0.128 mmol, 64%).

H-NMR (300 MHz, CDCls): & (ppm) = 4.85-4.73 (m, 1H), 4.15 (q, J = 7.1 Hz, 2H), 2.74 (dd, J = 16.1, 6.8
Hz, 1H), 2.54 (dd, J = 16.1, 5.9 Hz, 1H), 2.39 (dd, J = 16.5, 1.6 Hz, 1H), 2.22 (d, J = 16.6 Hz, 1H), 1.77 (ddd,
J=13.9,3.5, 1.6 Hz, 1H), 1.49 (dd, J = 13.9, 12.0 Hz, 1H), 1.26 (t, J = 7.1, 3H), 1.11 (s, 3H), 1.05 (s, 3H)

13C-NMR (75 MHz, CDCl;): § = 171.4, 169.9, 73.8, 61.1, 43.8, 41.8, 40.7, 31.1, 30.0, 27.6, 14.2 ppm.
HRMS (ESIpos) m/z: Calcd for C11H1sNaO4* 237.1097, Found 237.1117.

IR (cm™): 2963, 2253, 1732, 1387, 1373, 1238, 1194, 1036, 907. 792.

Results for large scale: Ethyl 2-(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3a):

(0]
(0]

CO,Et

3a An oven dried 150 mL Schlenk tube was charged with Pd(OAc), (104 mg, 0.500
mmol, 10 mol%), Ac-B-Ala-OH (131 mg, 1.00 mmol, 20 mol%), Ag.CO; (2.41 g, 8.75 mmol, 1.75 equiv),
Na;HPO, - 7 H,0 (268 mg, 1,00 mmol, 0.2 equiv), 3,3-dimethylbutyric acid (1a) (511 mg, 5.00 mmol),
ethyl acrylate (1,25 g, 12.5 mmol, 2.5 equiv) and HFIP (56 mL). The reaction mixture was stirred for 24
h at 110 °C. The mixture was filtered through a pad of Celite® using CH,Cl, (100mL) to complete the
elution and all volatiles were removed under reduced pressure. The residue was purified by silica gel
column chromatography using (pentane:EtOAc = 70:30). To the crude product was added KMnO, (31.6
mg, 0.2 mmol, 1.0 equiv), EtsBnNCI (9.1 mg, 0.04 mmol, 0.2 equiv) and acetone (3 mL). The mixture
was stirred for 30 minutes and concentrated ag. Na,SOs; was added until all permanganate was
guenched. The mixture was filtered over a pad of Celite® using CH,Cl, (30mL) to complete the elution
and all volatiles were removed under reduced pressure. The product 3a was obtained as a colorless oil
(664 mg, 3.01 mmol, 62%).

'H-NMR (300 MHz, CDCl;): 6 = 4.80 (dddd, J = 12.1, 6.8, 6.0, 3.5 Hz, 1H), 4.16 (q, / = 7.1 Hz, 2H), 2.76
(dd, J = 16.1, 6.8 Hz, 1H), 2.54 (dd, J = 16.1, 6.0 Hz, 1H), 2.40 (dd, J = 16.6, 1.6 Hz, 1H), 2.23 (d,
J =16.6 Hz, 1H), 1.78 (ddd, J = 13.9, 3.5, 1.6 Hz, 1H), 1.50 (dd, J = 13.9, 12.1 Hz, 1H), 1.26 (t,J = 7.1 Hz,
3H), 1.11 (s, 3H), 1.06 (s, 3H) ppm.

13C-NMR (75 MHz, CDCls): § =171.4, 169.9, 73.8, 61.1, 43.8, 41.8, 40.7, 31.1, 30.0, 27.6, 14.3 ppm.

HRMS (ESlIpos) m/z: Calcd for C11H1sNaO4* 237.1097, Found 237.1117.
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IR (cm™): 2963, 2253, 1732, 1387, 1373, 1238, 1194, 1036, 907, 729.
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cis-Ethyl 2-(4-ethyl-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3b-cis) and trans-ethyl 2-(4-
ethyl-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3b-trans):

o o
SIS
CO,Et CO,Et

3b-cis 3b-trans Following the general procedure G and using 3,3-

dimethylpentanoic acid (1b) (26 mg, 0.20 mmol) the target compound 3b was obtained as a colorless
oil (30.1 mg, 0.132 mmol, 66%, d.r. = 1.3/1.0).

1H-NMR (600 MHz, CDCls): 4.83-4.75 (m, 1HS), 4.73-4.66 (m, 1H!™), 4.19-4.12 (m, 2Hs+2Htr"s), 2.78-
2.71 (m, 1HY+1H!™™), 2.58-2.49 (m, 1H+1H™"S) 2.42 (dt, J = 16.1, 1.2 Hz, 1H"™"), 2.34-2.23 (m,
2HCS+1HT) 218 (dd, J = 16.1, 1.1 Hz, 1H™), 1.89 (ddd, J = 14.2, 3.3, 1.2 Hz, 1H"™™), 1.71 (ddd, J =
13.9, 3.2, 1.4 Hz, 1H%), 1.59-1.31 (m, 6.9H), 1.28-1.23 (m, 3H%+3H™") 1.06 (s, 3H®), 0.99 (s, 3H™"),
0.91-0.84 (m, 3HY+3HY") ppm.

13C-NMR (126 MHz, CDCl5): 6 = 172.0, 171.8, 170.0, 169.9, 73.6(3), 73.5(5), 61.1, 42.4, 42.0, 40.7, 40.5,
40.0, 39.7,36.2,33.1, 32.9, 32.8, 27.7, 24.9, 14.2, 8.2, 7.8 ppm.

HRMS (ESIpos) m/z: Calcd for C1,H20NaOs* 251.1254, Found 251.1269.

IR (cm™): 2967, 2255, 1732, 1522, 1437, 1052, 1190, 1057, 1026, 907, 731.

cis-Ethyl 2-(4-isopropyl-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3c-cis) and trans-ethyl 2-
(4-isopropyl-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3c-trans):

0] 0]
(0] (0]

i i ,
s,
1

_ COEt CO,Et
3c-cis 3c-trans Following the general procedure G and using 3,3,4-
trimethylpentanoic acid (1c) (28.8 mg, 0.200 mmol) the target compound 3c was obtained as a

colorless oil (32.1 mg, 0.132 mmol, 66%, d.r. = 1.7/1.0).

H-NMR (400 MHz, CDCls): 6 = 4.85-4.71 (m, 1H°S), 4.68-4.59 (m, 1H'™™"), 4.20-4.08 (m, 2Hs+2H"s ),
2.80-2.69 (m, TH+1H!"), 2.60-2.46 (m, 1H+2H™), 2.35-2.24 (m, 2H®S), 2.15 (dd, J = 15.3, 1.1 Hz,
1H™"s), 2,03 (dd, J = 14.4, 3.3 Hz, 1H™), 1.73-1.58 (m, 1HSS+1H"™), 1.52-1.52 (m, 2H), 1.34-1.21 (m,
3HEs+4HMs), 1,01 (s, 3HCS), 0.93 (s, 3H™), 0.89 (d, J = 6.8 Hz, 6H'"™™), 0.85 (d, J = 6.9 Hz, 6H) ppm.

13C-NMR (101 MHz, CDCls): & = 172.8, 172.2, 169.9(8), 169.9(6), 73.6, 73.4, 61.1, 41.0, 40.7, 40.5, 40.3,
39.4, 38.3, 38.0, 35.7(0), 35.6(5), 35.5, 24.9, 22.3, 17.3, 17.1, 17.0, 16.9, 14.2 ppm.

HRMS (ESlIpos) m/z: Calcd for C13H22NaO4* 265.1410, Found 265.1424.

IR (cm™): 3055, 2986, 1734, 1422, 1265, 1192, 1063, 729, 704.
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cis-Ethyl 2-(4-butyl-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3d-cis) and trans-ethyl 2-(4-
butyl-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3d-trans):

(0]
(0] (0]

i i .
",
,

n-Bu n-Bu |
 COyft CO,Et
3d-cis 3d-trans Following the general procedure G and using 3,3-
dimethylheptanoic acid (1d) (31.6 mg, 0.200 mmol) the target compound 3d was obtained as a

colorless oil (33.5 mg, 0.131 mmol, 65%, d.r. = 1.3/1.0).

H-NMR (400 MHz, CDCls): 6 = 4.78 (dddd, J = 12.3, 7.0, 5.9, 3.2 Hz, 1H%), 4.74-4.65 (m, 1H"™"), 4.20—
4.12 (m, 2H9s+2H"), 2.78-2.70 (m, 1H+1H™"), 2.58-2.48 (m, 1H+1H"™"), 2.43 (dd, J = 16.1, 1.3 Hz,
1H™"s) 2.33 (dd, J = 16.6, 1.4 Hz, 1HY), 2.26 (d, J = 16.6 Hz, 1H), 2.18 (d, J = 16.1 Hz, 1H™), 1.89
(ddd, J = 14.2, 3.3, 1.3 Hz, 1H™™), 1.72 (ddd, J = 13.9, 3.2, 1.4 Hz, 1H), 1.52—1.21 (m, 10H“+10H""),
1.07 (s, 3H), 1.00 (s, 3H™"), 0.93-0.84 (m, 3H+3H™"S) ppm.

13C-NMR (101 MHz, CDCl5): 6 = 172.1,171.9, 170.0(3), 170.0(0), 73.7, 73.6, 61.1, 43.6, 42.8, 42.4, 40.7,
40.5, 40.4, 40.3, 40.1, 32.6(9), 32.6(5), 28.2, 26.0, 25.6, 25.4, 23.2(9), 23.2(7), 14.2, 14.1(1), 14.0(9)
ppm.

HRMS (ESIpos) m/z: Calcd for C14H24NaO4* 279.1567, Found 279.1587.

IR (cm™): 2961, 2932, 2874, 2862, 2255, 1730, 1468, 1381, 1314, 1217, 1188, 1063, 1026, 907, 725.

cis-Ethyl 2-(4-(cyclohexylmethyl)-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate ) (3e-cis) and
trans-ethyl 2-(4-(cyclohexylmethyl)-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate ) (3e-trans):

0] 0]

mn [ 7

Cy Cy
 COgEt CO,Et

3e-cis 3e-trans Following the general procedure G and using 4-cyclohexyl-3,3-
dimethylbutanoic acid (1e) (39.7 mg, 0.200 mmol) the target compound 3e was obtained as a colorless

oil (32.2 mg, 0.109 mmol, 54%, d.r. = 1.3/1.0).

'H-NMR (400 MHz, CDCls): § = 4.85 — 4.69 (m, 1HYS+1H'"), 4.20 — 4.10 (m, 2H%+2H"), 2.79 — 2.68
(m, THES+1HT"5), 2.58 - 2.48 (m, THES+1HT), 2.43 (dd, J = 16.0, 1.2 Hz, 1H™"™), 2.35 (dd, J = 16.6, 1.6
Hz, 1H), 2.27 (d, J = 16.7 Hz, 1HS), 2.19 (d, J = 16.0 Hz, 1H'™"), 1.90 (ddd, J = 14.1, 3.5, 1.2 Hz, 1H'"™™),
1.75 (ddd, J = 13.9, 3.3, 1.6 Hz, 1H°®), 1.71 — 1.56 (m, 5H, SHE+5H™™), 1.54 — 1.35 (m, 1H+1H"),
1.34-0.92 (m, 14H%+14H"") ppm.

13C-NMR (101 MHz, CDCls): § = 172.0, 171.8, 170.0(2), 169.9(6), 73.6(2), 73.5(9), 61.1, 51.4, 48.1, 43.38,
42.4, 41.0, 40.8, 40.7, 40.6, 35.9, 35.8, 35.7(7), 35.7(5), 34.0, 33.5, 33.3(7), 33.3(6), 28.7, 26.5(3),
26.5(0), 26.4(9), 26.1, 25.5, 14.2 ppm.

HRMS (ESlIpos) m/z: Calcd for C37H2sNaO4* 319.1880, Found 319.1894.

IR (cm™): 2924, 2853, 1732, 1449, 1250, 1190, 1026.
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Ethyl 2-(4-ox0-3-oxaspiro[5.5]undecan-2-yl)acetate (3f):

0]
(@]

CO,Et

3f Following the general procedure G and using 3-cyclohexyl-3-methylbutanoic acid

(2f) (31.2 mg, 0.200 mmol) the target compound 3f was obtained as a colorless oil (27.8 mg, 0.109
mmol, 55%).

1H-NMR (400 MHz, CDCls): & = 4.75 (dddd, J = 12.1, 6.8, 6.0, 3.2 Hz, 1H), 4.23-4.08 (m, Hz, 2H), 2.75
(dd, J = 16.2, 6.8 Hz, 1H), 2.54 (dd, J = 16.2, 6.0 Hz, 1H), 2.45 (dd, J = 16.2, 1.2 Hz, 1H), 2.26 (d, J =
16.2 Hz, 1H), 1.95 (ddd, J = 14.1, 3.2, 1.2 Hz, 1H), 1.54-1.30 (m, 11H), 1.26 (t, J = 7.1 Hz, 3H) ppm.

13C-NMR (101 MHz, CDCl;): 6 = 171.8, 170.0, 73.1, 61.1, 40.6, 39.8, 36.4, 33.0, 25.7, 21.8, 21.6, 14.3
ppm.

HRMS (ESIpos) m/z: Calcd for C1sH22NaO4* 277.1410, Found 277.1422.

IR (cm™): 2930, 2859, 2255, 1730, 1454, 1445, 1387, 1369, 1314, 1252, 1204, 1186, 1026, 907, 725.

Ethyl 2-(4-ox0-3,9-dioxaspiro[5.5]undecan-2-yl)acetate (3g):

(0]
(0]

CO,Et

39 Following the general procedure G and using 3-methyl-3-(tetrahydro-2H-pyran-4-
yl)butanoic acid (1g) (31.6 mg, 0.200 mmol) the target compound 3g was obtained as a colorless oil
(25.6 mg, 0.100 mmol, 50%).

H-NMR (500 MHz, CDCls): 5 = 4.82-4.75 (m, 1H), 4.20-4.13 (m, 2H), 3.73-3.59 (m, 4H), 2.78 (dd,
J=16.2, 6.7 Hz, 1H), 2.62-2.54 (m, 2H), 2.35 (d, J = 16.3 Hz, 1H), 2.03 (ddd, J = 14.1, 3.2, 1.2 Hz, 1H),
1.64-1.60 (m, 2H), 1.56-1.46 (m, 3H), 1.29-1.25 (m, 3H) ppm.

13C-NMR (126 MHz, CDCl3): & = 170.8, 169.8, 72.8, 63.5, 63.4, 61.2, 41.4, 40.4, 39.6, 39.4, 36.4, 30.9,
14.3 ppm.

HRMS (ESIpos) m/z: Calcd for Ci3H20NaOs* 279.1203, Found 279.1207.

IR (cm™): 3053, 2988, 2305, 1730, 1422, 1105, 1020, 908, 729, 704.
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Ethyl 2-(4,4-diethyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3h):

O
(0]

CO,Et

3h Following the general procedure G and using 3-ethyl-3-methylpentanoic acid (1h)

(28.8 mg, 0.200 mmol) the target compound 3h was obtained as a colorless oil (24.1 mg, 0.100 mmol,
50%).

1H-NMR (400 MHz, CDCl3): 6 = 4.71 (dddd, J = 12.0, 6.7, 6,3, 3.0 Hz, 1H), 4.20-4.13 (m, 2H), 2.77 (dd,
J=16.2,6.7 Hz, 1H), 2.53 (dd, J = 16.2, 6.3 Hz, 1H), 2.37 (dd, J = 16.1, 1.0 Hz, 1H), 2.24 (d, J = 16.1 Hz,
1H), 1.81 (ddd, J = 14.2, 3.0, 0.9 Hz, 1H), 1.50 — 1.31 (m, 5H), 1.27 (t, J = 7.1 Hz, 3H), 0.89 — 0.80 (m, 6H)
ppm.

13C-NMR (101 MHz, CDCl5): 6 = 172.4, 170.0, 73.4, 61.1, 40.5, 40.3, 38.2, 35.6, 32.2,30.0, 14.3, 7.8, 7.6
ppm.

HRMS (ESIpos) m/z: Calcd for C13H22NaO4* 265.1410, Found 265.1418.

IR (cm™): 2969, 2928, 1732, 1464, 1383, 1265, 1184, 1061, 1026, 737.

cis-Ethyl 2-(4-methyl-6-oxo-4-phenethyltetrahydro-2H-pyran-2-yl)acetate (3i-cis) and trans-ethyl 2-
(4-methyl-6-oxo-4-phenethyltetrahydro-2H-pyran-2-yl)acetate (3i-trans):

0] (]
Ph wm Ph wn ’//

CO,Et CO,Et

3i-cis 3i-trans Following the general procedure G and using 3,3-dimethyl-5-

phenylpentanoic acid (1i) (41.3 mg, 0.200 mmol) the target compound 3i was obtained as a colorless
oil (34.6 mg, mmol, 0.114 mmol, 57%, d.r. = 1.3/1.0).

'H-NMR (300 MHz, CDCl5): 6§ = 7.29 (ddt, J = 10.8, 6.3, 1.5 Hz, 2H%+2H'™"), 7.18 (tdd, J = 8.6, 4.3, 2.9
Hz, 3HY+3H™™), 4.90 — 4.71 (m, 1HY+1H™™), 4.25 — 4.06 (m, 2HS+2H™") 2.85 — 2.72 (m,
1HYS+1HY) 2,66 — 2.23 (m, SHYS+5HY™), 2.00 (ddd, J = 14.2, 3.9, 1.6 Hz, 1H""), 1.83 (ddd, J = 13.8,
3.2, 1.3 Hz, 1H), 1.77 — 1.42 (m, 3HE+3H™), 1.27 (td, J = 7.1, 1.8 Hz, 3HE+3H™™), 1.19 (s, 3H), 1.12
(s, 3H™") ppm.

13C-NMR (75 MHz, CDCl5): § =171.6,171.4, 169.9(1), 169.8(6), 141.7, 141.6, 128.7,128.6, 128.3,126.2,
126.1, 73.6, 73.5, 61.1, 45.9, 42.9, 42.7, 42.4, 40.6, 40.4, 40.2(4), 40.1(8), 32.9(2), 32.9(0), 30.4, 30.0,
28.2,25.3,14.3 ppm.

HRMS (ESlIpos) m/z: Calcd for CigH24NaO4* 327.1567, Found 327.1554.

IR (cm™): 2936, 2255, 1730, 1456, 1250, 1190, 1028, 907, 725.
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cis-Ethyl 3-((2-(2-ethoxy-2-oxoethyl)-4-methyl-6-oxotetrahydro-2H-pyran-4-yl)methyl)benzoate (3j-
cis) and trans-ethyl 3-((2-(2-ethoxy-2-oxoethyl)-4-methyl-6-oxotetrahydro-2H-pyran-4-
yl)methyl)benzoate (3j-cis):

o

EtO,C 0 EtO,C 0

mn i /,
1,
'

CO,Et CO,Et

3j-cis 3j-trans Following the general procedure G and using 4-

(3-(ethoxycarbonyl)phenyl)-3,3-dimethylbutanoic acid (1j) (52.9 mg, 0.200 mmol) the target
compound 3j was obtained as a colorless oil (36.1 mg, 0.100 mmol, 50%, d.r. = 1.8/1.0).

'H-NMR (400 MHz, CDCls): & = 7.94 (dq, J = 7.7, 1.8 Hz, TH™+1H"™™), 7.80 (dt, J = 9.8, 1.9 Hz,
1HE+1H'™™), 7.42 — 7.29 (m, 2H+2H"*"), 4.87 — 4.74 (m, 1H+1H"™™), 4.37 (q, J = 7.1 Hz, 2H™+2H"™"),
4.22 - 4.06 (M, 2H™+2H'™™), 2.84 — 2.48 (m, 4H™+5H'™™), 2.41 — 2.26 (m, 2H), 2.17 (d, J = 15.9 Hz,
1H™™), 2,06 — 1.97 (m, 1H™™), 1.75 (ddd, J = 13.8, 3.6, 1.7 Hz, 1H*), 1.58 (dd, J = 13.8, 11.9 Hz, 1H),
1.50 — 1.34 (m, 3H+4H™"), 1.25 (t, J = 7.0 Hz, 3H™+3H™"), 1.10 (s, 3H™), 1.02 (s, 3H™™) ppm.

13C-NMR (101 MHz, CDCl;): 6 = 171.5, 170.8, 169.8(0), 169.7(6), 166.5(9), 166.5(6), 137.1, 136.7, 135.0,
134.9, 131.5(4), 131.5(1), 130.8, 130.7, 128.5, 128.4, 128.1(9), 128.1(7), 73.6, 73.4, 61.2, 61.1(2),
61.0(9), 49.2, 46.4, 42.0, 41.8, 40.7, 40.4, 40.0, 39.8, 34.0, 33.9, 28.8, 24.0, 14.5, 14.3(0), 14.2(7), 14.2
ppm.

HRMS (ESIpos) m/z: Calcd for C2oH26NaOg* 385.1622, Found 385.1626.
IR (cm™): 2986, 2255, 1719, 1447, 1369, 1283, 1200, 1026, 905, 723.

cis-Ethyl 2-(4-(3-acetylbenzyl)-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3k-cis) and trans-
ethyl 2-(4-(3-acetylbenzyl)-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (3k-trans):
o) o)

O O
O O

i i 7
’
7

I
CO,Et CO,

3k-cls Sk-trans Following the general procedure G using 4-(3-

acetylphenyl)-3,3-dimethylbutanoic acid (1k) (46.9 mg, 0.200 mmol) the target compound 3k was
obtained as a colorless oil (30.6 mg, 0.092 mmol, 46%, d.r. = 1.6/1.0).

'H-NMR (599 MHz, CDCl5): & = 7.85 (ddt, J = 7.8, 6.4, 1.5 Hz, TH+1H""), 7.73 (dt, J = 14.9, 1.9 Hz,
1HCS+1HY) 7.42 (td, J = 7.6, 3.8 Hz, 1HS+1HY"™), 7.34 (tt, J = 7.6, 1.5 Hz, 1H+1H""), 4.84 — 4.75 (m,
THE+1H), 4,20 — 4.12 (m, 2HI+2H™), 2.81 — 2.63 (m, 3HT+3H™"), 2.63 — 2.59 (m, 3HES+3HS),
2.59 — 2.49 (m, TH+2H™), 2.39 — 2.28 (m, 2H%), 2.19 (d, J = 16.0 Hz, 1H"™"), 2.04 (dd, J = 14.2, 3.5
Hz, 1H""), 1.77 (ddd, J = 13.8, 3.6, 1.7 Hz, 1H°®), 1.59 (dd, J = 13.8, 12.1 Hz, 1H), 1.45 (dd, J = 14.3,
11.9 Hz, 1H'"), 1.28 — 1.25 (m, 3H%+3H""), 1.11 (s, 3H), 1.02 (s, 3H™™) ppm.

13C.NMR (151 MHz, CDCls): 6 = 198.1(8), 198.1(5), 171.4, 170.8, 169.8(2), 169.8(0), 137.4(0), 137.3(8),
137.3, 137.0, 135.3, 135.2, 130.2(4), 130.1(6), 128.7(4), 128.6(7), 127.2, 127.1, 73.6, 73.4, 61.2, 61.1,
49.3, 46.4, 42.1, 41.7, 40.7, 40.4, 40.1, 40.0, 34.0, 33.9, 28.7, 26.8(1), 26.8(0), 25.1, 14.2(8), 14.2(5)

ppm.

HRMS (ESlIpos) m/z: Calcd for Ci9H24NaOs* 355.1516, Found 355.1521.

IR (cm™): 3055, 2984, 2963, 2932, 1728, 1684, 1265, 1179, 1026, 733.
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cis-Ethyl 2-(4-methyl-6-ox0-4-(4-(trifluoromethyl)benzyl)tetrahydro-2H-pyran-2-yl)acetate (3l-cis)
and trans-ethyl 2-(4-methyl-6-ox0-4-(4-(trifluoromethyl)benzyl)tetrahydro-2H-pyran-2-yl)acetate
(3l-trans):

F5C F5C |
CO,Et CO,Et

,,,,,

3l-cis 3l-trans Following the general procedure G and
using 3,3-dimethyl-4-(4-(trifluoromethyl)phenyl)butanoic acid (1) (52 mg, 0.20 mmol) the target
compound 3l was obtained as a colorless oil (35.1 mg, 0.100 mmol, 50%, d.r. = 2.5/1.0).

1H-NMR (599 MHz, CDCls): 6 = 7.61 — 7.53 (m, 2HSS+2H""5) 7.29 — 7.21 (m, 2H+2H""), 4.85 — 4.77
(m, 1HS+1H™), 423 — 4.11 (m, 2HSS+2HT™S) 2.82 — 2.63 (m, 3HS+3H™™MS) 2.59 — 2.49 (m,
1HEs+2H"s) 2,38 —2.29 (m, 2H), 2.19 (dd, J = 16.1, 1.2 Hz, 1H"™), 2.05 — 2.00 (m, 1H™"), 1.77 (ddt,
J=13.8, 3.4, 1.3 Hz, 1H), 1.59 (dd, J = 13.8, 12.0 Hz, 1H%), 1.49 — 1.43 (m, 1H™™), 1.27 — 1.23 (m,
3HC+3H™s ), 1.10 (s, 3HES), 1.01 (s, 3H™) ppm.

13C-{**F}-NMR (151 MHz, CDCl3): 6 =171.1, 170.7, 169.8(1), 169.7(7), 140.9, 140.5, 131.0, 130.9, 129.4,
125.4,125.3,124.3,73.5,73.4,61.2,61.1,49.2,46.1,42.1,41.7,40.6, 40.5, 40.1, 40.0, 34.0, 33.9, 28.6,
25.1, 14.3,14.2 ppm.

YF-{'H}-NMR (564 MHz, CDCl;): § = -62.5 ppm.
HRMS (ESIpos) m/z: Calcd for CisH21FsNaO4* 381.1284, Found 381.1280.
IR (cm™): 2986, 2259, 1728, 1325, 1167, 1126, 1069, 1020, 907, 852, 727.

cis-Ethyl 2-(4-(3,5-bis(trifluoromethyl)benzyl)-4-methyl-6-oxotetrahydro-2H-pyran-2-yl)acetate
(3m-cis) and trans-ethyl 2-(4-(3,5-bis(trifluoromethyl)benzyl)-4-methyl-6-oxotetrahydro-2H-pyran-
2-yl)acetate (3m-trans):

0] 0]

FsC 0 FsC 0

i i ,
1,
/"

CO,Et CO,Et

F,;C i F,;C ~ . .
3 3m-cis s 3m-trans Following the general procedure G and using 4-

(3,5-bis(trifluoromethyl)phenyl)-3,3-dimethylbutanoic acid (1m) (65.6 mg, 0.200 mmol) the target
compound 3m was obtained as a colorless oil (44.5 mg, 0.104 mmol, 52%, d.r. = 1.7/1.0).

1H-NMR (600 MHz, CDCls): & = 7.81-7.79 (m, THI+1H!"™), 7.62 (s, 1H), 7.60-7.55 (m, 1HEs+2Htr"s),
4.85-4.77 (m, 1HS+1H™) 4.20-4.13 (m, 2HI+2H!™), 2.87-2.71 (m, 3H+3H™"), 2.61-2.53 (m,
THES+1H), 2,51 (d, J = 15.9 Hz, 1H™"), 2.38-2.32 (m, 2H¢S), 2.24 (d, J = 15.8 Hz, 1H™™ ), 2.02 (dd, J =
14.4,3.5 Hz, 1H"™), 1.77 (dd, J = 13.9, 3.4 Hz, 1H), 1.61 (dd, J = 13.7, 12.0 Hz, 1H), 1.45 (dd, J = 14.4,
11.9 Hz, 1H'") 1.28-1.24 (m, 3H+3H'"™), 1.11 (s, 3H), 1.03 (s, 3H") ppm.

13C-{2°F}-NMR (151 MHz, CDCls): & = 170.9, 170.2, 169.8, 169.7, 139.3, 138.9, 131.9, 131.8, 130.5(9),
130.5(6), 123.3(3), 123.3(2), 121.1(8), 121.1(7), 73.5, 73.2, 61.2(3), 61.2(0), 49.0, 46.2, 42.2, 41.8, 40.5,
40.1,39.9, 39.8, 34.0(3), 33.9(5), 28.4, 24.7, 14.2(3), 14.2(2) ppm.

19F-NMR (564 MHz, CDCl3): § = -62.9 ppm.
HRMS (ESlIpos) m/z: Calcd for Ci9H20FsNaO4* 449.1158, Found 449.1162.
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IR (cm™): 2984, 2963, 2930, 2259, 1732, 1377, 1279, 1177, 1138, 1028, 907, 729.
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Acrylate Scope

Methyl 2-(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (4a):
(0]

(0]

CO,Me

4a Following the general procedure E and using methyl acrylate (43 mg, 0.50 mmol) the

target compound 4a was obtained as a colorless oil (26.8 mg, 0.134 mmol, 67%).

H-NMR (300 MHz, CDCls): & = 4.79 (dddd, J = 12.0, 7.0, 5.8, 3.5 Hz, 1H), 3.69 (s, 3H), 2.75 (dd, J = 16.1,
7.0 Hz, 1H), 2.55 (dd, J = 16.1, 5.8 Hz, 1H), 2.38 (dd, J = 16.6, 1.7 Hz, 1H), 2.22 (d, J = 16.6 Hz, 1H), 1.77
(ddd, J = 13.9, 3.5, 1.7 Hz, 1H), 1.49 (dd, J = 13.9, 12.0 Hz, 1H), 1.10 (s, 3H), 1.05 (s, 3H) ppm.

13C-NMR (75 MHz, CDCl5): 6 = 171.3, 170.3, 73.8, 52.1, 43.8, 41.8, 40.5, 31.1, 30.0, 27.5 ppm.
HRMS (ESIpos) m/z: Calcd for CioH16NaO4* 223.0941, Found 233.0962.

IR (cm™): 3053, 2988, 2305, 1736, 1439, 1421, 1317, 1265, 1200, 1175, 1036, 859, 733, 704.

Butyl 2-(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (4b):
(0]

(0]

COyn-Bu
Following the general procedure E and using n-butyl acrylate (64.1 mg, 0.500 mmol)
the target compound 4b was obtained as a colorless oil (29.6 mg, 0.122 mmol, 61%).

4b

'H-NMR (300 MHz, CDCl;): 6 = 4.79 (dddd, J = 12.1, 6.8, 6.0, 3.5 Hz, 1H), 4.10 (t, J = 6.7 Hz, 2H), 2.75
(dd,J=16.1, 6.8 Hz, 1H), 2.54 (dd, J = 16.1, 6.0 Hz, 1H), 2.39 (d, / = 16.6, 1H), 2.22 (dd, J = 16.6, 1.6 Hz,
1H), 1.77 (ddd, J=13.9, 3.5, 1.6 Hz, 1H), 1.67-1.44 (m, 3H), 1.43-1.30 (m, 2H), 1.11 (s, 3H), 1.06 (s, 3H),
0.92 (t, J=7.4 Hz, 3H) ppm.

13C-NMR (75 MHz, CDCl3): & = 171.4, 170.0, 73.8, 65.0, 43.8, 41.8, 40.7, 31.1, 30.6, 30.0, 27.6, 19.2,
13.8 ppm.

HRMS (ESlIpos) m/z: Calcd for C13H22NaO4* 265.1410, Found 265.1423.

IR (cm™): 2963, 2936, 2257, 1732, 1466, 1315, 1240, 1059, 1036, 908, 729.
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Benzyl 2-(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (4c):

o

COan
Following the general procedure E and using benzyl acrylate (81.1 mg, 0.500 mmol) the
target compound 4c was obtained as a colorless oil (32.1 mg, 0.116 mmol, 58%).

4c

1H-NMR (400 MHz, CDCls): 6 = 7.40-7.30 (m, 5H), 5.15 (s, 2H), 4.81 (dddd, J = 12.1, 6.8, 6.0, 3.5 Hz,
1H), 2.81 (dd, J = 16.1, 6.8 Hz, 1H), 2.61 (dd, J = 16.1, 6.0 Hz, 1H), 2.38 (dd, J = 16.6, 1.7 Hz, 1H), 2.21
(d, J=16.6 Hz, 1H), 1.75 (ddd, J = 13.9, 3.5, 1.7 Hz, 1H), 1.49 (dd, J = 13.9, 12.1 Hz, 1H), 1.09 (s, 3H),
1.05 (s, 3H) ppm.

13C-NMR (101 MHz, CDCls): 6 = 171.3, 169.7, 135.6, 128.7, 128.5, 128.5, 73.7, 66.9, 43.8, 41.7, 40.6,
31.1, 30.0, 27.6 ppm.

HRMS (ESIpos) m/z: Calcd for C16H20NaOs* 299.1254, Found 299.1270.

IR (cm™): 2355, 2324, 1734, 1719, 1541, 1302, 1250, 1175, 1036.

2,2,2-Trifluoroethyl 2-(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)acetate (4d):

(0]
(0]

CO,CH,CF,4
4d Following the general procedure E and using 2,2,2-trifluoroethyl acrylate (77 mg,
0.50 mmol) the target compound 4d was obtained as a colorless oil (28.9 mg, 0.108 mmol, 54%).

'H-NMR (500 MHz, CDCl;): & = 4.81 (dddd, J = 12.2, 7.0, 5.6, 3.5 Hz, 1H), 4.60-4.37 (m, 2H), 2.86 (dd,
J=16.4,7.0 Hz, 1H), 2.69 (dd, J = 16.4, 5.6 Hz, 1H), 2.40 (dd, J = 16.7, 1.7 Hz, 1H), 2.25 (d, / = 16.7 Hz,
1H), 1.77 (ddd, /= 13.9, 3.5, 1.7 Hz, 1H), 1.53 (dd, / = 13.9, 12.2 Hz, 1H), 1.12 (s, 3H), 1.08 (s, 3H) ppm.

13C-NMR (126 MHz, CDCls): 5 = 171.0, 168.3, 122.9 (q, Jer = 277.2 Hz), 73.3, 60.7 (q, Jor = 36.8 Hz), 43.8,
41.6,40.1,31.1, 30.0, 27.5 ppm.

19F-NMR (470 MHz, CDCl3): § = -73.8 (t, Jr. = 8.3 Hz) ppm.
HRMS (ESIpos) m/z: Calcd for C11HisFsNaO4* 291.0815, Found 291.0835.

IR (cm™): 2963, 2259, 1740, 1449, 1373, 1301, 1244, 1150, 1086, 912, 725.

4,4-dimethyl-6-(2-oxopropyl)tetrahydro-2H-pyran-2-one (4e):
O
(0]

o}

e Following the general procedure F and using but-3-en-2-one (35 mg, 0.50 mmol) the

target compound 4e was obtained as a colorless oil (18.7 mg, 0.101 mmol, 51%).
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1H-NMR (400 MHz, CDCl;): & = 4.83 (dddd, J = 12.1, 6.5, 5.8, 3.4 Hz, 1H), 2.93 (dd, J = 17.0, 6.5 Hz, 1H),
2.60 (dd, J = 17.1, 5.8 Hz, 1H), 2.39 (dd, J = 16.5, 1.6 Hz, 1H), 2.33-2.11 (m, 4H), 1.77 (ddd, J = 13.9, 3.4,
1.6 Hz, 1H), 1.42 (dd, J = 13.9, 12.1 Hz, 1H), 1.11 (s, 3H), 1.05 (s, 3H) ppm.

13C.NMR (101 MHz, CDCls): & = 205.2, 171.6, 73.5, 49.0, 43.9, 42.1, 31.2, 31.2, 30.0, 27.8 ppm.
HRMS (ESlIpos) m/z: Calcd for CioH16NaOs* 207.0992, Found 207.1006.

IR (cm™): 2963, 1740, 1449, 1310, 1242, 1151, 1084, 1042, 1032.

2-(4,4-Dimethyl-6-oxotetrahydro-2H-pyran-2-yl)acetonitrile (4f):
O
O

CN

4f Following the general procedure E and using acrylonitrile (11.8 mg, 0.500 mmol) the

target compound 4f was obtained as a colorless oil (13.3 mg, 0.079 mmol, 40%).

1H-NMR (400 MHz, CDCls): 6 = 4.63 (dddd, J = 12.1, 5.9, 5.0, 3.7 Hz, 1H), 2.83-2.69 (m, 2H), 2.42 (dd,
J=16.9, 1.9 Hz, 1H), 2.29 (d, / = 16.9 Hz, 1H), 1.84 (ddd, J = 13.9, 3.7, 1.9 Hz, 1H), 1.66 (dd, J = 13.9,
12.1 Hz, 1H), 1.12 (s, 6H) ppm.

13C-NMR (101 MHz, CDCl3): 6 = 169.9, 115.7, 72.2, 43.6, 41.0, 30.9, 30.1, 27.0, 24.9 ppm.
HRMS (ESIpos) m/z: Calcd for CsH1sNNaO;* 190.0838, Found 190.0853.

IR (cm™): 2963, 2932, 2255, 1738, 1472, 1387, 1375, 1242, 1223, 1053, 1038, 947, 725.

4,4-Dimethyl-6-((phenylsulfonyl)methyl)tetrahydro-2H-pyran-2-one (4g):
o]
(0]

SO,Ph

49 Following the general procedure E and using (vinylsulfonyl)benzene (84.1 mg, 0.500
mmol) the target compound 4g was obtained as a colorless oil (37.7 mg, 0.133 mmol, 67%).

'H-NMR (300 MHz, CDCls): § = 7.96-7.89 (m, 2H), 7.72-7.64 (m, 1H), 7.62-7.54 (m, 2H), 4.85 (dtd,
J=12.1,5.9, 3.5 Hz, 1H), 3.55 (dd, J = 14.5, 5.9 Hz, 1H), 3.31 (dd, J = 14.5, 5.9 Hz, 1H), 2.36 (dd, /= 16.6,
1.6 Hz, 1H), 2.19 (d, J = 16.6 Hz, 1H), 1.97 (ddd, J = 14.1, 3.5, 1.6 Hz, 1H), 1.56 (dd, J = 14.1, 12.1 Hz,
1H), 1.09 (s, 3H), 1.04 (s, 3H) ppm.

13C-NMR (75 MHz, CDCl;): & = 170.1, 139.6, 134.3, 129.5, 128.2, 71.8, 61.1, 43.7, 41.9, 31.0, 30.1,
27.5 ppm.

HRMS (ESIpos) m/z: Calcd for C14H1sNaO4S* 305.0818, Found 305.0836.

IR (cm™): 2961, 2947, 2257, 1744, 1449, 1373, 1310, 1244, 1151, 1086, 903, 723.
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(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)methanesulfonyl fluoride (4h):

o

SO,F
4h Following the general procedure F and using ethenesulfonyl fluoride (55 mg, 0.50 mmol)

the target compound 4h was obtained as a colorless oil (22.9 mg, 0.102 mmol, 51%).

1H-NMR (599 MHz, CDCls): 6 = 4.92 (dddd, J = 12.1, 6.5, 5.4, 3.6 Hz, 1H), 3.81 (ddd, Ju.y = 15.0, 6.5 Ju¢
=2.0 Hz, 1H), 3.60 (ddd, Ju.x = 15.0, 5.4 Hz, J4.r = 6.6 Hz, 1H), 2.45 (dd, /= 16.8, 1.8 Hz, 1H), 2.30 (d, J =
16.8 Hz, 1H), 1.93 (ddd, J = 13.9, 3.6, 1.8 Hz, 1H), 1.65 (dd, J = 13.9, 12.1 Hz, 1H), 1.15 (s, 3H), 1.12 (s,
3H) ppm.

13C-NMR (151 MHz, CDCl3): § = 169.3, 71.3, 55.7, 55.6, 43.6, 41.1, 41.1, 31.0, 30.2, 27.2 ppm.
F-NMR (564 MHz, CDCl3): 6 = 61.4 (dd, Je.4 = 6.6, 1.9 Hz) ppm.
HRMS (ESIpos) m/z: Calcd for CsH13FNaO4S*: 247.0411, Found 247.0422.

IR (cm™): 2961, 2934, 1746, 1412, 1314, 1265, 1238, 1196, 1146, 1086, 1032, 833, 789.

diethyl ((4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)methyl)phosphonate (4i):
o)
(0]
_R-OEt

“'\
0" OEt
4

Following the general procedure E and using diethyl vinylphosphonate (284 mg, 3.50
mmol) the target compound 4i was obtained as a colorless oil (22.2 mg, 0.080 mmol, 40%).

H-NMR (400 MHz, CDCls): & = 4.77-4.62 (m, 1H), 4.24-4.02 (m, 4H), 2.38 (dd, J = 16.6, 1.6 Hz, 1H),
2.35-2.25 (m, 1H), 2.22 (d, J = 16.7Hz, 1H), 2.11-2.00 (m, 1H), 1.94 (ddd, J = 14.2, 3.4, 1.6 Hz, 1H), 1.53
(dd, J = 14.1, 12.0 Hz, 1H), 1.36-1.30 (m, 6H), 1.09 (s, 3H), 1.06 (s, 3H) ppm.

13C-NMR (101 MHz, CDCl3): § = 171.21, 72.95, 62.38 (d, Jcpr = 6.4 Hz), 62.01 (d, Jcr = 6.5 Hz), 43.81,
43.11 (d, Jcp = 6.4 Hz), 33.10 (d, Jcp = 140.7 Hz), 31.14, 30.06, 27.63, 16.54 (d, Jc.r = 6.0 Hz), 16.51 (d,
Jep=6.1Hz) ppm.

31p_{*H}-NMR (162 MHz, CDCls): 6 = 25.6 ppm.
HRMS (ESlIpos) m/z: Calcd for C1,H23NaOsP* 301.1175, Found 301.1191.

IR (cm™): 2984, 2961, 2928, 1738, 1466, 1265, 1240, 1026, 966, 733.
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(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)acetate
(4j):

o R = I\?/Ie
(0]
o
CO,R
4

(-)-menthol-
derived  rg|lowing the general procedure E and using (1S,2R,5S)-2-isopropyl-5-
methylcyclohexyl acrylate (105 mg, 0.500 mmol) the target compound 4j was obtained as a colorless

oil (38.2 mg, 0.118 mmol, 59%, d.r. = 1.0/1.0).

1H-NMR (300 MHz, CDCl3): & = 4.86-4.63 (m, 2H™+2H%?), 2.82-2.69 (m, TH+1H"?), 2.60-2.47 (m,
1H5L41H52), 2.44-2.34 (m, TH*®+1H*?), 2.27-2.18 (m, TH*®™+1H*?), 2.04-1.92 (m, 1H*L+1H"?),
1.90-1.63 (m, 4H™*1+4H™°2), 1.54—1.30 (m, 3H*°+3H*°2), 1.10 (s, 3H"*°'or3H"*°?), 1.06 (s, 3H"**?), 1.04—
0.85 (m, 9H™*°1), 0.75 (s, 3H"*°?), 0.73 (s, 3H"*?) ppm.

13C-NMR (75 MHz, CDCl3): 6 = 171.4,171.4, 169.5(4), 169.5(2), 75.2, 75.1, 73.9, 47.0, 43.9, 43.81, 41.9,
41.8, 41.0, 40.9, 40., 3.26, 31.5, 31.2, 30.0, 27.70, 27.6, 26.4, 26.3, 23.5, 23.4, 22.1, 20.9, 20.8, 16.4,
16.3 ppm.

HRMS (ESIpos) m/z: Calcd for Ci9H32NaO4* 347.2193, Found 347.2199.

IR (cm™): 2961, 2928, 2255, 1728, 1456, 1389, 1373, 1420, 1036, 905, 725.

(2S,5S)-2,6,6-Trimethylbicyclo[3.1.1]heptan-3-yl 2-(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-
yl)acetate (4k):

)
0]

.0
CO,R -
4k
(-)-isopinocampheol-
derived Following the general procedure E and using (1R,25,55)-2,6,6-
trimethylbicyclo[3.1.1]heptan-3-yl acrylate (104 mg, 0.500 mmol) the target compound 4k was

obtained as a colorless oil (37.9 mg, 0.117 mmol, 57%, d.r. = 1.0/1.0).

1H-NMR (300 MHz, CDCl3): & = 5.12-5.02 (m, THM+1H°?), 4.86 — 4.73 (m, 1H**™+1H?), 2.83-2.71 (m,
THLE1H?), 2.62-2.49 (m, 2H*M4+2H2), 2.43 — 2.30 (m, 2H™42H?), 2.23 (m, 1HY), 2.16-2.04 (m,
TH™L41H%0?), 1.96-1.87 (m, TH™L41H?), 1.85-1.74 (m, IH™4+1H?), 1.72-1.61 (m, IH*+1H"%?), 1.56-
1.44 (m, 1H™°2+1H"°2), 1.21 (s, 3H"*°?+3H™°?), 1.13-1.00 (m, 10H*°*+10H*°2), 0.94 (s, 3H"1+3H"°?) ppm.

13C-NMR (75 MHz, CDCls): 6 = 171.4, 169.9, 169.8, 75.1, 75.0, 73.9(3), 73.8(9), 47.5, 43.8, 43.7, 41.9,
41.3,40.9(3), 40.9(1), 38.3, 35.9, 33.6, 31.2, 30.0, 27.7, 27.5, 23.9, 20.6 ppm.

HRMS (ESlIpos) m/z: Calcd for Ci19H3oNaO4* 345.2036, Found 345.2043.
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IR (cm™): 2958, 2930, 2255, 1724, 1506, 1472, 1437, 1420, 1315, 1196, 1034, 905.

1,3,3-Trimethylbicyclo[2.2.1]heptan-2-yl 2-(4,4-dimethyl-6-oxotetrahydro-2H-pyran-2-yl)acetate
(0]

(al):
o ?

.0
CO,R
4l
(rac)-fenchol-
derived Following the general procedure E and using 1,3,3-
trimethylbicyclo[2.2.1]heptan-2-yl acrylate (104 mg, 0.500 mmol) the target compound 4l was

obtained as a colorless oil (36.2 mg, 0.112 mmol, 56%, d.r. = 1.0/1.0).

'H-NMR (300 MHz, CDCl;): § = 4.86-4.73(m, 1H"°*+1H"*?), 4.44-4.35 (m, 1H**'+1H"?), 2.89-2.75 (m,
1H™1+1H"?), 2.65-2.53 (m, 1H™**+1H"?), 2.45-2.34 (m, 1H*°*+1H°?), 2.28-2.18 (m, 1H*°*+1H™*°?), 1.86-
1.76 (m, 1H®°*4+1H"*?), 1.75-1.39 (m, 6H™°'+6H"*?), 1.21-1.15 (m, 1H*'+1H*?), 1.15-1.02 (m,
13H™+13H™?), 0.78 (s, 3H**), 0.76 (s, 3H"*°?) ppm.

3C.NMR (75 MHz, CDCls): & = 171.4(4), 171.4(2), 170.4, 170.3, 87.2, 87.1, 73.9, 73.8, 48.4, 43.9,
41.9(2), 41.8(9), 41.4, 40.8, 40.7, 39.6, 39.5, 31.2, 30.0, 29.8, 27.7(0), 27.6(9), 26.7, 25.9, 20.4, 20.3,
19.5(4), 19.5(0) ppm.

HRMS (ESIpos) m/z: Calcd for CioH30NaO4* 345.2036, Found 345.2048.

IR (cm™): 2961, 2934, 1734, 1317, 1248, 1238, 1057, 1032.
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Mechanistic Experiments

Kinetic Isotope Experiments

3,3-Bis(methyl-ds)butanoic-4,4,4-ds acid (1a-ds):

COOH

D 07[
3 CDs

DsC
12ds  Ethyl 3-(methyl-ds)but-2-enoate-4,4,4-ds and (methyl-ds)lithium had were synthesized via

literature knwon procedures.>®

Following the general procedure D in 5.40 mmol scale using ethyl 3-(methyl-ds)but-2-enoate-4,4,4-ds
(725 mg, 5.40 mmol) and (methyl-ds)lithium (21.6 mmol, 4.0 equiv) the target compound 1a-ds was
obtained as a colorless oil (360 mg, 2.88 mmol, 53%).

'H-NMR (300 MHz, CDCl5): § = 2.23 (s, 2H) ppm.
13C-NMR (101 MHz, CDCl3): 6 = 179.5, 47.8, 30.1, 28.8 (dt, Jc.o = 18.9 Hz) ppm.
HRMS (ESIneg) m/z: Calcd for C6H2Ds0, 124.13294, Found 124.13297.

IR (cm™): 1701.

Determination of the parallel KIE:

An oven dried 10 mL Schlenk tube was charged with Pd(OAc), (4.5 mg, 0.020 mmol, 10 mol%), Ac-B-
Ala-OH (5.3 mg, 0.040 mmol, 20 mol%), Ag,C0Os (96.5 mg, 0.350 mmol, 1.75 equiv), NaHPO, - 7 H,0
(10.7 mg, 0.04 mmol, 0.2 equiv), acid (0.2 mmol ), ethyl acrylate (50,1 mg, 0.5 mmol, 2.5 equiv) and
HFIP (2.25 mL). The reaction mixture was stirred in a preheated aluminum block at 110 °C. After the
indicated time the reaction was cooled to -78 °C. After letting the reaction warm up to room
temperature a stock solution of 1,3,5-trimethoxybenzene (1.00 mL, 20.0 um, 3.36 mg, 20.0 umol, 0.1
equiv) was added. The reaction mixture was filtered over a pad of silica (bottom layer) and aluminum
oxide (top layer), the residue was washed with EtOAc (30 mL) to complete elution and all volatiles were
removed under reduced pressure. EtOAc (1.5 mL) was added and the yield was determined via GC-FID
of the crude reaction mixture using 1,3,5-trimethoxybenzene as internal standard.

a) Standard substrate

Pd(OAc); (10 mol%) o}

HsC B-Ala- 0
3 >(\COOH NCOOE Ac-B-Ala-OH (20 mol%) o
+
HaC CHs Ag,CO; (1.75 eq.) HsC COREt
(0.2 mmol) (2.5 eq.) NaZH::I)é’Z;ZCS) (Olj eq) M€
. m
b) Deuterated substrate 110 °C, 40-120 min
Pd(OAc), (10 mol%) O
D Q- _ o
3C7(\000H ~GCOOET Ac-B-Ala-OH (20 mol%) o
DsC CD +
s s Ag,COs (1.75 eq.) DsC CO,Et
(0.2 mmol) (2.5eq.) NazH:FOI;'ZZHEg (Olj eq.) DsC 1y
. m

110 °C, 40-120 min

Scheme 522: Reaction conditions for the determination of the kinetic isotope experiments.
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m Standard substrate
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KIE=3.6

40 60 80 100 120
time (min)

Figure 1: Determination of the KIE in parallel experiments. ku/kp Determination.

Table 1: Parallel Kinetic isotope effect.

Pd(OAc), (10 mol%) o}
R3C7(\COOH /\COOEt Ac-B-Ala-OH (20 mol%) 0
RsC CRs ' Ag,CO; (1.75 eq.) qucc
(0.2 mmol) 2.5 eq.) Na;HPO,-7H,0 (0.2eq.) °° R R COOEt
R =H1a HFIP (2.25 mL)
R =D 1a-dy 110 °C, 40 - 120 min E:g::_dg
Entry substrate Reaction time (min) | Product (umol)
1 3,3-dimethylbutanoic acid (1a) 40 7
2 3,3-dimethylbutanoic acid (1a) 60 10.8
3 3,3-dimethylbutanoic acid (1a) 80 14
4 3,3-dimethylbutanoic acid (1a) 100 14.4
5 3,3-dimethylbutanoic acid (1a) 120 29.4
6 3,3-bis(methyl-ds;)butanoic-4,4,4-d; acid (1a-ds) 40 0.6
7 3,3-bis(methyl-d;)butanoic-4,4,4-d; acid (1a-ds) 60 2.4
8 3,3-bis(methyl-ds;)butanoic-4,4,4-d; acid (1a-ds) 80 4.4
9 3,3-bis(methyl-ds;)butanoic-4,4,4-d; acid (1a-ds) 100 6.4
10 3,3-bis(methyl-d;)butanoic-4,4,4-d; acid (1a-ds) 120 5.4
ky 0.242
KIE = E = 0.068 = 3.559

Competition experiment

An oven dried 10 mL Schlenk tube was charged with Pd(OAc), (4.5 mg, 0.020 mmol, 10 mol%), Ac-B-
Ala-OH (5.3 mg, 0.040 mmol, 20 mol%), Ag.COs (96.5 mg, 0.350 mmol, 1.75 equiv), Na;HPO,4 - 7 H,0
(10.7 mg, 0.04 mmol, 0.2 equiv), ds-3,3-dimethylbutyric acid (1a-dq)(12.5 mg, 0.1 mmol), 3,3-
dimethylbutyric acid (1a)(11.6 mg, 0.1 mmol), ethyl acrylate (50.1 mg, 0.50 mmol, 2.5 equiv) and HFIP
(2.25 mL). The reaction mixture was stirred in a preheated aluminum block at 110 °C for 180 min. The
reaction was cooled to -78 °C. The reaction mixture was allowed to warm up to room temperature
and an aliquot of the reaction was filtered over a piece of Whatman ® filter paper. The parallel KIE was
determined by ESI-MS analysis of the crude reaction mixture.
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DsC Pd(OAC), (10 mol%) o o

X COOH H3C>(\000H Ac-p-Ala-OH (20 mol%)
D5C CDs + HsC CHs 0 + o)
Ag,CO3 (1.75 eq.) D;C COzEt H,C CO,Et
c

(0.1 mmol) (0.1 mmol) Ethylacrylate (2.5 eq.) DsC Sy H3C
Nay,HPO,4-7H,0 (0.2 eq.)
HFIP (2.25 mL)
110 °C, 180 min

KIE — 81.00 4.265
18.99 '

02518333298

LabelChecker Results

-

ormula: C11H18 04 Na
Mass (monoisotopic): 237.11

Difference Value:  0.000083
Error Sum 0.009
Error (%): 0.000 b E =

100,

A Ve 310052 Oty i st Lot

Scheme $23: Competition experiment.

Determination of Reaction Order in Olefin, Catalyst and Substrate

For the determination of the reaction order in olefin and catalyst the variable time normalization
analysis developed by Burés was used.”?

General Procedure H:

An oven dried 10 mL Schlenk tube was charged with Pd(OAc), (4.5 mg, 0.020 mmol, 10 mol%), Ac-B-
Ala-OH (5.3 mg, 0.040 mmol, 20 mol%), Ag.COs (96.5 mg, 0.350 mmol, 1.75 equiv), Na;HPO,4 - 7 H,0
(10.7 mg, 0.04 mmol, 0.2 equiv), 3,3-dimethylbutyric acid (1a) (23.2 mg, 0.2 mmol), ethyl acrylate (50.1
mg, 0.5 mmol, 2.5 equiv) and HFIP (2.25 mL). The reaction mixture was stirred in a preheated
aluminum block at 110 °C. After the indicated time the reaction was cooled to —78 °C- After letting the
reaction warm up to room temperature a stock solution of 1,3,5-trimethoxybenzene (1.00 mL, 20.0
UM, 3.36 mg, 20.0 umol, 0.1 equiv) was added. The reaction mixture was filtered over a pad of silica
(bottom layer) and aluminum oxide (top layer), the residue was washed with EtOAc (30 mL) to
complete elution and all volatiles were removed under reduced pressure. EtOAc (1.5 mL) was added
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and the yield was determined via GC-FID of the crude reaction using 1,3,5-trimethoxybenzene as
internal standard.
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General Procedure I:

An oven dried 10 mL Schlenk tube was charged with Pd(OAc), (4.5 mg, 0.020 mmol, 10 mol%), Ac-B-
Ala-OH (5.3 mg, 0.040 mmol, 20 mol%), Ag,COs (96.5 mg, 0.350 mmol, 1.75 equiv), Na;HPO, - 7 H,0
(37.5 mg, 0.14 mmol, 0.2 equiv), 3,3-dimethylbutyric acid (1a) (23.2 mg, 0.2 mmol), ethyl acrylate (50.1
mg, 0.5 mmol, 2.5 equiv) and HFIP (2.25 mL). The reaction mixture was stirred in a preheated
aluminum block at 110 °C. After the indicated time the reaction was cooled to -78 °C- After letting the
reaction warm up to room temperature a stock solution of 1,3,5-trimethoxybenzene (1.00 mL, 20.0
MM, 3.36 mg, 20.0 umol, 0.1 equiv) was added. The reaction mixture was filtered over a pad of silica
(bottom layer) and aluminum oxide (top layer), the residue was washed with EtOAc (30 mL) to
complete elution and all volatiles were removed under reduced pressure. EtOAc (1.5 mL) was added
and the yield was determined via GC-FID of the crude reaction using 1,3,5-trimethoxybenzene as
internal standard.

Order in Olefin:
For the determination of the reaction order in olefin variable time normalization analysis was used.’

General procedure H was utilized with the following modifications: The amount of ethyl acrylate
(27.30—-109.1 pL, 250 — 1000 umol, 1.25 — 5.00 equiv) was varied.

Table 2: Initial rate method to determine the order in olefin
Pd(OAG), (10 mol%) o}
><\COOH . /\COOEt Ac-B-Ala-OH (20 mol%) o
(0.2 mmol) (1.25 -5 eq.) Nazﬁgég?;igs(gg'iq_) -
HFIP (2.25 mL)
110 °C, 40 - 120 min
Entry | Amount of olefin (umol) Rection time (min) Product (umol)
1 250 40 0.42
2 250 60 3.22
3 250 80 6.72
4 250 100 10.18
5 250 120 20.04
6 375 40 0.90
7 375 60 4.60
8 375 80 8.76
9 375 100 18.52
10 375 120 24.60
11 500 40 0.44
12 500 60 4.84
13 500 80 8.32
14 500 100 19.42
15 500 120 24.80
16 750 40 0.94
17 750 60 3.74
18 750 80 7.48
19 750 100 21.50
20 750 120 26.30
21 1000 40 0.94
22 1000 60 2.76
23 1000 80 10.52
24 1000 100 21.14
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Figure 2: Plot of product (umol) versus time (min) for various olefin concentrations with linear fits
[olefin] =111 mMm (black), 167 mmMm (red), 222 mm (blue), 333 mMm (green), and 444 mm (pink).
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Figure 3-a-h: Plot of the product concentration versus the reaction time multiplied with an
exponentiation of the olefin concentration.
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Figure 4: Plot of the coefficient of determination (derived from the linear regressions of the linear fits
in Figure 3-a-h) versus the reaction order in olefin.

Order in catalyst:
For the determination of the reaction order in catalyst variable time normalization analysis was used.®

General procedure | was utilized with the following modifications: The amount of palladium acetate
(2.25—-6.74 mg, 10 — 30 umol, 0.01 — 0.03 equiv) and Ac-B-Ala-OH (5.30 — 15.7 mg, 20 — 60 umol, 0.02
—0.06 equiv) was varied.

Table 3: Initial rate method to determine the order in catalyst
Pd(OAc), (5-15 mol%) o
><\COOH N CO0E Ac-B-Ala-OH (10-30 mol%) o
HFIP (2.25 mL)
110 °C, 30 - 70 min
Entry | Amount of catalyst (umol) Rection time (min) Product (umol)
1 10 30 0.68
2 10 40 2.71
3 10 50 5.99
4 10 60 7.81
5 10 70 10.37
6 15 30 2.68
7 15 40 6.19
8 15 50 7.15
9 15 60 7.77
10 15 70 21.04
11 20 30 2.37
12 20 40 8.87
13 20 50 6.27
14 20 60 16.04
15 20 70 23.72
16 25 30 1.73
17 25 40 9.52
18 25 50 18.16
19 25 60 23.42
20 25 70 27.95
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21 30 30 2.50
22 30 40 13.33
23 30 50 20.07
24 30 60 28.96
25 30 70 30.46
35
= 5mol%
304 © 7.5mol%
— 4 10 mol% v
S 251 v 125mol%
I 15 mol% 4
=201
© 15
2 g
© 10
o
5< /
0 » . . . .
30 40 50 60 70
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Figure 5: Plot of product (umol) versus time (min) for various catalyst amounts with linear fits.
[catalyst] = 10 umol (black), 15 umol (red), 20 umol (blue), 25 umol (green), and 30 umol (pink).
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Figure 6 a-q: Plot of the product concentration versus the reaction time multiplied with an
exponentiation of the catalyst concentration.
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Figure 7: Plot of the coefficient of determination (derived from the linear the linear fits in Figure 6 a-
q). versus the reaction order in catalyst.

Order in Substrate:
For the determination of the reaction order in substrate the initial rate method was used.

General procedure | was utilized with the following modifications: The amount of 3,3-
dimethylbutyric acid (1a) (12.8 —50.9 uL, 0.10 — 0.40 mmol) was varied.
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Table 4: Initial rate method to determine the order in 3,3—dimethylbutyric acid (1a)

Pd(OAc), (10 mol%) o
\7<”\COOH . ~COOE Ac-B-Ala-OH (20 mol%) o
HFIP (2.25 mL)
110 °C, 30 - 70 min
Entry Amount of substrate 1a Rection time (min) Product (umol)
(pmol)
S 0 30 4.0
: 0 40 7.8
; 0 >0 16.8
: 0 60 23.2
2 0 /0 26.6
& ) 30 2.4
; ) 40 5.4
; ot >0 12.2
- ot 60 24.8
T 0 /0 28.2
> 200 30 1.8
- 200 40 3.6
” 200 >0 12.2
14 200 60 22.6
15 200 70 31.8
16 300 30 2.0
17 300 40 3.0
18 300 50 5.8
19 300 60 17.8
20 300 70 19.6
21 400 30 >y
22 400 40 i
23 400 50 S e
24 400 60 13.0
25 400 70 13.0
35
= 100 umol R
304| e 150 umol
= 4 200 pmol
g 251 v 300 pmol
220 400 pmol
§§ 15
©
O 10+
o
5
0

30 40 50 60 70
time (min)
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Figure 8 : Plot of product (1umol) versus time (min) for various concentrations of substrate 1a.
[substrate] = 100 umol (black), 150 umol (red), 200 umol (blue), 300 umol (green), and 400 pmol
(pink).
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Table 5: Initial rate for various amounts of substrate 1a:

Conc. of the substrate Initial rate (umol/min)
(umol/mL)

45 0.61
67 0.71

89 0.79

133 0.50
178 0.30

£ }
1.

S o011
0,0

0 20 40 60 80 100 120 140 160 180
initial acid concentration (mM)

Figure 9: Initial rate verus the initial substrate concentration.

Reversibility of the C—H Activation

Reversibility Experiment in the presence of ethyl acrylate

An oven dried 10 mL Schlenk tube was charged with Pd(OAc)z (2.25 mg, 0.0100 mmol, 10 mol%), Ac-
B-Ala-OH (2.6 mg, 0.020 mmol, 20 mol%), Ag>COs (48.3 mg, 0.175 mmol, 1.75 equiv), Na;HPO, - 7 H,0
(5.4 mg, 0.02 mmol, 0.2 equiv), ds-3,3-dimethylbutyric acid (1a-ds)(12.5 mg, 0.1 mmol) and ethyl
acrylate (25.0 mg, 0.25 mmol, 2.5 equiv) and HFIP (1.125 mL). The reaction mixture was stirred in a
preheated aluminum block at 110 °C for 16 h. The reaction was cooled to -78 °C. An aliquot of the
reaction was filtered over a piece of Whatman @ filter paper and the deuterium incooperation in the
leftover starting material was determined by HRMS-ESI-MS.

Reversibility Experiment in the absence of ethyl acrylate

An oven dried 10 mL Schlenk tube was charged with Pd(OAc). (2.25 mg, 0.0100 mmol, 10 mol%), Ac-
B-Ala-OH (2.6 mg, 0.020 mmol, 20 mol%), Ag>COs (48.3 mg, 0.175 mmol, 1.75 equiv), Na;HPO, - 7 H,0
(5.4 mg, 0.02 mmol, 0.2 equiv), ds-3,3-dimethylbutyric acid (1a-d9)(12.5 mg, 0.100 mmol) and HFIP
(1.125 mL). The reaction mixture was stirred in a preheated aluminum block at 110 °C for 22h. The
reaction was cooled to -78 °C. The reaction was allowed to warm up to room temperature and an
aliquot of the reaction was filtered over a piece of Whatman ® filter paper and the deuterium
incorporation of the starting material was determined by HRMS-ESI-MS.
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Scheme $24: Reversibility experiment.
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Characterization of the Side Product

(E)-4,4-dimethyl-5-(3-oxobut-1-en-1-yl)dihydrofuran-2(3H)-one (5e):

0

Se The compound 5e was obtained as side product from the synthesis of 4e in form of a

colorless oil (4.1 mg, 0.022 mmol, 11%).

'H-NMR (400 MHz, CDCls): 6§ = 6.69 (dd, J = 15.9, 5.0 Hz, 1H), 6.41 (dd, J = 15.9, 1.7 Hz, 1H), 4.70 (dd,
J=5.0,1.7 Hz, 1H), 2.48 (d, J = 16.9 Hz, 1H), 2.39 (d, J = 16.9 Hz, 1H), 2.30 (s, 3H), 1.26 (s, 3H), 1.01 (s,
3H) ppm.

13C-NMR (101 MHz, CDCl3): § = 197.1, 175.2, 138.4, 131.2, 86.5, 44.1, 40.8, 28.6, 25.4, 22.6 ppm.
HRMS (ESIpos) m/z: Calcd for C1oH14NaOs* 205.0835, Found 205.0841.

IR (cm™): 2961, 2949, 2932, 1726, 1373, 1314, 1246, 1151, 1038.

(E)-4,4-Dimethyl-5-(2-(perfluorophenyl)vinyl)dihydrofuran-2(3H)-one (5m):

5m Following the general procedure F and using pentafluorostyrene (97.1 mg,0.500 mmol)
the target compound 5m was obtained as a colorless oil (12.0 mg, 39.2 umol, 20%).

H-NMR (599 MHz, CDCls): & = 6.62 (dd, J = 16.4, 1.4 Hz, 1H), 6.49 (dd, J = 16.4, 6.1 Hz, 1H), 4.69 (dd,
J=6.1, 1.4 Hz, 1H), 2.49 (d, J = 16.9 Hz, 1H), 2.42 (d, J = 16.9 Hz, 1H), 1.26 (s, 3H), 1.07 (s, 3H) ppm.

13C-NMR (151 MHz, CDCls): 6§ = 175.4, 145.0, 140.5, 137.9, 132.1, 117.4, 111.0, 88.3, 44.1, 40.7, 25.4,
22.5 ppm.

19F-{*H}-NMR (564 MHz, CDCl3): 6 =-141.4—-143.4 (m), -154.8 (t, J = 20.8 Hz), -162.4 (td, J= 21.6, 8.1
Hz) ppm.

HRMS (ESlIpos) m/z: Calcd for Ci4H11FsNaO,* 329.0571, Found 329.0585.

IR (cm™): 2967, 2255, 1778, 1522, 1499, 993, 907, 731.
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Mechanistic Studies:
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