

Modeling the Alkaline Hydrolysis of Diaryl Sulfate Diesters: A Mechanistic Study

Klaudia Szeler, Nicholas Williams, Alvan C. Hengge, Shina Caroline Lynn Kamerlin

Submitted date: 19/02/2020 Posted date: 20/02/2020

Licence: CC BY-NC-ND 4.0

Citation information: Szeler, Klaudia; Williams, Nicholas; Hengge, Alvan C.; Kamerlin, Shina Caroline Lynn

(2020): Modeling the Alkaline Hydrolysis of Diaryl Sulfate Diesters: A Mechanistic Study. ChemRxiv. Preprint.

https://doi.org/10.26434/chemrxiv.11874072.v1

Phosphate and sulfate esters have important roles as biological building blocks and in regulating cellular processes. However, while there has been substantial experimental and computational investigation of the mechanisms and the transition states involved in phosphate ester hydrolysis, there is far less (in particular computational) work on sulfate ester hydrolysis. Here, we report a detailed computational study of the alkaline hydrolysis of diaryl sulfate diesters, using different DFT functionals and both pure implicit solvation as well as mixed implicit/explicit solvation with varying numbers of explicit water molecules. We consider both the impact of how the system is modeled on computed linear free energy relationships (LFER) and the nature of the transition states. Although our calculations consistently underestimate the absolute activation free energies, we obtain good agreement with experimental LFER data when using pure implicit solvent, and excellent agreement with experimental kinetic isotope effects for all models used. Our calculations suggest that the hydrolysis of sulfate diesters proceeds through loose transition states, with minimal bond formation to the nucleophile and with bond cleavage to the leaving group already initiated. Comparison to prior work indicates that these transition states are similar in nature to those of analogous reactions such as the alkaline hydrolysis of neutral arylsulfonate monoesters or charged phosphate diesters and fluorophosphates. Obtaining more detailed insight into the transition states involved assists in understanding the selectivity of enzymes that hydrolyze these reactions; however, this work also highlights the methodological challenges involved in reliably modeling sulfate ester hydrolysis.

File list (3)

Kamerlin_Manuscript.pdf (2.39 MiB)	view on ChemRxiv • download file
Kamerlin_SupportingInformation.pdf (4.61 MiB)	view on ChemRxiv • download file
CartesianCoordinates.zip (383.70 KiB)	view on ChemRxiv • download file

Modeling the Alkaline Hydrolysis of Diaryl Sulfate

Diesters: A Mechanistic Study

Klaudia Szeler,¹ Nicholas H. Williams,² Alvan C. Hengge,^{3,*} Shina C. L. Kamerlin^{1,*}

1. Department of Chemistry – BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden. 2. Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK. 3. Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.

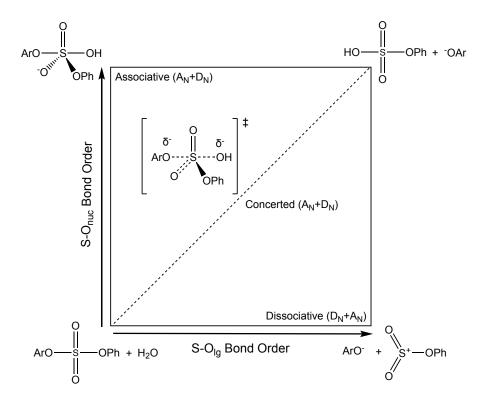
Corresponding author email addresses: <u>alvan.hengge@usu.edu</u> and <u>lynn.kamerlin@kemi.uu.se</u>

Abstract

Phosphate and sulfate esters have important roles as biological building blocks and in regulating cellular processes. However, while there has been substantial experimental and computational investigation of the mechanisms and the transition states involved in phosphate ester hydrolysis, there is far less (in particular computational) work on sulfate ester hydrolysis. Here, we report a detailed computational study of the alkaline hydrolysis of diaryl sulfate diesters, using different DFT functionals and both pure implicit solvation as well as mixed implicit/explicit solvation with varying numbers of explicit water molecules. We consider both the impact of how the system is modeled on computed linear free energy relationships (LFER) and the nature of the transition states. Although our calculations consistently underestimate the absolute activation free energies, we obtain good agreement with experimental LFER data when using pure implicit solvent, and excellent agreement with experimental kinetic isotope effects for all models used. Our calculations suggest that the hydrolysis of sulfate diesters proceeds through loose transition states, with minimal bond formation to the nucleophile and with bond cleavage to the leaving group already initiated. Comparison to prior work indicates that these transition states are similar in nature to those of analogous reactions such as the alkaline hydrolysis of neutral arylsulfonate monoesters or charged phosphate diesters and fluorophosphates. Obtaining more detailed insight into the transition states involved assists in understanding the selectivity of enzymes that hydrolyze these reactions; however, this work also highlights the methodological challenges involved in reliably modeling sulfate ester hydrolysis.

Keywords: sulfate diester hydrolysis • reaction mechanisms • density functional theory • linear free energy relationships • mixed implicit/explicit solvation

Introduction


The hydrolysis of both phosphate and sulfate esters is ubiquitous in biology, and plays important roles in numerous cellular processes, including in particular the regulation of cellular signaling processes.¹⁻³ Therefore, unsurprisingly, the enzymes that catalyze these reactions are involved in a range of human diseases, making them important drug targets.⁴⁻⁶ In addition, many phosphatases also possess promiscuous sulfatase activity,⁷⁻⁸ and such promiscuity is likely to be of evolutionary significance for these enzymes.⁹⁻¹³ While there has been substantial research focus on understanding enzymatic phosphate and sulfate hydrolysis (for reviews, see *e.g.* refs. ^{2-3,7,8,14} and references cited therein), understanding the corresponding non-enzymatic hydrolyses of these compounds is also important, in order to provide insight into the fundamental chemistry and the nature of the transition states involved. Here, the lion's share of research has focused on understanding phosphoryl transfer reactions using both experimental and computational approaches, and studies of linear free energy relationships (LFER), kinetic isotope effects (KIE), and activation entropies, complemented by computational modeling, has provided significant insight into the reactivity of these compounds (for detailed reviews see *e.g.* ²⁻³).

In contrast, there has been far less research effort invested into studying non-enzymatic sulfate hydrolysis, and, in particular, while there have been a number of elegant experimental studies of sulfate ester hydrolysis, corresponding computational studies have been very limited. Both experimental and computational studies of sulfate monoester hydrolysis suggest that the transition states for these reactions are mechanistically similar to those of their corresponding phosphate monoesters, proceeding through concerted pathways with loose (concerted but dissociative in character) transition states, with little bond formation to the nucleophile and advanced bond cleavage to the leaving group, resulting in an SO₃-like sulfuryl group. This is

supported by the similar kinetic parameters, $^{16, 20}$ linear free energy relationships, $^{15-19}$ and kinetic isotope effects $^{20, 21}$ for the hydrolysis of sulfate and phosphate monoesters. In addition, studies of the pH-dependence of these reactions show a broad pH-independent region between pH 4 and $12^{15, 16, 21, 28}$ (where hydrolysis likely proceeds by S-O rather than C-O bond cleavage), and a hydrolysis rate that is accelerated under strongly acidic or basic conditions. $^{16, 29}$ Computational comparison of the hydrolysis of p-nitrophenyl phosphate and sulfate monoesters provide a similar mechanistic picture for these reactions, 27 although the transition state for the hydrolysis of the sulfate monoester was calculated to be slightly more compact than that for the corresponding phosphate monoester. This is likely due to the fact that in contrast to the phosphate monoester dianion, the sulfate monoester is monoanionic.

In the case of sulfate diester hydrolysis, the majority of reported studies involve the reactivity of either dialkyl or aryl alkyl sulfate diesters, in which the reaction proceeds by attack at carbon with C-O rather than S-O bond cleavage.^{30, 31} In contrast, experimental work indicates that the alkaline hydrolysis of diaryl sulfate diesters proceeds through nucleophilic attack at sulfur (**Figure 1**),³² making it possible to compare the transition states for these reactions to those obtained in our prior work on the alkaline hydrolysis of related compounds such as sulfate and phosphate monoesters, aryl phosphate diesters, fluorophosphates, pryridinio-N-phosphonates and neutral sulfonate monoesters.^{27, 33-37} In all three cases, both experimental and computational work suggests that these reactions still proceed through concerted but tighter transition states than those observed in the case of phosphate and sulfate monoesters, and it would therefore not be implausible to assume the same holds true also for neutral diaryl sulfate diesters (**Figure 1**). This would also be supported by experimental data³² which provides a slope, β_{lg} , of -0.7 \pm 0.2 for the alkaline hydrolysis of a series of diaryl sulfate diesters (compared to a reported value of -1.81 \pm 0.09 for

aryl sulfate monoesters²⁴), and ^{15}k and $^{18}k_{lg}$ KIE of 1.0000 \pm 0.0005 and 1.003 \pm 0.002, respectively, for hydroxide attack on *p*-nitrophenyl sulfate.

Figure 1. An overview of different mechanistic possibilities for the alkaline hydrolysis of the arylsulfate diesters studied in this work, as illustrated on a More-O'Ferrall Jencks plot.^{38,39} Shown here are both the mechanistic extremes of fully associative (A_N+D_N, top left) and fully dissociative (D_N+A_N, bottom right) pathways. The dashed line indicates a concerted (A_ND_N, center) pathway with concomitant bond formation to the nucleophile and bond cleavage to the leaving group; note that although we have drawn the line through the center of the plot, these transition states can potentially be either dissociative or associative in nature, depending on whether bond formation to the nucleophile precedes or follows bond formation to the leaving group. In addition, the "products" (top right) would be expected to rapidly undergo proton transfer to form PhOSO₃ and ArOH. Adapted with permission from ref. ³² (direct link: https://pubs.acs.org/doi/abs/10.1021/jo0488309). Copyright 2004 American Chemical Society.

Figure 2. Overview of the compounds studied in this work, based on the experimental work presented in ref. ³².

In the present work, we perform a detailed comparison of the alkaline hydrolysis of a series of diaryl sulfate diesters with leaving groups of varying p K_a (**Figure 2**),³² using three different density functionals, and comparing both pure implicit solvent and mixed implicit/explicit solvation, for comparison to our prior work.^{27, 36, 40} We show that the slope of the calculated LFER is highly dependent both on the functional used, and on the number of explicit water molecules introduced into the system, but that in all cases, we are able to obtain good agreement with experimental KIE irrespective of the functional used or the number of water molecules. We also compare our calculated transition states to those obtained in our previous computational studies of related compounds,^{27, 33-37} and confirm that like other analogous compounds, the alkaline hydrolyses of sulfate diesters proceeds through tighter concerted transition states than those obtained for the corresponding monoesters.

Methodology

In the present, we have performed density functional theory (DFT) calculations of the alkaline hydrolysis of diaryl sulfate diesters shown in **Figure 2**, using the M11L,⁴¹ M062X⁴² and ωB97X-D.⁴³ All transition states were initially optimized using the M11L functional, with the final optimized structures being reoptimized using either the M062X or the ωB97X-D functionals. We note that in a small number of cases, direct re-optimization was not possible, as the transition state optimization never converged. These optimizations were therefore initiated from different starting

points. Specifically, the starting structure for the final transition state for 2,3,4,5,6-pentafluoro sulfate in the presence of 2 explicit water molecules, optimized using the M062X functional, was the ωB97X-D optimized transition state rather than the M11L optimized state. In the case of the transition states for the hydrolysis of 2,6-difluoro and 2-fluoro-4-nitrophenyl sulfate, optimized with the M11L functional in the presence of 8 water molecules, these structures were optimized using the transition states for 2-fluoro-4-nitrophenyl and 3-fluoro-4-nitrophenyl sulfate as starting structures, respectively. All other structures converged normally and were therefore obtained as initially described above.

Initial transition state optimizations were performed using the 6-31+G* basis set and the SMD solvation model, with the addition of between 0 and 8 explicit water molecules to the system. The water molecules were added to the system one by one in a symmetrical fashion (*i.e.* adding an additional water molecule to either side of each optimized transition state and reoptimizing the new transition state). The water molecules were added in such a way as to saturate all possible hydrogen bonding interactions with the sulfate diester. The resulting transition states were characterized both by frequency calculations at the same level of theory, as well as by following the intrinsic reaction coordinate (IRC)^{44,45} in both the reactant and product directions followed by optimization to the actual reactant and product. These structures were first optimized using an UltraFine integration grid, and the optimized stationary points were re-optimized using a SuperFine integration grid. The resulting absolute energies and Cartesian coordinates of all optimized stationary points are provided in the **Supporting Information**.

Bond orders, frequencies, zero-point energies and entropies were all calculated at 313.15K from the final optimized structures at the same level of theory, whereas the electronic energies were obtained by performing single point calculations using the larger 6-311+G** basis set. The

partial charges were obtained using the CHarges from ELectrostatic Potentials using a Grid-based method (CHELPG) charge calculation scheme⁴⁶ using the 6-31G* basis set, and bond orders were calculated based on the Wiberg bond index⁴⁷ using natural bond orbital (NBO) analysis.⁴⁸ All quantum chemical calculations were performed using Gaussian 16, Rev. B01.⁴⁹ Finally, kinetic isotope effects were calculated using the Biegeleisen-Mayer equation⁵⁰ using the frequencies in the Gaussian output files and Kinisot ("Kinetic Isotope Effects with Python", developed by the Paton lab and available for open source download from Zenodo, DOI: 10.5281/zenodo.60082), with the ¹⁵N/¹⁴N isotopic replacement manually added to the code.

Results and Discussion

Exploring the Impact of Including Explicit Water Molecules in the Simulations

In prior work on the hydrolysis of phosphate monoester dianions and sulfate monoester monoanions, we demonstrated that the inclusion of explicit water molecules into the system (in addition to the implicit solvent model) can have substantial impact on the energies and geometries of the resulting optimized structures and the ability to reproduce all the experimental data, including isotope effects.²⁷ To assess whether that is also the case for neutral diaryl sulfate diesters, we performed geometry optimizations of key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 explicit water molecules and using three different DFT functionals, and examined the impact of inclusion of these water molecules on the resulting activation free energies, charge distributions, and geometries. The resulting data are shown in Figures 3, S1-S3, and Tables S1 to S21.

From these data, it can be seen that all three functionals grossly underestimate the activation free energy to the hydrolysis reaction, with the lowest energies provided by the M062X functional, the highest by the ω B97X-D functional, and the M11L functional being intermediary between the

other two functionals. This underestimation is to be expected when modeling systems involving hydroxide as a nucleophile, as discussed at length by both ourselves and others elsewhere.^{35, 51-54} Therefore, our focus is not on whether a functional does a good job of reproducing *absolute* experimental activation free energies, but rather whether our models can reproduce *trends* in experimental observables (such as the slope of an LFER).

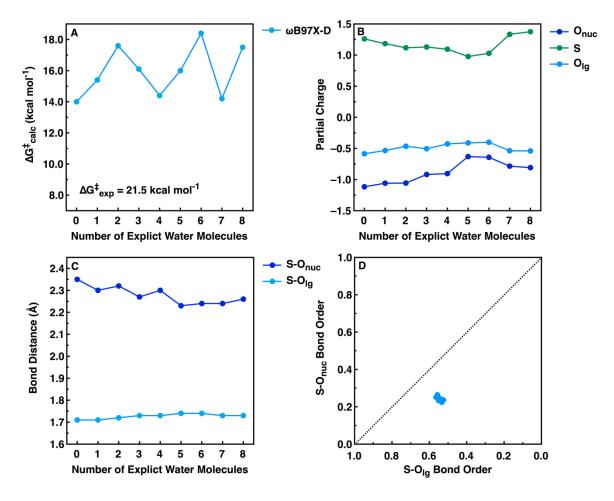


Figure 3. Overview of the (A) activation free energies, (B) partial charges at the transition state, (C) S-O_{nuc} and S-O_{lg} distances at the transition state and (D) S-O_{nuc} and S-O_{lg} bond orders at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate with varying numbers of water molecules, obtained using the ωB97X-D⁴³ functional, as described in the **Methodology** section. The calculated activation free energy was obtained using transition state theory at 313.15 K, based on kinetic data provided in ref. ³². For the corresponding data obtained using the M11L⁴¹ and M062X⁴² functionals, see **Figures S1** and **S2**, and for the corresponding raw data see **Tables S1 to S21**.

In terms of trends, it can be seen that there is considerable oscillation in the calculated activation free energies, depending on the number of explicit water molecules included in the system. This largely has to do with the positioning of the explicit water molecules: it is critical to introduce these water molecules symmetrically into the system, saturating all available hydrogen bond donors/acceptors to avoid accidentally over-stabilizing part of the system and obtaining potentially spurious intermediates, as discussed in detail in ref. 35, 55. However, unlike in the case of the charged species studied in most of our previous work, ^{27, 33, 34, 36, 37, 40} the diaryl sulfate diesters being studied in the present work are neutral species. This means that while the explicit water molecules interact quite nicely with the polarized transition state, the orientation of the water molecules at the reactant and product states can be quite "distorted" (for example all water molecules clustering together and away from the sulfate diester), suggesting that the sulfate oxygen atoms are poorer hydrogen bond acceptors than the water oxygen atoms. This then leads also to a distortion in the position of the nucleophilic hydroxide ion relative to the sulfur atom, moving it away from an ideal position for in-line attack on the sulfur atom (see e.g. Figures 4, S4 and S5), which in turn impacts the calculated activation free energies. That is, we obtain average $\Delta G^{\ddagger}_{calc}$ of 12.8 ± 1.3 , 10.3 ± 1.6 and 16.0 ± 1.6 using each of the M11L, M062X and ω B97X-D functionals, indicating that our calculated energies are less sensitive to the number of explicit water molecules included in the system. Similarly, the calculated geometries are also largely independent of number of water molecules included in the system – as can be seen from Figure S3, while there are small differences between the different density functionals, the data clusters around each functional irrespectively of the number of explicit water molecules included in the system.

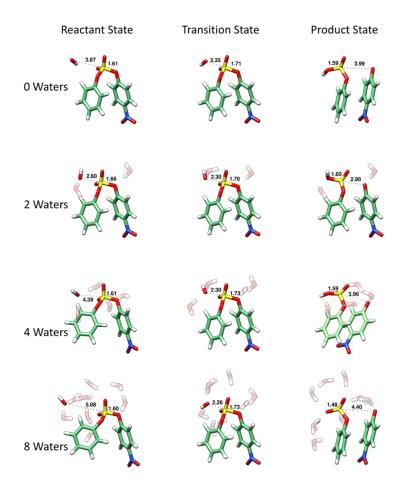


Figure 4. Representative structures of the ground, transition and product states for the alkaline hydrolysis of 4-nitrophenyl sulfate obtained using the ω B97X-D functional,⁴³ in the presence of varying numbers of explicit solvent molecules, as described in the **Methodology** section. The calculated S-O_{nuc} and S-O_{lg} distances are annotated for each optimized reacting state (in Å), and the corresponding data obtained using the M11L⁴¹ and M062X⁴² functionals is shown in **Figures S4** and **S5**, respectively. Finally, coordinates of all optimized stationary points are provided as **Supporting Information**.

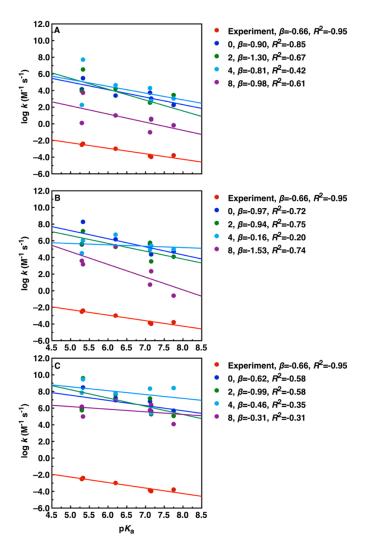
Tying in with this, as there is little change in the transition state geometry upon including additional explicit water molecules into the system, unsurprisingly, the calculated ^{15}k and $^{18}k_{lg}$ KIE are very stable irrespective of density functional or number of explicit water molecules, and all systems give relatively good agreement with experiment (**Table 1**). Here, it is worth pointing out that the observed $^{18}k_{bridge}$ values are at the low end of those seen in any reaction with a nitrophenyl

leaving group, where the maximum is ~ 1.03 . While it's true that some of the calculated values shown in **Table 1** are twice the experimental value, they are still all at the low end of the possible ranges of values for this effect, and in that regard are consistent with experiment. In addition, the negligible calculated ^{15}k values are consistent with the experimental value of unity.

Table 1. A comparison of experimental and calculated kinetic isotope effects for the alkaline hydrolysis of 4-nitrophenyl phenyl sulfate with varying numbers of explicit water molecules.^a

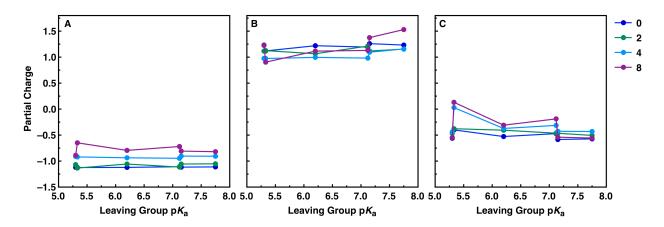
Waters	Experiment		ω B97X-D		M11L		M062X	
	18 K bridge	¹⁵ k	$^{18}k_{ m bridge}$	¹⁵ k	$^{18}k_{ m bridge}$	¹⁵ k	$^{18}k_{ m bridge}$	¹⁵ k
	1.003 ± 0.002	1.0000 ± 0.0005						
0			1.006	1.0012	1.003	1.0006	1.005	1.0008
1			1.006	1.0014	1.004	1.0010	1.006	1.0007
2			1.007	1.0009	1.003	1.0005	1.003	1.0010
3			1.007	1.0014	1.004	1.0005	1.004	1.0010
4			1.005	1.0007	1.003	1.0007	1.005	1.0005
5			1.006	1.0010	1.003	1.0005	1.002	1.0008
6			1.006	1.0013	1.006	1.0004	1.003	1.0007
7			1.006	1.0013	1.004	1.0006	1.005	1.0007
8			1.006	1.0013	1.005	1.0006	1.003	1.0007

^a The experimental KIE were obtained from ref. ³². The computational KIE were obtained using the Biegeleisen-Mayer equation⁵⁰ from vibrational frequencies calculated using the ω B97X-D,⁴³ M11L,⁴¹ and M062X⁴² functionals, as described in the **Methodology** section.


Indeed, the only significant difference to any of the physical properties of the transition state that is observed from including the explicit water molecules is on the partial charges of the nucleophile, leaving group and central sulfur atom: once at least ~5 water molecules have been

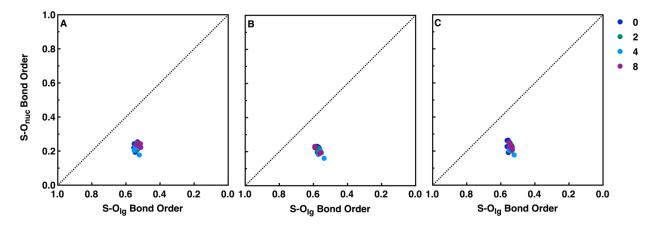
included into the system, the partial charge on the nucleophile oxygen becomes significantly less negative compared to that in the transition states calculated using implicit solvent alone, illustrating the stabilization of the charge on this oxygen atom by the implicit solvent molecules (**Tables S10** to **S12**). This is coupled to a slight contraction on the S-O_{nuc} distance upon adding at least ~5 water molecules to the system, although the corresponding change in bond order is minimal (**Tables S16** to **S18**) However, it is clear that, unlike in our previous calculations of charged systems, where there was significant benefit to including additional water molecules in the system, ^{27, 36, 40} here, the water molecules appear to provide minimal additional benefit in terms of describing the transition state reliably, and add only to computational cost.

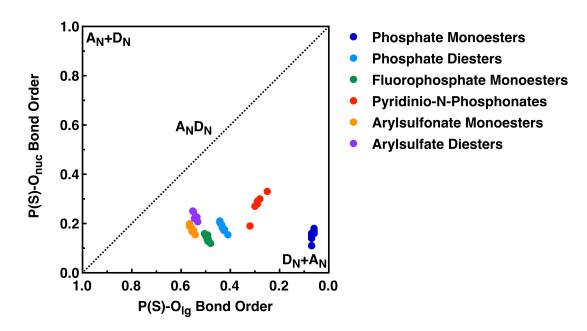
Calculated LFER for the Hydrolysis of Diaryl Sulfate Monoesters


Following from this, we have calculated an LFER for the alkaline hydrolysis of diaryl sulfate diesters, following the experimental work of ref. 32 , and based on the compounds shown in **Figure 2**. We have calculated these LFER using three different density functionals as described in the **Methodology** section, and in the presence of 0, 2, 4 or 8 explicit water molecules in each case. The resulting LFER are presented in **Figure 5**, and the correlation between calculated and experimental activation free energies in **Figure 86**. The corresponding raw data is shown in **Tables S22** – **S56**. Here, it can be seen that irrespective of functional and number of explicit water molecules included in the system, we frequently obtain very poor correlations between calculated and experimental data, with R^2 values as low as 0.2, and never higher than 0.9. In addition, the slopes of the calculated LFER vary widely, with β values that range from -0.16 to -1.53 (compared to an experimental value of -0.66). This discrepancy with the experimental data is again due to the fact that while the transition states tend to be very similar irrespectively of how many water molecules are included in the system, the reactant states can change quite markedly, in particular

when only two or four water molecules are included in the system, in which case the water molecules sometimes do not interact with the sulfate diester, but instead with each other, pulling the nucleophile away from a position suitable for inline attack on the diester (see *e.g.* **Figure 4**, coordinates of all stationary points are provided as **Supporting Information**). Indeed, the most reliable data is obtained *without* including explicit water molecules in the system – then, the β values range from -0.62 to -0.97 with R^2 ranging from -0.58 to -0.85.

Figure 5. A comparison of calculated linear free energy relationships for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Data was obtained using either the (**A**) ω B97X-D,⁴³ (**B**) M11L⁴¹ or (**C**) M062X⁴² functionals. The corresponding raw data is presented in **Tables S22** to **S33**. Experimental data was obtained from ref. ³².


In terms of partial charges (**Figures 6**, **S7 and S8**), there are subtle overall differences in the calculated partial charges across the series, as would be expected from altering the pK_a of the leaving group, however the differences are small. It appears in addition that changing functional and/or introducing explicit water molecules in the system changes the absolute values of the calculated partial charges, but has little impact on calculated trends across the series.


Figure 6. Partial charges on (**A**) the nucleophile oxygen, (**B**) the sulfur atom and (**C**) the leaving group oxygen, at the transition states for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**). Partial charges were calculated using the wB97xD⁴³ functional and the CHELPG charge calculation scheme⁴⁶ as described in the **Methodology** section. The corresponding charge distributions obtained using the M11L⁴¹ and M062X⁴² functionals are shown in **Figures S7** and **S8**, respectively, and the corresponding raw data is shown in **Tables S57-S81**.

Finally, we have examined in detail the transition state geometries for the different systems, as the calculated KIE shown in **Table 1** suggest that despite the problems reliably modeling energetics for these compounds, the transition state geometries provided by the different functionals appear to be quite reliable. As can be seen from **Figures 7** and **S9**, in all cases, we obtain dissociative but tight, concerted transition states, with partial bond cleavage to the leaving

group, and minimal bond formation to the incoming nucleophile. Geometric differences based on leaving group pK_a are minimal, and appear to primarily impact the S-O_{nuc} bond order/distance. Comparison to other previously modeled compounds^{27, 33-37} (**Figure 8**) suggest that these transition states are clearly more compact than those obtained for, for example, the spontaneous hydrolysis of phosphate monoesters,³⁶ but also those obtained for the alkaline hydrolysis of phosphate diesters.³³ In fact, the transition states are most similar to those we have previously obtained for the alkaline hydrolysis of aryl benezenesulfonates, which we have proposed are hydrolysed *via* a similar mechanistic pathway.³⁵ This provides validation to prior experimental data,³² which proposed that the hydrolysis proceeds through concerted (A_ND_N) transition states, but did not provide information into the degree of bond formation at the nucleophile.

Figure 7. Calculated bond orders at the transition states for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Bond orders were calculated based on the Wiberg bond index⁴⁷ using natural bond orbital (NBO) analysis. ⁴⁸ Data was obtained using either the (**A**) M11L, ⁴¹ (**B**) M062X ⁴² or (**C**) ω B97X-D⁴³ functionals. Note that due to data similarity between different systems it is very difficult to visualize the data with two explicit water molecules on the overlay plot; however, the corresponding raw data is presented in **Tables S82** to **S105**.

Figure 8. Comparison of the calculated bond orders at the transition states for the spontaneous hydrolysis of phosphate monoesters (dark blue), the reaction of substituted pyridinio-N-phosphonates with pyridine (red) and the alkaline hydrolysis of phosphate diesters (light blue), fluorophosphate monoesters (green), arylsulfonate monoesters (orange) and sulfate diaryl diesters (plum). In the case of the sulfate diesters, data is shown obtained in the presence of 8 explicit water molecules using the ωB97X-D⁴³ functional. All other data is from our prior work.³³⁻³⁷ Note that as the calculations were performed at differing levels of theory, this comparison is qualitative only. This figure is adapted from refs. ³⁷ and ⁵⁷.

Conclusions

The present work provides a detailed mechanistic study of the alkaline hydrolysis of diaryl sulfate diesters using different density functionals as well as both pure implicit solvation and mixed explicit/implicit solvation with different numbers of explicit water molecules. From a methodological perspective, our prior work has focused on using mixed explicit/implicit solvation to study the attack of a neutral nucleophile (H₂O) on charged electrophiles,^{27, 36, 40} whereas the current study focuses on the attack of a charged nucleophile (OH⁻) on neutral sulfate diesters.

While the introduction of explicit water molecules that introduce explicit hydrogen bonding interactions was critical when modeling nucleophilic attack on charged electrophiles, it appears that in the present work, we obtain the best agreement with the experimentally measured LFER for the hydrolyses of these compounds in pure implicit solvation. In addition, unlike our prior work, the introduction of explicit water molecules does not significantly change the transition states involved compared to pure implicit solvent, with stable calculated kinetic isotope effects irrespectively of the number of explicit water molecules introduced. That is, we demonstrate that the reaction proceeds through concerted transition states for all compounds, without the involvement of an intermediate, as suggested by prior experimental data.³² However, the transition states involved are still overall slightly dissociative, with partial bond formation to the nucleophile and partial bond cleavage to the leaving group. These transition states are nevertheless more compact than any obtained from our previous studies of related compounds (Figure 8), and most greatly resemble those obtained for analogous aryl sulfonates. Obtaining detailed insight into the nature of the transition states involved is an important building block to understanding the chemical role of these biologically important molecules in vivo; however, this work also highlights the significant challenges involved in reliably modeling these compounds.

Associated Content

Absolute energies and Cartesian coordinates of all stationary points, additional details of relative energies, bond distances, and stationary points.

Acknowledgments

This work was funded by the Knut and Alice Wallenberg Foundation, through a Wallenberg Academy Fellowship to SCLK (KAW 2018.0140). All calculations were performed through a

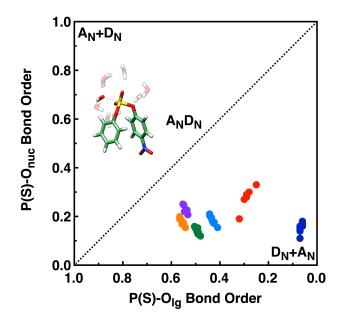
generous allocation of supercomputing time by the Swedish National Infrastructure for Computing (SNIC, 2018/2-3), on the Kebnekaise cluster at HPC2N, Umeå, and the Tetralith cluster at NSC, Linköping.

References

- 1. Cleland, W. W.; Hengge, A. C., Enzymatic Mechanisms of Phosphate and Sulfate Transfer. *Chem Rev* **2006**, *106*, 3252-3278.
- 2. Lassila, J. K.; Zalatan, J. G.; Herschlag, D., Biological Phosphoryl-Transfer Reactions: Understanding Mechanism and Catalysis. *Annu. Rev. Biochem.* **2011**, *80*, 669-702.
- 3. Kamerlin, S. C. L.; Sharma, P. K.; Prasad, R. B.; Warshel, A., Why Nature Really Chose Phosphate. *Q. Rev. Biophys.* **2013**, *46*, 1-132.
- 4. Lazo, J. S.; McQueeney, K. E.; Sharlow, E. R., New Approaches to Difficult Drug Targets: The Phosphatase Story. *SLAS Discov.* **2017**, *22*, 1071–1083.
- 5. Zhang, Z. Y., Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases. *Acc. Chem. Res.* **2017**, *50*, 122-129.
- 6. Gray, J. L.; von Delft, F.; Brennan, P., Targeting the Small GTPase Superfamily through their Regulatory Proteins. *Angew. Chem. Int. Ed.* **2019**, DOI: 10.1002/anie.201900585.
- 7. Mohamed, M. F.; Hollfelder, F., Efficient, Crosswise Catalytic Promiscuity Among Enzymes that Catalyze Phosphoryl Transfer. *Biochim Biophys. Acta.* **2013**, *1834*, 417-424.
- 8. Pabis, A.; Duarte, F.; Kamerlin, S. C. L., Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer. *Biochemistry* **2016**, *55*, 3061-3081.
- 9. Jensen, R. A., Enzyme Recruitment in Evolution of New Function. *Annu. Rev. Microbiol.* **1976**, 30, 409-425.

- 10. O'Brien, P. J.; Herschlag, D., Catalytic Promiscuity and the Evolution of New Enzymatic Activities. *Chem. Biol.* **1999**, *6*, R91-R105.
- 11. James, L. C.; Tawfik, D. S., Catalytic and Binding Poly-Reactivities Shared by Two Unrelated Proteins: The Potential Role of Promiscuity in Enzyme Evolution. *Protein Sci.* **2001**, *10*, 2600-2607.
- 12. Khersonsky, O.; Tawfik, D. S., Enzyme Promiscuity: A Mechanistic and Evolutionary Perspective. *Annu. Rev. Biochem.* **2010,** *79*, 471-505.
- 13. van Loo, B.; Bayer, C. D.; Fischer, G.; Jonas, S.; Valkov, E.; Mohamed, M. F.; Vorobieva, A.; Dutruel, C.; Hyvönen, M.; Hollfelder, F., Balancing Specificity and Promiscuity in Enzyme Evolution: Multidimensional Activity Transitions in the Alkaline Phosphatase Superfamily. *J. Am. Chem. Soc.* **2019**, *141*, 370-387.
- 14. Allen, K. N.; Dunaway-Mariano, D., Catalytic Scaffolds for Phosphoryl Group Transfer. *Curr. Opin. Struct. Biol.* **2016**, *41*, 172-179.
- 15. Fendler, E. J.; Fendler, J. H., Hydrolysis of Nitrophenyl and Dinitrophenyl Sulfate Esters. *J. Org. Chem.* **1968**, *33*, 3852-3859.
- 16. Benkovic, S. J.; Benkovic, P. A., Studies on Sulfate Esters. I. Nucleophilic Reactions of Amines with p-Nitrophenyl Sulfate. *J. Am. Chem. Soc.* **1966**, *88*, 5504-5511.
- 17. Hopkins, A.; Day, R. A.; Williams, A., Sulfate Group Transfer Between Nitrogen and Oxygen: Evidence Consistent with an Open "Exploded" Transition State. *J. Am. Chem. Soc.* **1983**, *105*, 6062-6070.
- 18. D'Rozario, P.; Smyth, R. L.; Williams, A., Evidence for a Single Transition State in the Intermolecular Transfer of a Sulfonyl Group Between Oxyanion Donor and Acceptors. *J. Am. Chem. Soc.* **1984**, *106*, 5027-5028.

- 19. Bourne, N.; Hopkins, A.; Williams, A., Single Transition State for Sulfonato Group (SO3) Transfer Between Pyridine Nucleophiles. *J. Am. Chem. Soc.* **1985**, *107*, 4327-4331.
- 20. Hoff, R. H.; Larsen, P.; Hengge, A. C., Isotope Effects and Medium Effects on Sulfuryl Transfer Reactions. *J. Am. Chem. Soc.* **2001**, *123*, 9338-9344.
- 21. Burlingham, B. T.; Pratt, L. M.; Davidson, E. R.; Shiner, V. J.; Fong, J.; Widlanski, T. S., ³⁴S Isotope Effect on Sulfate Ester Hydrolysis: Mechanistic Implications. *J. Am. Chem. Soc.* **2003**, *125*, 13036-13037.
- 22. Denehy, E.; White, J. M.; Wiliams, S. J., Ground State Structures of Sulfate Monoesters and Sulfamates Reveal Similar Reaction Coordinates for Sulfuryl and Sulfamyl Transfer. *Chem. Commun.* **2006**, 314-316.
- 23. Wolfenden, R.; Yuan, Y., Monoalkyl Sulfates as Alkylating Agents in Water, Alkylsulfatase Rate Enhancements, and the "Energy-Rich" Nature of Sulfate Half-Esters. *Proc. Natl. Acad. Sci. USA* **2007**, *104*, 83-86.
- 24. Edwards, D. R.; Lohman, D. C.; Wolfenden, R., Catalytic Proficiency: The Extreme Case of S–O Cleaving Sulfatases. *J. Am. Chem. Soc.* **2012**, *134*, 525-531.
- 25. Kamerlin, S. C. L., Theoretical Comparison of *p*-Nitrophenyl Phosphate and Sulfate Hydrolysis in Aqueous Solution: Implications for Enzyme-Catalyzed Sulfuryl Transfer. *J. Org. Chem.* **2011**, *76*, 9228-9238.
- 26. Williams, S. J.; Denehy, E.; Krenske, E. H., Experimental and Theoretical Insights into the Mechanisms of Sulfate and Sulfamate Ester Hydrolysis and the End Products of Type I Sulfatase Inactivation by Aryl Sulfamates. *J. Org. Chem.* **2014**, *79*, 1995-2005.


- 27. Duarte, F.; Åqvist, J.; Williams, N. H.; Kamerlin, S. C. L., Resolving Apparent Conflicts between Theoretical and Experimental Models of Phosphate Monoester Hydrolysis. *J. Am. Chem. Soc.* **2015**, *137*, 1081-1093.
- 28. Bethell, D.; Fessey, R. E.; Namwindwa, E.; Roberts, D. W., The Hydrolysis of C12 Primary Alkyl Sulfates in Concentrated Aqueous Solutions. Part 1. General Features, Kinetic Form and Mode of Catalysis in Sodium Dodecyl Sulfate Hydrolysis. *J. Chem. Soc., Perkin Trans. 2* **2001**, 1489-1495.
- 29. Spencer, B., Studies on sulphatases. 20. Enzymic cleavage of aryl hydrogen sulphates in the presence of H₂¹⁸O. *Biochem. J.* **1958**, *69*, 155-159.
- 30. Buncel, E.; Raoult, A.; Wiltshire, J. F., Bond-Scission Processes in Sulfur Compounds. VII. Alkyl-Oxygen Scission in the Neutral and Alkalaine Methanolysis of Methyl *p*-Nitrophenyl Sulfate. *J. Am. Chem. Soc.* **1973**, *95*, 799-802.
- 31. Buncel, E.; Chuaqui, C., Reactivity-Selectivity Correlations. 2. Reactivity of Alkyl Aryl Sulfates Toward Oxygen Nucleophiles and the Reactivity-Selectivity Principle. *J. Org. Chem.* **1980**, *45*, 2825-2830.
- 32. Younker, J. M.; Hengge, A. C., A Mechanistic Study of the Alkaline Hydrolysis of Diaryl Sulfate Diesters. *J. Org. Chem.* **2004**, *69*, 9043-9048.
- 33. Rosta, E.; Kamerlin, S. C., L.; Warshel, A., On the Interpretation of the Observed Linear Free Energy Relationship in Phosphate Hydrolysis: A Thorough Computational Study of Phosphate Diester Hydrolysis in Solution. *Biochemistry* **2008**, *47*, 3725-3735.
- 34. Alkherraz, A.; Kamerlin, S. C. L.; Feng, G.; Sheikh, Q. I.; Warshel, A.; Wiliams, N. H., Phosphate Ester Analogues as Probes for Understanding Enzyme Catalysed Phosphoryl Transfer. *Faraday Discuss.* **2010**, *145*, 281-299.

- 35. Duarte, F.; Geng, T.; Marloie, G.; Hussain, A. O. A.; Williams, N. H.; Kamerlin, S. C. L., The Alkaline Hydrolysis of Sulfonate Esters: Challenges in Interpreting Experimental and Theoretical Data. *J. Org. Chem.* **2014**, *79*, 2816-2828.
- 36. Duarte, F.; Barrozo, A.; Åqvist, J.; Williams, N. H.; Kamerlin, S. C., L., The Competing Mechanisms of Phosphate Monoester Dianion Hydrolysis. *J. Am. Chem. Soc.* **2016**, *138*, 10664-10673.
- 37. Pabis, A.; Williams, N. H.; Kamerlin, S. C. L., Simulating the Reactions of Substituted Pyridinio-N-Phosphonates with Pyridine as a Model for Biological Phosphoryl Transfer. *Org Biomol. Chem.* **2017**, *15*, 7308-7316.
- 38. More O'Ferrall, R. A., Relations Between E2 and E1cB Mechanisms of β-Elimination. *J. Chem. Soc. B: Phys. Org.* **1970**, 274-277.
- 39. Jencks, W. P., A Primer for the Bema Hapothle. An Empirical Approach to the Characterization of Changing Transition-State Structures. *Chem. Rev.* **1985**, *85*, 511-527.
- 40. Barrozo, A.; Blaha-Nelson, D.; Williams, N. H.; Kamerlin, S. C. L., The Effect of Magnesium Ions on Triphosphate Hydrolysis. *Pure Appl. Chem.* **2017**, *89*, 715–727.
- 41. Peverati, R.; Truhlar, D. G., M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. *J. Phys. Chem. Lett.* **2012**, *3*, 117-124.
- 42. Zhao, Y.; Truhlar, D. G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

- 43. Chai, J.-D.; Head-Gordon, M., Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615-6620.
- 44. Hratchian, H. P.; Schlegel, H. B., Accurate Reaction Paths Using a Hessian Based Predictor-Corrector Integrator. *J. Chem. Phys.* **2004**, *120*, 9918-9924.
- 45. Hratchian, H. P.; Schlegel, H. B., Using Hessian Updating To Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method. *J. Chem. Theory Comput.* **2005**, *1*, 61-69.
- 46. Breneman, C. M.; Wiberg, K. B., Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. *J. Comp. Chem.* **1990**, *11*, 361-373.
- 47. Wiberg, K. B., Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. *Tetrahedron* **1968**, *24*, 1083-1096.
- 48. Foster, J. P.; Weinhold, F., Natural Hybrid Orbitals. *J. Am. Chem. Soc.* **1980**, *102*, 7211-7218. 49. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.;

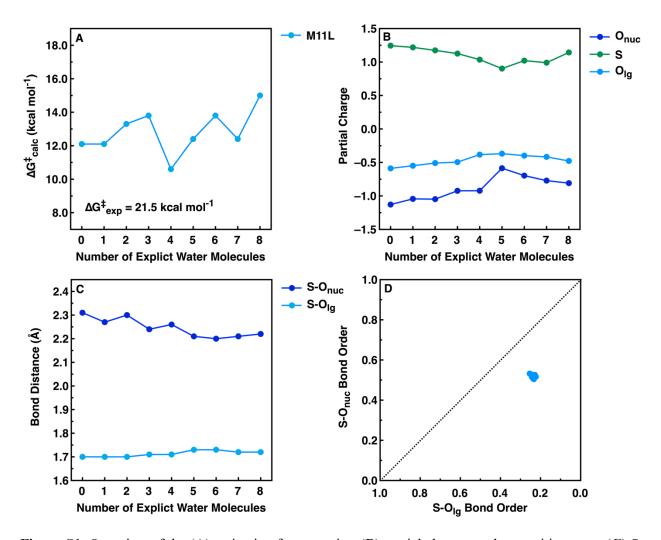
- Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. B.01*, Gaussian, Inc.: Wallingford, CT, 2016.
- 50. Bigeleisen, J.; Goeppert Mayer, M., Calculation of Equilibrium Constants for Isotopic Exchange Reactions. *J. Chem. Phys.* **1947**, *15*, 261-267.
- 51. Takana, Y.; Houk, K. N., Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. *J. Chem. Theory. Comput.* **2004**, *1*, 70-77.
- 52. Xie, D.; Zhou, Y.; Xu, D.; Guo, H., Solvent Effect on Concertedness of the Transition State in the Hydrolysis of *p*-Nitrophenyl Acetate. *Org. Lett.* **2005**, *11*, 2093-2095.
- 53. Zhang, L.; Xie, D.; Xu, D.; Guo, H., Supermolecule Density Functional Calculations Suggest a Key Role for Solvent in Alkaline Hydrolysis of *p*-Nitrophenyl Phosphate. *Chem. Commun.* **2007**, 1638-1640.
- 54. Duarte, F.; Gronert, S.; Kamerlin, S. C. L., Concerted or Stepwise: How Much Do Free-Energy Landscapes Tell Us about the Mechanisms of Elimination Reactions? *J. Org. Chem.* **2014**, *79*, 1280-1288.
- 55. Babtie, A. C.; Lima, M. F.; Kirby, A. J.; Hollfelder, F., Kinetic and Computational Evidence for an Intermediate in the Hydrolysis of Sulfonate Esters. *Org. Biomol. Chem.* **2012**, 8095-8101.
- 56. Hengge, A. C., Isotope Effects in the Study of Phosphoryl and Sulfuryl Transfer Reactions. *Acc. Chem. Res.* **2002**, *35*, 105-112.
- 57. Petrović, D.; Szeler, K.; Kamerlin, S. C., L., Challenges and Advances in the Computational Modeling of Biological Phosphate Hydrolysis. *Chem. Commun.* **2018**, *54*, 3077-3089.

Table of Contents Graphic

Supporting Information for:

Modeling the Alkaline Hydrolysis of Diaryl Sulfate

Diesters: A Mechanistic Study


Klaudia Szeler, ¹ Nicholas H. Williams, ² Alvan C. Hengge, ^{3,*} Shina C. L. Kamerlin^{1,*}

1. Department of Chemistry – BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden. 2. Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK. 3. Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.

Table of Contents

Supplementary Figures	3
Supplementary Tables	12
Cartesian Coordinates of Optimized Stationary Points	98
Supplementary References	99

Supplementary Figures

Figure S1. Overview of the (**A**) activation free energies, (**B**) partial charges at the transition state, (**C**) S-O_{nuc} and S-O_{lg} distances at the transition state and (**D**) S-O_{nuc} and S-O_{lg} bond orders at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate with varying numbers of water molecules, obtained using the M11L¹ functional, as described in the **Methodology** section. The calculated activation free energy was obtained using transition state theory at 313.15 K, based on kinetic data provided in ref. ². For the corresponding data obtained using the ωB97X-D³ and M062X⁴ functionals, see **Figures 3** and **S2**, and for the corresponding raw data see **Tables S1** to **S21**.

.

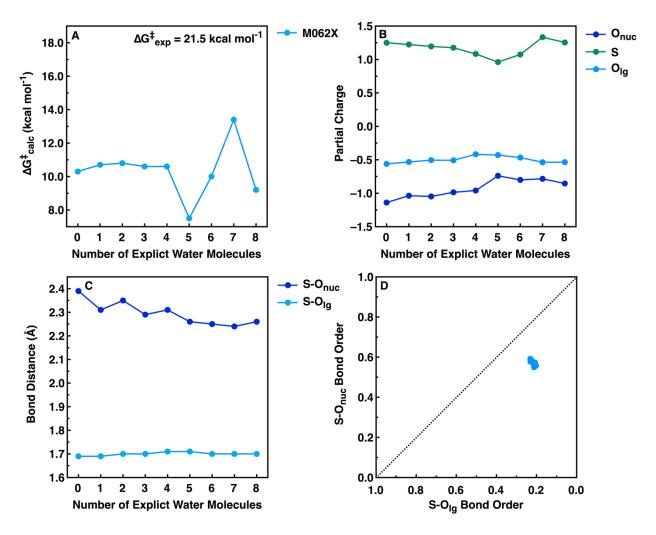
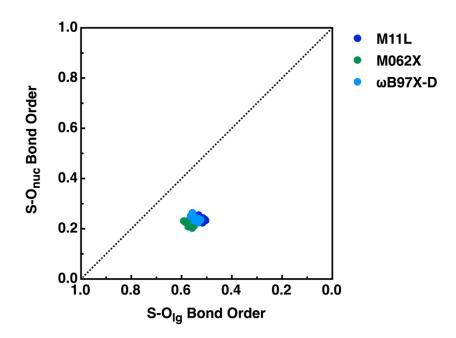
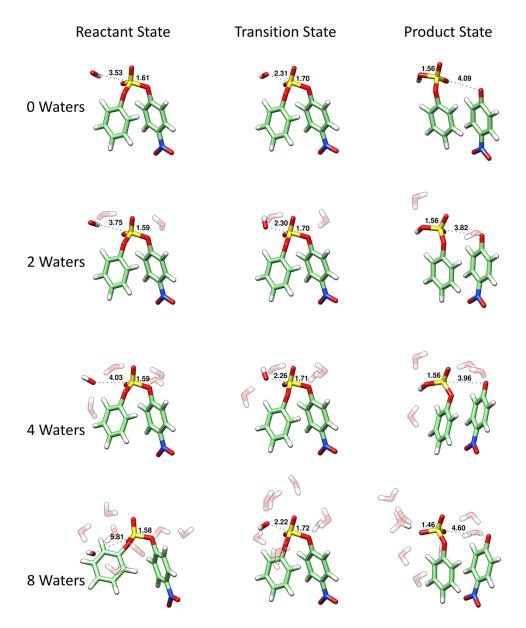
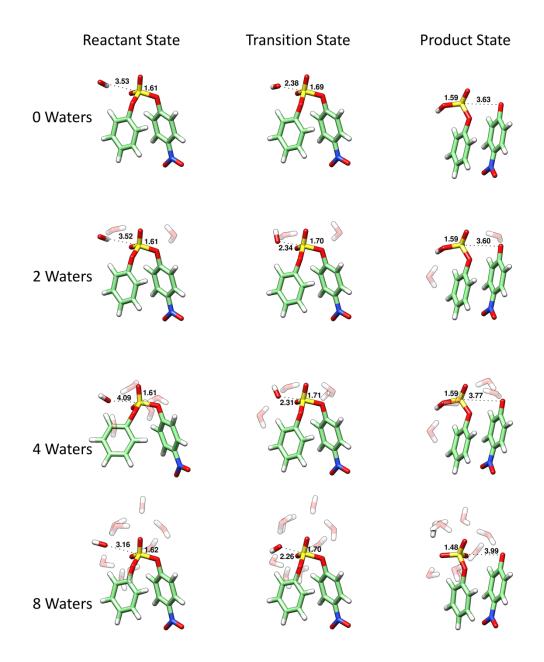
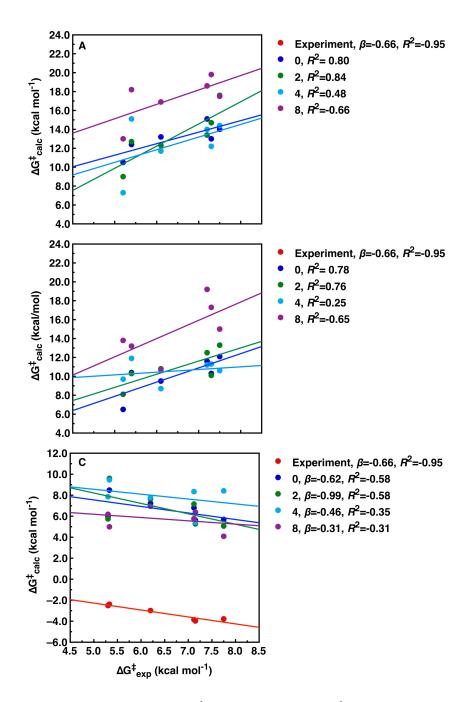
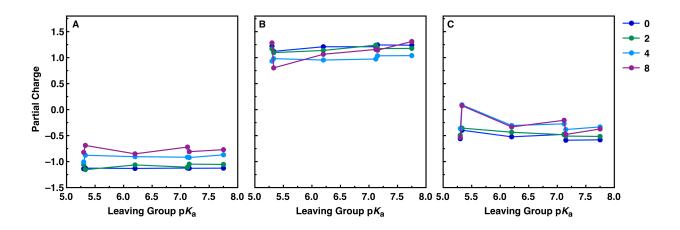
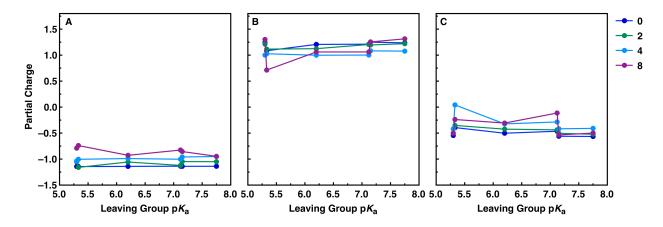


Figure S2. Overview of the (A) activation free energies, (B) partial charges at the transition state, (C) S-O_{nuc} and S-O_{lg} distances at the transition state and (D) S-O_{nuc} and S-O_{lg} bond orders at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate with varying numbers of water molecules, obtained using the M062X⁴ functional, as described in the Methodology section. The calculated activation free energy was obtained using transition state theory at 313.15 K, based on kinetic data provided in ref. ². For the corresponding data obtained using the ωB97X-D³ and M11L¹ functionals, see Figures 3 and S1, and for the corresponding raw data see Tables S1 to S21.


Figure S3. Overlay of the S-O_{nuc} and S-O_{lg} bond orders at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate with varying numbers of water molecules, obtained using the $\omega B97X$ -D,³ M062X⁴ and M11L¹ functionals, as described in the **Methodology** section. For the corresponding raw data see **Tables S1** to **S21**.


Figure S4. Representative structures of the ground, transition and product states for the alkaline hydrolysis of 4-nitrophenyl sulfate obtained using the M11L functional, in the presence of varying numbers of explicit solvent molecules, as described in the **Methodology** section. The calculated S-O_{nuc} and S-O_{lg} distances are annotated for each optimized reacting state (in Å), and the corresponding data obtained using the ω B97X-D³ and M062X⁴ functionals is shown in **Figures 4** and **S5**, respectively. Finally, coordinates of all optimized stationary points are provided as **Supporting Information**.


Figure S5. Representative structures of the ground, transition and product states for the alkaline hydrolysis of 4-nitrophenyl sulfate obtained using the M062X functional,⁴ in the presence of varying numbers of explicit solvent molecules, as described in the **Methodology** section. The calculated S-O_{nuc} and S-O_{lg} distances are annotated for each optimized reacting state (in Å), and the corresponding data obtained using the ωB97X-D³ and M11L¹ functionals is shown in **Figures 4** and **S4**, respectively. Finally, coordinates of all optimized stationary points are provided as **Supporting Information**.

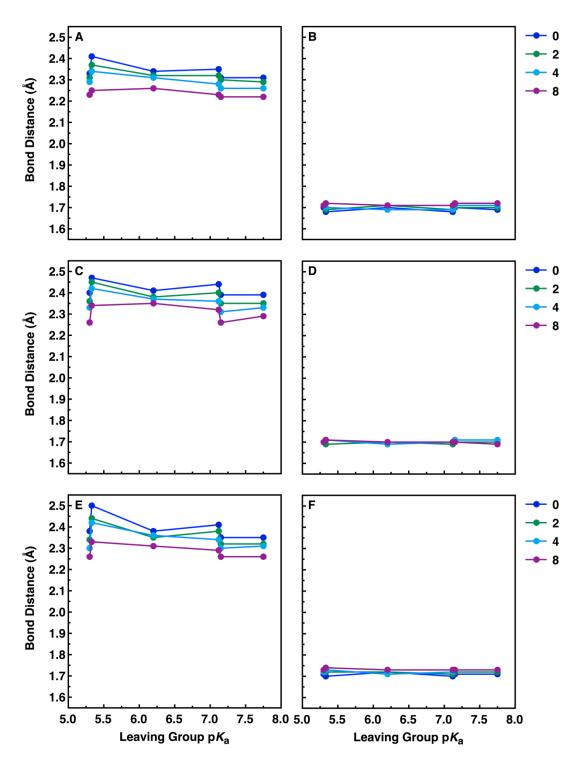

Figure S6. A comparison of experimental ($\Delta G^{\ddagger}_{exp}$) and calculated ($\Delta G^{\ddagger}_{calc}$) activation free energies for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Data was obtained using either the (**A**) ω B97X-D,³ (**B**) M11L¹ or (**C**) M062X⁴ functionals. The corresponding raw data is presented in **Tables S34** to **S56**. Experimental activation free energies were obtained at 313.15 K using transition state theory based on kinetic data provided in ref. ².

Figure S7. Partial charges on (**A**) the nucleophile oxygen, (**B**) the sulfur atom and (**C**) the leaving group oxygen, at the transition states for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Partial charges were calculated using the M11L¹ functional and the CHELPG charge calculation scheme⁵ as described in the **Methodology** section. The corresponding charge distributions obtained using the wB97xD³ and M062X⁴ functionals are shown in **Figures 6** and **S8**, respectively, and the corresponding raw data is shown in **Table S57 to S80**.

Figure S8. Partial charges on (**A**) the nucleophile oxygen, (**B**) the sulfur atom and (**C**) the leaving group oxygen, at the transition states for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Partial charges were calculated using the M062X⁴ functional and the CHELPG charge calculation scheme⁵ as described in the **Methodology** section. The corresponding charge distributions obtained using the wB97xD³ and M11L¹ functionals are shown in **Figures 6** and **S7**, respectively, and the corresponding raw data is shown in **Table S57 to S81**.

Figure S9. Calculated (**A**,**C**,**E**) S-O_{nuc} and (**B**,**D**,**F**) S-O_{lg} distances at the transition states for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Data was obtained using either the (**A**,**B**) M11L, 1 (**C**,**D**) M062X 4 or (**E**,**F**) ω B97X-D 3 functionals. The corresponding raw data is presented in **Table S82** to **S105**.

Supplementary Tables

Table S1. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Water Molecules	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
0	10.6	0.2	3.2	14	21.5	-269.6541
1	11.8	0.4	3.2	15.4	21.5	-273.9228
2	17.4	-0.4	0.6	17.6	21.5	-289.4289
3	14.5	-0.1	1.7	16.1	21.5	-275.8035
4	13.8	-0.3	0.9	14.4	21.5	-266.4356
5	20.2	-1	-3.2	16	21.5	-282.5629
6	20.7	-0.9	-1.4	18.4	21.5	-281.2544
7	16.2	0.6	-1.4	14.2	21.5	-282.4447
8	17.3	-0.3	0.5	17.5	21.5	-281.4245

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S2. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
0	9.1	-0.1	3.1	12.1	21.5	-331.4516
1	9.1	0.2	2.8	12.1	21.5	-351.8688
2	8.2	0.01	5.1	13.3	21.5	-332.1461
3	13.5	-0.4	0.7	13.8	21.5	-341.4854
4	9	-0.2	1.8	10.6	21.5	-332.1585
5	10.3	0.01	2.1	12.4	21.5	-350.3726
6	19.4	-1.5	-4.1	13.8	21.5	-349.6627
7	18.3	-1.7	-4.2	12.4	21.5	-351.3161
8	19	-1.2	-2.8	15	21.5	-349.729

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S3. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
0	7.5	0.1	2.7	10.3	21.5	-316.6842
1	8.5	0.5	2.2	10.7	21.5	-298.9999
2	6.3	0.5	4.0	10.8	21.5	-292.9074
3	9.5	0.03	1.1	10.6	21.5	-286.9348
4	11.0	-0.4	0.01	10.6	21.5	-287.6699
5	10	-0.6	-1.9	7.5	21.5	-277.9046
6	8.7	0.6	0.7	10	21.5	-278.046
7	15.1	0.01	-1.7	13.4	21.5	-279.0495
8	8.2	0.3	0.7	9.2	21.5	-283.7645

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S4. Experimental and calculated rate constants for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the ωB97X-D³ functional.^a

Water Molecules	k_{calc}	$\log k_{ m calc}$	$\log k_{\rm exp}$
0	1.090×10^3	3.0374	-3.9706
1	1.148×10^2	2.0599	-3.9706
2	3.339×10^{0}	0.5236	-3.9706
3	3.724×10^{1}	1.5710	-3.9706
4	5.728×10^2	2.7580	-3.9706
5	4.373×10^{1}	1.6408	-3.9706
6	9.228 x 10 ⁻¹	-0.0349	-3.9706
7	7.900×10^2	2.8976	-3.9706
8	3.922×10^{0}	0.5935	-3.9706

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S5. Experimental and calculated rate constants for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	kcalc	$\log k_{\rm calc}$	$\log k_{\rm exp}$		
0	2.311×10^4	4.3638	-3.9706		
1	7.501×10^3	3.8751	-3.9706		
2	3.356×10^3	3.5258	-3.9706		
3	1.503×10^3	3.1770	-3.9706		
4	2.578×10^5	5.4113	-3.9706		
5	1.427 x 10 ⁴	4.1544	-3.9706		
6	1.503×10^3	3.1770	-3.9706		
7	1.427 x 10 ⁴	4.1544	-3.9706		
8	2.183×10^{2}	2.3391	-3.9706		

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S6. Experimental and calculated rate constants for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	k _{calc}	$\log k_{\rm calc}$	$\log k_{\rm exp}$
0	4.175×10^5	5.6207	-3.9706
1	2.195 x 10 ⁵	5.3414	-3.9706
2	1.869 x 10 ⁵	5.2716	-3.9706
3	2.578×10^5	5.4113	-3.9706
4	2.578×10^5	5.4113	-3.9706
5	3.765×10^7	7.5758	-3.9706
6	6.763×10^5	5.8301	-3.9706
7	2.073×10^3	3.3166	-3.9706
8	2.448×10^6	6.3889	-3.9706

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S7. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

0 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1442.7105877	135.50586	153.837	0.0	0.0	0.0	0.0	27.865
TS	-1442.6936351	135.68108	143.642	10.6	0.2	3.2	14.0	-269.6541
PS	-1442.7620338	135.88209	156.698	-32.3	0.4	-0.9	-32.8	2.5343
1 water	E	ZPE	S	ΔE	Δ Z PE	-T∆S	ΔG_{calc}	υ
RS	-1519.1725361	150.27362	171.609	0.0	0.0	0.0	0.0	10.226
TS	-1519.1536605	150.71761	161.301	11.8	0.4	3.2	15.4	-273.9228
PS	-1519.2144700	150.92204	170.623	-26.3	0.6	0.3	-25.4	18.9027
2 waters	E	ZPE	S	ΔE	Δ Z PE	-T∆S	ΔG_{calc}	υ
RS	-1595.6332193	166.11857	180.725	0.0	0.0	0.0	0.0	22.0334
TS	-1595.6054962	165.73854	178.694	17.4	-0.4	0.6	17.6	-289.4289
PS	-1595.6744573	166.80655	181.284	-25.9	0.7	-0.2	-25.4	17.7028
3 waters	E	ZPE	S	ΔE	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1672.0867685	181.02450	200.557	0.0	0.0	0.0	0.0	16.8582
TS	-1672.0636513	180.93808	195.097	14.5	-0.1	1.7	16.1	-275.8035
PS	-1672.1371688	182.14724	195.756	-31.6	1.1	1.5	-29.0	12.69610
4 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
TC				• • •	1.7	2.4	242	20.5039
TS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.1	-24.3	20.3037
PS PS	-1748.5825985 -1748.5825985	197.83378 197.83378	209.165	-28.4 -28.4	1.7	2.4	-24.3	20.5039
PS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
PS 5 waters	-1748.5825985 E	197.83378 ZPE	209.165 S	-28.4 ΔE	1.7 Δ ZPE	2.4 - T Δ S	-24.3 Δ G calc	20.5039 v
PS 5 waters RS	-1748.5825985 E -1825.0023189	197.83378 ZPE 212.77408	209.165 S 222.328	-28.4 ΔE 0.0	1.7 Δ ZPE 0.0	2.4 - T Δ S 0.0	-24.3 ΔG _{calc} 0.0	20.5039 v 20.2906
PS 5 waters RS TS	-1748.5825985 E -1825.0023189 -1824.9701787	197.83378 ZPE 212.77408 211.75014	209.165 S 222.328 232.606	-28.4 ΔE 0.0 20.2	1.7 Δ ZPE 0.0 -1.0	2.4 - T Δ S 0.0 -3.2	-24.3 ΔG _{calc} 0.0 16.0	20.5039 v 20.2906 -282.5629
PS 5 waters RS TS PS	-1748.5825985 E -1825.0023189 -1824.9701787 -1825.0481055	197.83378 ZPE 212.77408 211.75014 214.06832	209.165 S 222.328 232.606 220.043	-28.4 ΔE 0.0 20.2 -28.7	1.7 △ ZPE 0.0 -1.0 1.3	2.4 -TAS 0.0 -3.2 0.7	-24.3 ΔG _{calc} 0.0 16.0 -26.7	20.5039 v 20.2906 -282.5629 20.0403
PS 5 waters RS TS PS 6 waters	-1748.5825985 E -1825.0023189 -1824.9701787 -1825.0481055 E	197.83378 ZPE 212.77408 211.75014 214.06832 ZPE	209.165 S 222.328 232.606 220.043 S	-28.4 ΔE 0.0 20.2 -28.7 ΔE	1.7 Δ ZPE 0.0 -1.0 1.3 Δ ZPE	2.4 -ΤΔS 0.0 -3.2 0.7 -ΤΔS	-24.3 ΔGcalc 0.0 16.0 -26.7 ΔGcalc	20.5039 v 20.2906 -282.5629 20.0403 v
PS 5 waters RS TS PS 6 waters	-1748.5825985 E -1825.0023189 -1824.9701787 -1825.0481055 E -1901.4555423	197.83378 ZPE 212.77408 211.75014 214.06832 ZPE 227.69456	209.165 S 222.328 232.606 220.043 S 243.654	-28.4 ΔE 0.0 20.2 -28.7 ΔE 0.0	1.7 Δ ZPE 0.0 -1.0 1.3 Δ ZPE 0.0	2.4 -TΔS 0.0 -3.2 0.7 -TΔS 0.0	-24.3 ΔGcalc 0.0 16.0 -26.7 ΔGcalc 0.0	20.5039 v 20.2906 -282.5629 20.0403 v 9.0437
PS 5 waters RS TS PS 6 waters RS TS	-1748.5825985 E -1825.0023189 -1824.9701787 -1825.0481055 E -1901.4555423 -1901.4226068	197.83378 ZPE 212.77408 211.75014 214.06832 ZPE 227.69456 226.84023	209.165 S 222.328 232.606 220.043 S 243.654 248.15	-28.4 ΔE 0.0 20.2 -28.7 ΔE 0.0 20.7	1.7 Δ ZPE 0.0 -1.0 1.3 Δ ZPE 0.0 -0.9	2.4 -TΔS 0.0 -3.2 0.7 -TΔS 0.0 -1.4	-24.3 ΔG _{calc} 0.0 16.0 -26.7 ΔG _{calc} 0.0 18.4	20.5039 v 20.2906 -282.5629 20.0403 v 9.0437 -281.2544
PS 5 waters RS TS PS 6 waters RS TS PS	-1748.5825985 E -1825.0023189 -1824.9701787 -1825.0481055 E -1901.4555423 -1901.4226068 -1901.5139771	197.83378 ZPE 212.77408 211.75014 214.06832 ZPE 227.69456 226.84023 232.44189	209.165 S 222.328 232.606 220.043 S 243.654 248.15 221.155	-28.4 ΔE 0.0 20.2 -28.7 ΔE 0.0 20.7 -36.7	1.7 Δ ZPE 0.0 -1.0 1.3 Δ ZPE 0.0 -0.9	2.4 -T\Delta S 0.0 -3.2 0.7 -T\Delta S 0.0 -1.4 7.0	-24.3 ΔGcalc 0.0 16.0 -26.7 ΔGcalc 0.0 18.4 -24.9	20.5039 v 20.2906 -282.5629 20.0403 v 9.0437 -281.2544 24.6981
PS 5 waters RS TS PS 6 waters RS TS PS 7 waters	-1748.5825985 E -1825.0023189 -1824.9701787 -1825.0481055 E -1901.4555423 -1901.5139771 E	197.83378 ZPE 212.77408 211.75014 214.06832 ZPE 227.69456 226.84023 232.44189 ZPE	209.165 S 222.328 232.606 220.043 S 243.654 248.15 221.155 S	-28.4 ΔE 0.0 20.2 -28.7 ΔE 0.0 20.7 -36.7 ΔE	1.7 Δ ZPE 0.0 -1.0 1.3 Δ ZPE 0.0 -0.9 4.7 Δ ZPE	2.4 -TΔS 0.0 -3.2 0.7 -TΔS 0.0 -1.4 7.0 -TΔS	-24.3 ΔGcalc 0.0 16.0 -26.7 ΔGcalc 0.0 18.4 -24.9 ΔGcalc	20.5039 v 20.2906 -282.5629 20.0403 v 9.0437 -281.2544 24.6981 v

8 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-2054.3572856	259.26468	268.855	0.0	0.0	0.0	0.0	21.8354
TS	-2054.3298017	259.00254	267.27	17.2	-0.3	0.5	17.5	-281.4245
PS	-2054.4203233	262.31221	258.444	-39.6	3.0	3.3	-33.2	20.8432

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S8. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

0 waters	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1442.7758730	132.60756	153.934	0.0	0.0	0.0	0.0	26.0193
TS	-1442.7614408	132.52363	144.06	9.1	-0.1	3.1	12.1	-331.4516
PS	-1442.8369596	133.54658	154.348	-38.3	0.9	-0.1	-37.5	20.0531
1 water	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔGcalc	υ
RS	-1519.2322701	147.70918	171.123	0.0	0.0	0.0	0.0	20.9616
TS	-1519.2178372	147.87940	162.067	9.1	0.2	2.8	12.1	-351.8688
PS	-1519.2860610	148.03910	177.37	-33.8	0.3	-2.0	-35.4	13.5424
2 waters	E	ZPE	S	ΔE	Δ Z PE	-ΤΔS	ΔGcalc	υ
RS	-1595.6796661	162.80622	192.494	0.0	0.0	0.0	0.0	17.8855
TS	-1595.6665795	162.81241	176.348	8.2	0.01	5.1	13.3	-332.1461
PS	-1595.7381136	163.80171	189.695	-36.7	1.0	0.9	-34.8	16.8895
3 waters	E	ZPE	S	ΔE	Δ Z PE	-ΤΔS	ΔG_{calc}	υ
RS	-1672.1435071	179.18847	197.149	0.0	0.0	0.0	0.0	14.1686
TS	-1672.1220323	178.77017	195.019	13.5	-0.4	0.7	13.8	-341.4854
PS	-1672.1899994	178.86475	206.643	-29.2	-0.3	-3.0	-32.5	19.8945
4 waters	E	ZPE	S	ΔE	Δ Z PE	-T∆S	ΔGcalc	υ
RS	-1748.5846590	193.92064	221.836	0.0	0.0	0.0	0.0	18.1209
TS	-1748.5702951	193.69953	215.956	9.0	-0.2	1.8	10.6	-332.1585
PS	-1748.6433847	194.01429	226.487	-36.9	0.1	-1.5	-38.2	13.0271
5 waters	E	ZPE	S	ΔE	Δ Z PE	-T∆S	ΔGcalc	υ
RS	-1825.0394562	209.29003	241.707	0.0	0.0	0.0	0.0	13.5004
TS	-1825.0230855	209.30180	234.984	10.3	0.01	2.1	12.4	-350.3726
PS	-1825.0927422	211.46170	234.019	-33.4	2.2	2.4	-28.9	11.3288
6 waters	E	ZPE	S	ΔE	Δ ZPE	-T∆S	ΔG_{calc}	υ
RS	-1901.5036073	226.17852	241.632	0.0	0.0	0.0	0.0	16.054
TS	-1901.4726305	224.63579	254.622	19.4	-1.5	-4.1	13.8	-349.6627
PS	-1901.5792210	229.84625	233.146	-47.4	3.7	2.7	-41.1	11.0626
7 waters	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1977.9523154	242.09906	255.206	0.0	0.0	0.0	0.0	16.2606
TS	-1977.9231450	240.41600	268.595	18.3	-1.7	-4.2	12.4	-351.3161
PS	-1978.0181196	244.63820	247.676	-41.3	2.5	2.4	-36.4	-0.8686

8 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-2054.4041216	257.57639	270.968	0.0	0.0	0.0	0.0	16.7626
TS	-2054.3737914	256.36054	279.803	19.0	-1.2	-2.8	15.0	-349.729
PS	-2054.4710658	260.06720	267.761	-42.0	2.5	1.0	-38.5	12.8992

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S9. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

0 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1442.6434689	135.59843	151.311	0.0	0.0	0.0	0.0	29.8035
TS	-1442.6315931	135.71633	142.807	7.5	0.1	2.7	10.3	-316.6842
PS	-1442.6973623	136.14742	147.904	-33.8	0.5	1.1	-32.2	30.4802
1 water	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔGcalc	υ
RS	-1519.0940823	149.96617	167.101	0.0	0.0	0.0	0.0	15.3596
TS	-1519.0813406	150.43057	160.043	8.0	0.5	2.2	10.7	-298.9999
PS	-1519.1352670	150.69595	171.254	-25.8	0.7	-1.3	-26.4	20.401
2 waters	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1595.1585719	164.92086	189.93	0.0	0.0	0.0	0.0	15.3242
TS	-1595.1485956	165.40078	177.103	6.3	0.5	4.0	10.8	-292.9074
PS	-1595.2115938	166.56085	178.44	-33.3	1.6	3.6	-28.0	21.2865
3 waters	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1671.9852185	180.84029	192.716	0.0	0.0	0.0	0.0	15.0767
TS	-1671.9700944	180.87399	189.063	9.5	0.03	1.1	10.6	-286.9348
PS	-1672.0265242	182.07435	191.96	-25.9	1.2	0.2	-24.4	24.4032
4 waters	E	ZPE	S	ΔE	Δ ZP E	-T∆S	ΔG_{calc}	υ
RS	-1748.4273098	196.06219	208.126	0.0	0.0	0.0	0.0	21.9257
TS	-1748.4097162	195.70859	208.107	11.0	-0.4	0.01	10.6	-287.6699
PS	-1748.4702918	197.12423	207.891	-27.0	1.1	0.1	-25.8	25.862
5 waters	E	ZPE	S	ΔΕ	Δ Z PE	-T∆S	ΔGcalc	υ
RS	-1824.8700820	211.28808	226.274	0.0	0.0	0.0	0.0	16.6705
TS	-1824.8541447	210.69593	232.445	10.0	-0.6	-1.9	7.5	-277.9046
PS	-1824.9274984	213.45421	223.182	-36.0	2.2	1.0	-32.9	11.1737
6 waters	E	ZPE	S	ΔE	Δ Z PE	-T∆S	$\Delta \mathbf{G}_{\mathrm{calc}}$	υ
RS	-1901.3121152	226.71693	239.679	0.0	0.0	0.0	0.0	19.0124
TS	-1901.2982843	227.33679	237.594	8.7	0.6	0.7	10.0	-278.046
PS	-1901.3524776	228.28582	239.854	-25.3	1.6	-0.1	-23.8	16.8398
7 waters	E	ZPE	S	ΔΕ	Δ Z PE	-ΤΔS	ΔG_{calc}	υ
RS	-1977.7680384	243.84477	237.178	0.0	0.0	0.0	0.0	22.6625
			242.454	15 1	0.01	-1.7	13.4	-279.0495
TS	-1977.7439931	243.85549	242.454	15.1	0.01	-1./	13.4	-2/9.0 4 93

8 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-2054.1986122	258.61012	261.306	0.0	0.0	0.0	0.0	19.785
TS	-2054.1855888	258.95387	258.979	8.2	0.3	0.7	9.2	-283.7645
PS	-2054.2672984	261.38123	250.497	-43.1	2.8	3.4	-36.9	20.118

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S10. Partial charges at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the ωB97X-D³ functional.^a

Water Molecules	O _{nuc}	S	O _{lg}
0	-1.116133	1.259782	-0.58486
1	-1.058482	1.183376	-0.533672
2	-1.056234	1.117773	-0.4649
3	-0.918205	1.129663	-0.504537
4	-0.903971	1.094185	-0.427313
5	-0.630151	0.977564	-0.411007
6	-0.642337	1.028546	-0.400772
7	-0.78432	1.333445	-0.536905
8	-0.808109	1.375266	-0.539817

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S11. Partial charges at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
0	-1.128893	1.244377	-0.588531
1	-1.044112	1.218874	-0.549157
2	-1.048351	1.173881	-0.508858
3	-0.923554	1.12593	-0.495079
4	-0.922275	1.035309	-0.383091
5	-0.586031	0.902254	-0.368954
6	-0.696526	1.02064	-0.397964
7	-0.771277	0.989932	-0.41659
8	-0.809259	1.14282	-0.477867

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S12. Partial charges at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
0	-1.139127	1.250009	-0.560361
1	-1.03667	1.223303	-0.532325
2	-1.048017	1.195557	-0.504796
3	-0.985903	1.174767	-0.507501
4	-0.959323	1.082878	-0.417571
5	-0.739218	0.961012	-0.429012
6	-0.800466	1.074493	-0.466512
7	-0.78432	1.333445	-0.536905
8	-0.854524	1.254148	-0.535374

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S13. Partial charges at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

O _{nuc}	S	\mathbf{O}_{lg}
-1.296563	1.12486	-0.391163
-1.116133	1.259782	-0.58486
-0.537492	1.114613	-0.804766
O _{nuc}	S	$\mathbf{O}_{\mathbf{lg}}$
-1.196337	1.194745	-0.425358
-1.058482	1.183376	-0.533672
-0.489962	1.081848	-0.804228
O _{nuc}	S	\mathbf{O}_{lg}
-1.135373	1.179743	-0.392427
-1.056234	1.117773	-0.4649
-0.521243	1.113486	-0.801443
O _{nuc}	S	\mathbf{O}_{lg}
-1.257745	1.129588	-0.403099
-0.918205	1.129663	-0.504537
-0.548219	1.053739	-0.803563
O _{nuc}	S	\mathbf{O}_{lg}
-1.236077	1.037997	-0.390759
-0.903971	1.094185	-0.427313
-0.903971	1.094185	-0.427313
O _{nuc}	S	\mathbf{O}_{lg}
-0.980929	1.211486	-0.373893
-0.630151	0.977564	-0.411007
-0.512696	0.939546	-0.604445
O _{nuc}	S	\mathbf{O}_{lg}
-0.940799	1.179333	-0.384711
-0.642337	1.028546	-0.400772
-0.56652	1.087845	-0.766095
O _{nuc}	S	\mathbf{O}_{lg}
-0.940799	1.235601	-0.396755
-0.940799 -0.642337	1.235601 1.333445	-0.396755 -0.536905
	-1.296563 -1.116133 -0.537492 Onuc -1.196337 -1.058482 -0.489962 Onuc -1.135373 -1.056234 -0.521243 Onuc -1.257745 -0.918205 -0.548219 Onuc -1.236077 -0.903971 -0.903971 Onuc -0.980929 -0.630151 -0.512696 Onuc -0.940799 -0.642337 -0.56652	-1.296563

8 waters	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.016168	1.025112	-0.394967
TS	-0.808109	1.375266	-0.539817
PS	-0.551013	0.968566	-0.730409

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S14. Partial charges at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

O _{nuc}	S	\mathbf{O}_{lg}
-1.284482	1.080957	-0.379139
-1.128893	1.244377	-0.588531
-0.585248	1.238508	-0.772942
O _{nuc}	S	O_{lg}
-1.185066	1.082782	-0.379663
-1.044112	1.218874	-0.549157
-0.586398	1.153452	-0.782941
O _{nuc}	S	\mathbf{O}_{lg}
-1.188192	1.032376	-0.357577
-1.048351	1.173881	-0.508858
-0.546385	1.050097	-0.769466
O _{nuc}	S	\mathbf{O}_{lg}
-1.277522	1.181599	-0.402934
-0.923554	1.12593	-0.495079
-0.388704	0.873864	-0.789278
O _{nuc}	S	Olg
-1.247046	0.996753	-0.367373
-0.922275	1.035309	-0.383091
-0.360786	0.822035	-0.70989
O _{nuc}	S	\mathbf{O}_{lg}
-0.853296	1.037227	-0.416884
-0.586031	0.902254	-0.368954
-0.44271	1.014201	-0.788907
O _{nuc}	S	\mathbf{O}_{lg}
-1.121692	1.198191	-0.432918
-0.696526	1.02064	-0.397964
-0.504618	0.985203	-0.657411
O _{nuc}	S	\mathbf{O}_{lg}
-1.096003	0.833178	-0.308632
-0.771277	0.989932	-0.41659
-0.771277	0.707732	0.11037
	-1.284482 -1.128893 -0.585248 Onuc -1.185066 -1.044112 -0.586398 Onuc -1.188192 -1.048351 -0.546385 Onuc -1.277522 -0.923554 -0.388704 Onuc -1.247046 -0.922275 -0.360786 Onuc -0.853296 -0.586031 -0.44271 Onuc -1.121692 -0.696526 -0.504618 Onuc -1.096003	-1.284482

8 waters	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.195468	0.879597	-0.324804
TS	-0.809259	1.14282	-0.477867
PS	-0.352874	0.977358	-0.666439

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S15. Partial charges at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $M062X^4$ functional.^a

O _{nuc}	S	\mathbf{O}_{lg}
-1.275519	1.121414	-0.387754
-1.139127	1.250009	-0.560361
-0.558318	1.13009	-0.804851
O _{nuc}	S	\mathbf{O}_{lg}
-1.148959	1.152355	-0.413929
-1.03667	1.223303	-0.532325
-0.670233	1.137449	-0.803401
Onuc	S	\mathbf{O}_{lg}
-1.174682	1.064808	-0.358528
-1.048017	1.195557	-0.504796
-0.454976	1.055828	-0.814666
O _{nuc}	S	\mathbf{O}_{lg}
-1.233141	1.143523	-0.421993
-0.985903	1.174767	-0.507501
-0.482625	1.051778	-0.824693
Onuc	S	Olg
-1.238816	1.009553	-0.39931
-0.959323	1.082878	-0.417571
-0.455648	1.027233	-0.76437
Onuc	S	\mathbf{O}_{lg}
-1.058445	0.812448	-0.20884
-0.739218	0.961012	-0.429012
-0.409062	0.919341	-0.726438
O _{nuc}	S	\mathbf{O}_{lg}
-1.053489	0.999697	-0.303922
-0.800466	1.074493	-0.466512
-0.571694	1.024421	-0.758974
O _{nuc}	S	$\mathbf{O}_{\mathbf{lg}}$
-0.815996	1.331497	-0.466748
-0.013990	1.551477	0.100710
-0.813996	1.137617	-0.497321
	-1.275519 -1.139127 -0.558318 Onuc -1.148959 -1.03667 -0.670233 Onuc -1.174682 -1.048017 -0.454976 Onuc -1.233141 -0.985903 -0.482625 Onuc -1.238816 -0.959323 -0.455648 Onuc -1.058445 -0.739218 -0.409062 Onuc -1.053489 -0.800466 -0.571694	-1.275519

8 waters	O _{nuc}	S	\mathbf{O}_{lg}
RS	-0.964724	1.12928	-0.397992
TS	-0.854524	1.254148	-0.535374
PS	-0.621103	1.146464	-0.805452

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S16. Geometries at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
0	2.35	1.71	0.2639	0.5569
1	2.30	1.71	0.2515	0.5641
2	2.32	1.72	0.2456	0.5485
3	2.27	1.73	0.2333	0.5505
4	2.30	1.73	0.2242	0.5336
5	2.23	1.74	0.2359	0.5244
6	2.24	1.74	0.2399	0.5334
7	2.24	1.73	0.2458	0.5488
8	2.26	1.73	0.2506	0.5523

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S17. Geometries at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
0	2.31	1.70	0.2543	0.532
1	2.27	1.70	0.2498	0.5303
2	2.30	1.70	0.2412	0.5261
3	2.24	1.71	0.2279	0.5258
4	2.26	1.71	0.2234	0.5166
5	2.21	1.73	0.2332	0.5043
6	2.20	1.73	0.2373	0.5072
7	2.21	1.72	0.2368	0.5154
8	2.22	1.72	0.2432	0.5151

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S18. Geometries at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
0	2.39	1.69	0.2306	0.5775
1	2.31	1.69	0.225	0.582
2	2.35	1.70	0.2173	0.5692
3	2.29	1.70	0.2082	0.5734
4	2.31	1.71	0.2027	0.5577
5	2.26	1.71	0.2122	0.5495
6	2.25	1.70	0.2242	0.5785
7	2.24	1.70	0.2285	0.5885
8	2.26	1.7	0.2308	0.5915

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S19. Geometries at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

0 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.87	1.61	0.0059	0.6746
TS	2.35	1.71	0.2639	0.5569
PS	1.59	3.99	0.7569	0.0007
1 water	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.58	1.61	0.0017	0.6882
TS	2.30	1.71	0.2515	0.5641
PS	1.59	3.98	0.742	0.0007
2 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.62	1.61	0.0013	0.7122
TS	2.32	1.72	0.2456	0.5485
PS	1.59	4.72	0.7438	0.0002
3 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.49	1.61	0.0003	0.7117
TS	2.27	1.73	0.2333	0.5505
PS	1.56	4.72	0.8144	0.0001
4 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.39	1.61	0.0003	0.6907
TS	2.30	1.73	0.2242	0.5336
PS	1.45	1.59	0.7446	0.0008
5 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.35	1.61	0.0002	0.7031
TS	2.23	1.74	0.2359	0.5244
PS	1.48	4.57	1.1637	0.0001
6 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.30	1.61	0.0002	0.7175
TS	2.24	1.74	0.2399	0.5334
PS	1.49	4.76	1.0107	0.0002
7 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.95	1.61	0.001	0.6984
TS	2.24	1.73	0.2458	0.5488
PS	1.59	3.92	0.7508	0.0017

8 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.08	1.60	0.0004	0.719
TS	2.26	1.73	0.2506	0.5523
PS	1.48	4.40	1.0432	0.0006

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S20. Geometries at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

0 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.79	1.59	0.0027	0.6817
TS	2.31	1.70	0.2543	0.532
PS	1.56	4.09	0.7523	0.0012
1 water	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.78	1.59	0.0008	0.6748
TS	2.27	1.70	0.2498	0.5303
PS	1.56	3.84	0.7336	0.0012
2 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.75	1.59	0.0047	0.6768
TS	2.30	1.70	0.2412	0.5261
PS	1.56	3.82	0.737	0.0016
3 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.16	1.59	0.0005	0.6929
TS	2.24	1.71	0.2279	0.5258
PS	1.56	3.83	0.738	0.0013
4 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.03	1.59	0.0005	0.676
TS	2.26	1.71	0.2234	0.5166
PS	1.56	3.96	0.7451	0.0012
5 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.31	1.58	0.0009	0.6844
TS	2.21	1.73	0.2332	0.5043
PS	1.55	3.94	0.7662	0.0011
6 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.29	1.58	0.0006	0.6909
TS	2.20	1.73	0.2373	0.5072
PS	1.45	4.54	1.069	0.0002
7 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.53	1.58	0.0006	0.6857
K5				
TS	2.21	1.72	0.2368	0.5154

8 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.81	1.58	0.0001	0.6991
TS	2.22	1.72	0.2432	0.5151
PS	1.46	4.6	0.9886	0.0004

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S21. Geometries at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

TS 2.39 1.69 0.2306 0.5775 PS 1.59 3.63 0.7535 0.0014 I water S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.47 1.61 0.0103 0.6764 TS 2.31 1.69 0.225 0.582 PS 1.59 3.73 0.7316 0.0013 2 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.52 1.61 0.0085 0.6682 TS 2.35 1.70 0.2173 0.5692 PS 1.59 3.60 0.7435 0.0018 3 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.34 1.61 0.0009 0.682 TS 2.29 1.70 0.2082 0.5734 PS 1.59 3.60 0.7371 0.0018 4 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS	0 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
PS	RS	3.53	1.61	0.0112	0.6722
1 water S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.47 1.61 0.0103 0.6764 TS 2.31 1.69 0.225 0.582 PS 1.59 3.73 0.7316 0.0013 2 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.52 1.61 0.0085 0.6682 TS 2.35 1.70 0.2173 0.5692 PS 1.59 3.60 0.7435 0.0018 3 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.34 1.61 0.0009 0.682 TS 2.29 1.70 0.2082 0.5734 PS 1.59 3.60 0.7371 0.0018 4 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.09 1.61 0.0005 0.696 TS 2.31	TS	2.39	1.69	0.2306	0.5775
RS 3.47 1.61 0.0103 0.6764 TS 2.31 1.69 0.225 0.582 PS 1.59 3.73 0.7316 0.0013 2 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.52 1.61 0.0085 0.6682 TS 2.35 1.70 0.2173 0.5692 PS 1.59 3.60 0.7435 0.0018 3 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.34 1.61 0.0009 0.682 TS 2.29 1.70 0.2082 0.5734 PS 1.59 3.60 0.7371 0.0018 4 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.09 1.61 0.0005 0.696 TS 2.31 1.71 0.2027 0.5577 PS 1.59 3.77 0.7513 0.0013 5 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013	PS	1.59	3.63	0.7535	0.0014
TS 2.31 1.69 0.225 0.582 PS 1.59 3.73 0.7316 0.0013 2 waters S-O _{nuc} Distance S-O _{lg} BO S-O _{lg} BO RS 3.52 1.61 0.0085 0.6682 TS 2.35 1.70 0.2173 0.5692 PS 1.59 3.60 0.7435 0.0018 3 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.34 1.61 0.0009 0.682 TS 2.29 1.70 0.2082 0.5734 PS 1.59 3.60 0.7371 0.0018 4 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.09 1.61 0.0005 0.696 TS 2.31 1.71 0.2027 0.5577 PS 1.59 3.77 0.7513 0.0013 5 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS<	1 water	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
PS	RS	3.47	1.61	0.0103	0.6764
2 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.52 1.61 0.0085 0.6682 TS 2.35 1.70 0.2173 0.5692 PS 1.59 3.60 0.7435 0.0018 3 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.34 1.61 0.0009 0.682 TS 2.29 1.70 0.2082 0.5734 PS 1.59 3.60 0.7371 0.0018 4 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.09 1.61 0.0005 0.696 TS 2.31 1.71 0.2027 0.5577 PS 1.59 3.77 0.7513 0.0013 5 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS	TS	2.31	1.69	0.225	0.582
RS 3.52 1.61 0.0085 0.6682 TS 2.35 1.70 0.2173 0.5692 PS 1.59 3.60 0.7435 0.0018 3 waters S-Onue Distance S-Olg Distance S-Onue BO S-Olg BO RS 4.34 1.61 0.0009 0.682 TS 2.29 1.70 0.2082 0.5734 PS 1.59 3.60 0.7371 0.0018 4 waters S-Onue Distance S-Olg Distance S-Onue BO S-Olg BO RS 4.09 1.61 0.0005 0.696 TS 2.31 1.71 0.2027 0.5577 PS 1.59 3.77 0.7513 0.0013 5 waters S-Onue Distance S-Olg Distance S-Onue BO S-Olg BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002<	PS	1.59	3.73	0.7316	0.0013
TS 2.35 1.70 0.2173 0.5692 PS 1.59 3.60 0.7435 0.0018 3 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.34 1.61 0.0009 0.682 TS 2.29 1.70 0.2082 0.5734 PS 1.59 3.60 0.7371 0.0018 4 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.09 1.61 0.0005 0.696 TS 2.31 1.71 0.2027 0.5577 PS 1.59 3.77 0.7513 0.0013 5 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{nuc}	2 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
PS	RS	3.52	1.61	0.0085	0.6682
3 waters S-O _{nuc} Distance S-O _{tg} Distance S-O _{nuc} BO S-O _{tg} BO RS 4.34 1.61 0.0009 0.682 TS 2.29 1.70 0.2082 0.5734 PS 1.59 3.60 0.7371 0.0018 4 waters S-O _{nuc} Distance S-O _{tg} Distance S-O _{nuc} BO S-O _{tg} BO RS 4.09 1.61 0.0005 0.696 TS 2.31 1.71 0.2027 0.5577 PS 1.59 3.77 0.7513 0.0013 5 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{tg} BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{tg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785	TS	2.35	1.70	0.2173	0.5692
RS	PS	1.59	3.60	0.7435	0.0018
TS	3 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
Name	RS	4.34	1.61	0.0009	0.682
4 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 4.09 1.61 0.0005 0.696 TS 2.31 1.71 0.2027 0.5577 PS 1.59 3.77 0.7513 0.0013 5 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{luc} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70	TS	2.29	1.70	0.2082	0.5734
RS 4.09 1.61 0.0005 0.696 TS 2.31 1.71 0.2027 0.5577 PS 1.59 3.77 0.7513 0.0013 5 waters S-Onuc Distance S-Onuc BO S-Olg BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-Onuc Distance S-Olg Distance S-Onuc BO S-Olg BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-Onuc Distance S-Olg Distance S-Onuc BO S-Olg BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	PS	1.59	3.60	0.7371	0.0018
TS 2.31 1.71 0.2027 0.5577 PS 1.59 3.77 0.7513 0.0013 5 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	4 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
PS 1.59 3.77 0.7513 0.0013 5 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	RS	4.09	1.61	0.0005	0.696
Swaters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	TS	2.31	1.71	0.2027	0.5577
RS 3.50 1.61 0.0014 0.6616 TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	PS	1.59	3.77	0.7513	0.0013
TS 2.26 1.71 0.2122 0.5495 PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	5 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
PS 1.50 4.57 0.9411 0.0002 6 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	RS	3.50	1.61	0.0014	0.6616
6 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	TS	2.26	1.71	0.2122	0.5495
RS 3.40 1.61 0.0019 0.6893 TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	PS	1.50	4.57	0.9411	0.0002
TS 2.25 1.70 0.2242 0.5785 PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	6 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
PS 1.58 3.71 0.7623 0.0013 7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	RS	3.40	1.61	0.0019	0.6893
7 waters S-O _{nuc} Distance S-O _{lg} Distance S-O _{nuc} BO S-O _{lg} BO RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	TS	2.25	1.70	0.2242	0.5785
RS 3.40 1.61 0.0016 0.681 TS 2.24 1.70 0.2285 0.5885	PS	1.58	3.71	0.7623	0.0013
TS 2.24 1.70 0.2285 0.5885	7 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
	RS	3.40	1.61	0.0016	0.681
PS 1.48 3.97 1.1253 0.0012	TS	2.24	1.70	0.2285	0.5885
	PS	1.48	3.97	1.1253	0.0012

8 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.16	1.62	0.004	0.6855
TS	2.26	1.7	0.2308	0.5915
PS	1.48	3.99	1.1272	0.0013

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S22. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the ωB97X-D³ functional.^a

Substituent	$k_{\rm calc}$	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	1.859×10^2	2.2693	-3.7799
4-nitro	1.090×10^3	3.0374	-3.9706
2,6-difluoro	5.439×10^3	3.7355	-3.8539
2-fluoro-4-nitro	3.943×10^3	3.3958	-2.9872
2,3,4,5,6-pentafluoro	3.027 x 10 ⁵	5.4810	-2.3872
3-fluoro-4-nitro	1.427 x 10 ⁴	4.1544	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S23. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the ωB97X-D³ functional.^a

Substituent	k_{calc}	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	2.859×10^3	3.4562	-3.7799
4-nitro	3.339×10^{0}	0.5236	-3.9706
2,6-difluoro	3.536×10^2	2.5485	-3.8539
2-fluoro-4-nitro	1.676 x 10 ⁴	4.2243	-2.9872
2,3,4,5,6-pentafluoro	3.376 x 10 ⁶	6.5284	-2.3872
3-fluoro-4-nitro	8.810×10^3	3.9450	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S24. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the ω B97X-D³ functional.^a

Substituent	$k_{\rm calc}$	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	1.090×10^3	3.0374	-3.7799
4-nitro	5.728 x 10 ²	2.7580	-3.9706
2,6-difluoro	1.968 x 10 ⁴	4.2940	-3.8539
2-fluoro-4-nitro	4.397 x 10 ⁴	4.6432	-2.9872
2,3,4,5,6-pentafluoro	5.192 x 10 ⁷	7.7153	-2.3872
3-fluoro-4-nitro	1.858 x 10 ²	2.2690	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S25. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the ωB97X-D³ functional.^a

Substitutent	k _{calc}	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	6.690 x 10 ⁻¹	-0.1746	-3.7799
4-nitro	3.922 x 10 ⁰	0.5935	-3.9706
2,6-difluoro	9.718 x 10 ⁻²	-1.0124	-3.8539
2-fluoro-4-nitro	1.029 x 10 ¹	1.0124	-2.9872
2,3,4,5,6-pentafluoro	5.439×10^3	3.7355	-2.3872
3-fluoro-4-nitro	1.273 x 10 ⁰	0.1048	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S26. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the M11L¹ functional.^a

Substituent	$k_{\rm calc}$	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	5.164 x 10 ⁴	4.7130	-3.7799
4-nitro	2.311 x 10 ⁴	4.3638	-3.9706
2,6-difluoro	4.175 x 10 ⁵	5.6207	-3.8539
2-fluoro-4-nitro	1.511 x 10 ⁶	6.1793	-2.9872
2,3,4,5,6-pentafluoro	1.879 x 10 ⁸	8.2739	-2.3872
3-fluoro-4-nitro	3.555 x 10 ⁵	5.5508	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S27. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	kcalc	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	1.215 x 10 ⁴	4.0846	-3.7799
4-nitro	3.356×10^3	3.5258	-3.9706
2,6-difluoro	5.759 x 10 ⁵	5.7603	-3.8539
2-fluoro-4-nitro	1.869 x 10 ⁵	5.2716	-2.9872
2,3,4,5,6-pentafluoro	1.435 x 10 ⁷	7.1569	-2.3872
3-fluoro-4-nitro	4.175 x 10 ⁵	5.6207	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S28. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	kcalc	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	9.824 x 10 ⁴	4.9923	-3.7799
4-nitro	2.578 x 10 ⁵	5.4113	-3.9706
2,6-difluoro	8.365 x 10 ⁴	4.9225	-3.8539
2-fluoro-4-nitro	5.468 x 10 ⁶	6.7378	-2.9872
2,3,4,5,6-pentafluoro	1.096 x 10 ⁶	6.0399	-2.3872
3-fluoro-4-nitro	3.188 x 10 ⁴	4.5035	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S29. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	kcalc	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	2.550 x 10 ⁻¹	-0.5935	-3.7799
4-nitro	2.183×10^2	2.3391	-3.9706
2,6-difluoro	5.409 x 10 ⁰	0.7331	-3.8539
2-fluoro-4-nitro	2.195 x 10 ⁵	5.3414	-2.9872
2,3,4,5,6-pentafluoro	1.503×10^3	3.1770	-2.3872
3-fluoro-4-nitro	3.943×10^3	3.5958	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S30. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvent), obtained using the M062X⁴ functional.^a

Substituent	k _{calc}	$\log k_{\rm calc}$	$\log k_{ m exp}$
4-chloro-3-nitro	4.904 x 10 ⁵	5.6906	-3.7799
4-nitro	4.175×10^5	5.6207	-3.9706
2,6-difluoro	6.422 x 10 ⁶	6.8078	-3.8539
2-fluoro-4-nitro	1.685×10^7	7.2266	-2.9872
2,3,4,5,6-pentafluoro	3.044 x 10 ⁸	8.4834	-2.3872
3-fluoro-4-nitro	9.328 x 10 ⁵	5.9698	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S31. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	k _{calc}	$\log k_{\mathrm{calc}}$	$\log k_{\rm exp}$
4-chloro-3-nitro	1.154 x 10 ⁵	5.0622	-3.7799
4-nitro	1.869 x 10 ⁵	5.2716	-3.9706
2,6-difluoro	1.435 x 10 ⁷	7.1569	-3.8539
2-fluoro-4-nitro	4.421 x 10 ⁷	7.6455	-2.9872
2,3,4,5,6-pentafluoro	3.986 x 10 ⁹	9.6005	-2.3872
3-fluoro-4-nitro	5.579 x 10 ⁵	5.7466	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S32. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	$k_{\rm calc}$ $\log k_{\rm calc}$		$\log k_{ m exp}$
4-chloro-3-nitro	2.592 x 10 ⁸	8.4136	-3.7799
4-nitro	2.578 x 10 ⁵	5.4112	-3.9706
2,6-difluoro	2.207 x 10 ⁸	8.3438	-3.8539
2-fluoro-4-nitro	6.098 x 10 ⁷	7.7852	-2.9872
2,3,4,5,6-pentafluoro	2.890 x 10 ⁹	9.4609	-2.3872
3-fluoro-4-nitro	7.162×10^7	7.8550	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S33. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	$k_{ m calc}$	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	1.215 x 10 ⁴	4.0846	-3.7799
4-nitro	2.448 x 10 ⁶	6.3889	-3.9706
2,6-difluoro	5.759 x 10 ⁵	5.7603	-3.8539
2-fluoro-4-nitro	8.858 x 10 ⁶	6.9473	-2.9872
2,3,4,5,6-pentafluoro	9.824 x 10 ⁴	4.9923	-2.3872
3-fluoro-4-nitro	1.511 x 10 ⁶	6.1793	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S34. Energy decomposition of the calculated activation free energies ($\Delta G^{\dagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the $\omega B97X-D^3$ functional.^a

Substituent	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	10.5	0.5	4.1	15.1	21.2	-285.8424
4-nitro	10.6	0.2	3.2	14	21.5	-269.6541
2,6-difluoro	8.2	0.6	4.2	13	21.3	-255.3195
2-fluoro-4-nitro	9.2	0.3	3.7	13.2	20.1	-269.6949
2,3,4,5,6-pentafluoro	6	0.4	4.3	10.5	19.2	-191.8671
3-fluoro-4-nitro	10	-0.04	2.4	12.4	19.4	-269.1173

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. v denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S35. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Substituent	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	10.4	0.2	2.8	13.4	21.2	-275.4637
4-nitro	17.4	-0.4	0.6	17.6	21.5	-289.4289
2,6-difluoro	7.8	1.4	5.5	14.7	21.3	-241.8208
2-fluoro-4-nitro	9.2	0.4	2.7	12.3	20.1	-280.3696
2,3,4,5,6-pentafluoro	5	0.7	3.3	9	19.2	-208.8696
3-fluoro-4-nitro	9.9	0.2	2.6	12.7	19.4	-283.2926

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S36. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Substituent	ΔE^{\ddagger}	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	11.8	0.03	2.2	14	21.2	-256.1365
4-nitro	13.8	-0.3	0.9	14.4	21.5	-266.4356
2,6-difluoro	6.1	1.2	4.9	12.2	21.3	-228.9236
2-fluoro-4-nitro	5.7	1	5	11.7	20.1	-225.2576
2,3,4,5,6-pentafluoro	4.3	0.4	2.6	7.3	19.2	-196.2121
3-fluoro-4-nitro	9.9	1.1	4.1	15.1	19.4	-271.425

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. v denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S37. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Substituent	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	24.7	-1.9	-4.2	18.6	21.2	-274.1009
4-nitro	17.3	-0.3	0.5	17.5	21.5	-281.4245
2,6-difluoro	18.2	0.6	1	19.8	21.3	-244.4031
2-fluoro-4-nitro	16.9	-1.1	0.1	16.9	20.1	-253.072
2,3,4,5,6-pentafluoro	11.4	0.5	1.1	13	19.2	-242.0959
3-fluoro-4-nitro	24.7	-1.9	-4.2	18.2	19.4	-274.1009

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S38. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the M11L¹ functional.^a

Substituent	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	9.1	-0.1	2.6	11.6	21.2	-342.7198
4-nitro	9.1	-0.1	3.1	12.1	21.5	-331.4516
2,6-difluoro	6.6	0.2	3.5	10.3	21.3	-268.0216
2-fluoro-4-nitro	7.8	-0.3	2	9.5	20.1	-324.8034
2,3,4,5,6-pentafluoro	3.6	0.1	2.8	6.5	19.2	-189.2089
3-fluoro-4-nitro	8.4	-0.3	2.3	10.4	19.4	-319.3068

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S39. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	8.5	0.5	3.5	12.5	21.2	-323.5784
4-nitro	8.2	0.01	5.1	13.3	21.5	-332.1461
2,6-difluoro	6.6	0.4	3.1	10.1	21.3	-274.2715
2-fluoro-4-nitro	7.2	0.2	3.4	10.8	20.1	-310.5195
2,3,4,5,6-pentafluoro	3.9	0.3	3.9	8.1	19.2	-226.258
3-fluoro-4-nitro	7.9	0.3	2.1	10.3	19.4	-319.1242

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S40. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	ΔE^{\ddagger}	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	12.2	-0.9	-0.1	11.2	21.2	-318.2203
4-nitro	9	-0.2	1.8	10.6	21.5	-332.1585
2,6-difluoro	9.4	0.3	1.6	11.3	21.3	-286.8493
2-fluoro-4-nitro	4.8	0.6	3.3	8.7	20.1	-270.3738
2,3,4,5,6-pentafluoro	7.7	-0.05	2.1	9.7	19.2	-241.5549
3-fluoro-4-nitro	7.3	0.8	3.8	11.9	19.4	-321.7632

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. v denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S41. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	18.8	-0.2	0.6	19.2	21.2	-342.5189
4-nitro	19	-1.2	-2.8	15	21.5	-349.729
2,6-difluoro	18.2	0.2	-1.1	17.3	21.3	-325.0493
2-fluoro-4-nitro	7.7	0.8	2.2	10.7	20.1	-322.0363
2,3,4,5,6-pentafluoro	19.4	-2.3	-3.3	13.8	19.2	-317.5782
3-fluoro-4-nitro	14.8	-1.1	-0.5	13.2	19.4	-348.1176

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. v denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S42. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the M062X⁴ functional.^a

Substituent	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	7	0.2	3	10.2	21.2	-302.0405
4-nitro	7.5	0.1	2.7	10.3	21.5	-316.6842
2,6-difluoro	4.3	0.4	3.9	8.6	21.3	-263.5941
2-fluoro-4-nitro	6.2	-0.2	2	8	20.1	-303.4558
2,3,4,5,6-pentafluoro	5	-0.1	1.3	6.2	19.2	-259.2123
3-fluoro-4-nitro	6.9	0.04	2.9	9.8	19.4	-311.5082

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S43. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	6.8	1.0	3.3	11.1	21.2	-286.8049
4-nitro	6.3	0.5	4.0	10.8	21.5	-292.9074
2,6-difluoro	3.5	0.8	3.8	8.1	21.3	-263.6809
2-fluoro-4-nitro	6.4	0.1	0.9	7.4	20.1	-287.2524
2,3,4,5,6-pentafluoro	7.4	0.8	2.1	4.6	19.2	-242.4723
3-fluoro-4-nitro	6.6	0.6	2.9	10.1	19.4	-285.2326

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S44. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate in the presence of 4 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	ΔE^{\ddagger}	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	9.0	-1.2	-1.5	6.3	21.2	-285.5131
4-nitro	11.0	-0.4	0.01	10.6	21.5	-287.6699
2,6-difluoro	3.5	0.7	2.2	6.4	21.3	-254.0158
2-fluoro-4-nitro	3.3	1.3	2.7	7.2	20.1	-250.3784
2,3,4,5,6-pentafluoro	1.8	0.9	2.1	4.8	19.2	-229.391
3-fluoro-4-nitro	6.4	0.1	0.6	7.1	19.4	-292.3245

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. v denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S45. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	ΔE [‡]	ΔΖΡΕ [‡]	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	10.8	0.04	1.7	12.5	21.2	-279.4276
4-nitro	8.2	0.3	0.7	9.2	21.5	-283.7645
2,6-difluoro	12.1	0.1	-2.5	10.1	21.3	-266.2105
2-fluoro-4-nitro	6.3	0.8	1.3	8.4	21.3	-275.8933
2,3,4,5,6-pentafluoro	5.6	2.6	3	11.2	19.2	-265.0677
3-fluoro-4-nitro	7.5	0.5	1.7	9.5	19.4	-275.3139

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. ν denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S46. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1902.3042145	129.07579	163.163	0.0	0.0	0.0	0.0	17.0736
TS	-1902.2875000	129.59369	150.068	10.5	0.5	4.1	15.1	-285.8424
PS	-1902.3512863	129.96548	153.386	-29.5	0.9	3.1	-25.6	-1.6775 ^b
4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1442.7105877	135.50586	153.837	0.0	0.0	0.0	0.0	27.865
TS	-1442.6936351	135.68108	143.642	10.6	0.2	3.2	14.0	-269.6541
PS	-1442.7620338	135.88209	156.698	-32.3	0.4	-0.9	-32.8	2.5343
2,6-difluoro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1436.6836856	123.07560	152.237	0.0	0.0	0.0	0.0	17.421
TS	-1436.6706435	123.64884	138.719	8.2	0.6	4.2	13.0	-255.3195
PS	-1436.7285555	124.22134	147.713	-28.2	1.1	1.4	-25.6	20.3575
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1541.9430306	130.18239	159.802	0.0	0.0	0.0	0.0	26.2503
RS TS	-1541.9430306 -1541.9283346	130.18239 130.46140	159.802 147.827	9.2	0.0	0.0 3.7	0.0	26.2503 -269.6949
TS	-1541.9283346	130.46140	147.827	9.2	0.3	3.7	1.3	-269.6949
TS PS	-1541.9283346 -1541.9997668	130.46140 130.96907	147.827 159.984	9.2	0.3	3.7	1.3	-269.6949 11.2244
TS PS 2,3,4,5,6-pentafluoro	-1541.9283346 -1541.9997668 E	130.46140 130.96907 ZPE	147.827 159.984 S	9.2 -35.6 Δ E	0.3 0.8 Δ ZPE	3.7 0.0 - T Δ S	1.3 -34.8 Δ G calc	-269.6949 11.2244 υ
TS PS 2,3,4,5,6-pentafluoro RS	-1541.9283346 -1541.9997668 E -1734.3655992	130.46140 130.96907 ZPE 107.69555	147.827 159.984 S 166.047	9.2 -35.6 ΔE 0.0	0.3 0.8 Δ ZPE 0.0	3.7 0.0 - T Δ S 0.0	1.3 -34.8 Δ G calc	-269.6949 11.2244 v 14.5274
TS PS 2,3,4,5,6-pentafluoro RS TS	-1541.9283346 -1541.9997668 E -1734.3655992 -1734.3560598	130.46140 130.96907 ZPE 107.69555 107.98307	147.827 159.984 S 166.047 152.786	9.2 -35.6 ΔE 0.0 6.0	0.3 0.8 Δ ZPE 0.0 0.3	3.7 0.0 - T Δ S 0.0 4.2	1.3 -34.8 ΔGcalc 0.0 10.5	-269.6949 11.2244 v 14.5274 -191.8671
TS PS 2,3,4,5,6-pentafluoro RS TS PS	-1541.9283346 -1541.9997668 E -1734.3655992 -1734.3560598 -1734.4264982	130.46140 130.96907 ZPE 107.69555 107.98307 108.46310	147.827 159.984 S 166.047 152.786 157.865	9.2 -35.6 ΔE 0.0 6.0 -38.2	0.3 0.8 Δ ZPE 0.0 0.3 0.8	3.7 0.0 -TΔS 0.0 4.2 2.6	1.3 -34.8 ΔGcalc 0.0 10.5 -34.9	-269.6949 11.2244 v 14.5274 -191.8671 -7.6942 ^b
TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-1541.9283346 -1541.9997668 E -1734.3655992 -1734.3560598 -1734.4264982 E	130.46140 130.96907 ZPE 107.69555 107.98307 108.46310 ZPE	147.827 159.984 S 166.047 152.786 157.865 S	9.2 -35.6 ΔE 0.0 6.0 -38.2 ΔE	0.3 0.8 Δ ZPE 0.0 0.3 0.8 Δ ZPE	3.7 0.0 -TΔS 0.0 4.2 2.6 -TΔS	1.3 -34.8 ΔGcalc 0.0 10.5 -34.9 ΔGcalc	-269.6949 11.2244 v 14.5274 -191.8671 -7.6942b v

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). v denotes the first vibrational frequency (cm⁻¹). ^b As this imaginary frequency is so small and it's in the product state (thus not affecting the calculated activation free energy for the hydrolysis of this compound), we have ignored it. We note that these structures were obtained using a super fine optimization grid.

Table S47. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔGcalc	υ
RS	-2055.2159043	159.50741	194.514	0.0	0.0	0.0	0.0	14.4781
TS	-2055.1992769	159.68388	185.652	10.4	0.2	2.8	13.4	-275.4637
PS	-2055.2621140	160.73052	189.1	-29.0	1.2	1.7	-26.1	16.1674
4-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1595.6332193	166.11857	180.725	0.0	0.0	0.0	0.0	22.0334
TS	-1595.6054962	165.73854	178.694	17.4	-0.4	0.6	17.6	-289.4289
PS	-1595.6744573	166.80655	181.284	-25.9	0.7	-0.2	-25.4	17.7028
2,6-difluoro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1589.5941658	152.82038	186.29	0.0	0.0	0.0	0.0	17.7358
TS	-1589.5818073	154.26010	168.853	7.8	1.4	5.5	14.7	-241.8208
PS	-1589.6434680	155.32919	174.728	-30.9	2.5	3.6	-24.8	13.9686
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1694.8547048	159.94999	193.151	0.0	0.0	0.0	0.0	19.3376
TS	-1694.8400412	160.39707	184.485	9.2	0.4	2.7	12.3	-280.3696
PS	-1694.9138037	161.26591	188.452	-37.1	1.3	1.5	-34.3	13.2216
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1887.2747775	137.54657	197.269	0.0	0.0	0.0	0.0	19.1679
TS	-1887.2668689	138.25343	186.78	5.0	0.7	3.3	9.0	-208.8696
PS	-1887.3365707	139.75578	189.2	-38.8	2.2	2.5	-34.0	12.0491
					4.7DE	TE A C	. ~	
3-fluoro-4-nitro	E	ZPE	S	$\Delta \mathbf{E}$	Δ Z PE	-T∆S	ΔG_{calc}	υ
3-fluoro-4-nitro	E -1694.8517863	ZPE 159.98096	S 193.219	ΔE 0.0	0.0	-1ΔS 0.0	ΔG _{calc}	υ 16.7567

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S48. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2208.1289185	189.89797	225.274	0.0	0.0	0.0	0.0	11.3064
TS	-2208.1100991	189.93258	218.261	11.8	0.03	2.2	14.0	-256.1365
PS	-2208.1842302	191.43654	213.383	-34.7	1.5	3.7	-29.4	15.1949
4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
TS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
PS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
2,6-difluoro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1742.5069474	184.45982	209.868	0.0	0.0	0.0	0.0	18.3166
TS	-1742.4971831	185.65766	194.29	6.1	1.2	4.9	12.2	-228.9236
PS	-1742.5663798	186.22158	196.878	-37.3	1.8	4.1	-31.5	23.2154
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1847.7652977	191.03741	223.554	0.0	0.0	0.0	0.0	8.2604
TS	-1847.7561367	192.00850	207.574	5.7	1.0	5.0	11.7	-225.2576
PS	-1847.8319125	192.73182	210.003	-41.8	1.7	4.2	-35.9	24.0498
			210.005		1.,			21.0170
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔGcalc	υ
RS	E -2040.1873760	ZPE 168.63691						
			S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔGcalc	υ
RS	-2040.1873760	168.63691	S 226.542	Δ E 0.0	Δ ZPE 0.0	- T Δ S 0.0	ΔG _{calc}	υ 15.6112
RS TS	-2040.1873760 -2040.1804955	168.63691 169.01223	S 226.542 218.176	ΔE 0.0 4.3	Δ ZPE 0.0 0.4	- T Δ S 0.0 2.6	ΔG _{calc} 0.0 7.3	υ 15.6112 -196.2121
RS TS PS	-2040.1873760 -2040.1804955 -2040.2527854	168.63691 169.01223 169.89541	\$ 226.542 218.176 226.09	ΔE 0.0 4.3 -41.0	Δ ZPE 0.0 0.4 1.3	-TΔS 0.0 2.6 0.1	ΔG _{calc} 0.0 7.3 -39.6	υ 15.6112 -196.2121 13.8064
RS TS PS 3-fluoro-4-nitro	-2040.1873760 -2040.1804955 -2040.2527854 E	168.63691 169.01223 169.89541 ZPE	\$ 226.542 218.176 226.09 \$	ΔE 0.0 4.3 -41.0 ΔE	Δ ZPE 0.0 0.4 1.3 Δ ZPE	-TΔS 0.0 2.6 0.1 -TΔS	ΔGcalc 0.0 7.3 -39.6 ΔGcalc	υ 15.6112 -196.2121 13.8064 υ

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S49. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2513.9649011	255.10002	257.71	0.0	0.0	0.0	0.0	16.4417
TS	-2513.9254724	253.17055	271.131	24.7	-1.9	-4.2	18.6	-274.1009
PS	-2513.9892573	256.05744	268.033	-15.3	1.0	-3.2	-17.6	9.5019
4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2054.3572856	259.26468	268.855	0.0	0.0	0.0	0.0	21.8354
TS	-2054.3298017	259.00254	267.27	17.2	-0.3	0.5	17.5	-281.4245
PS	-2054.4203233	262.31221	258.444	-39.6	3.0	3.3	-33.2	20.8432
2,6-difluoro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2048.3334825	247.61469	258.819	0.0	0.0	0.0	0.0	10.0192
TS	-2048.3044759	248.23546	255.612	18.2	0.6	1.0	19.8	-244.4031
PS	-2048.3669334	250.31496	252.422	-21.0	2.7	2.0	-16.3	19.5536
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2153.5990449	256.42344	260.295	0.0	0.0	0.0	0.0	15.4432
TS	-2153.5721200	255.36330	259.948	16.9	-1.1	0.1	15.9	-253.072
PS								
1 ~ ~	-2153.6296227	254.21948	281.277	-19.2	-2.2	-6.6	-28.0	16.2566
2,3,4,5,6-pentafluoro	-2153.6296227 E	254.21948 ZPE	281.277 S	-19.2 Δ E	-2.2 Δ ZPE	-6.6 - T Δ S	-28.0 ΔGcalc	16.2566 v
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔGcalc	υ
2,3,4,5,6-pentafluoro	E -2346.0082839	ZPE 231.51664	S 278.407	Δ E 0.0	Δ ZPE 0.0	- T Δ S 0.0	ΔG _{calc}	υ 16.7679
2,3,4,5,6-pentafluoro RS TS	E -2346.0082839 -2345.9901827	ZPE 231.51664 232.00887	\$ 278.407 274.755	ΔE 0.0 11.4	Δ ZPE 0.0 0.5	-TΔS 0.0 1.1	ΔG _{calc} 0.0 13.0	υ 16.7679 -242.0959
2,3,4,5,6-pentafluoro RS TS PS	E -2346.0082839 -2345.9901827 -2346.1026374	ZPE 231.51664 232.00887 235.97442	\$ 278.407 274.755 256.471	ΔE 0.0 11.4 -59.2	Δ ZPE 0.0 0.5 4.5	-TΔS 0.0 1.1 6.9	ΔG _{calc} 0.0 13.0 -47.9	υ 16.7679 -242.0959 13.8433
2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	E -2346.0082839 -2345.9901827 -2346.1026374 E	ZPE 231.51664 232.00887 235.97442 ZPE	\$ 278.407 274.755 256.471 \$	ΔE 0.0 11.4 -59.2 ΔE	Δ ZPE 0.0 0.5 4.5 Δ ZPE	-TΔS 0.0 1.1 6.9 -TΔS	ΔGcalc 0.0 13.0 -47.9 ΔGcalc	υ 16.7679 -242.0959 13.8433 υ

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S50. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M11L¹ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1902.3578193	126.83627	158.971	0.0	0.0	0.0	0.0	27.8721
TS	-1902.3433531	126.70291	150.819	9.1	-0.1	2.6	11.6	-342.7198
PS	-1902.4121718	127.26183	160.952	-34.1	0.4	-0.6	-34.3	15.1231
4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1442.7758730	132.60756	153.934	0.0	0.0	0.0	0.0	26.0193
TS	-1442.7614408	132.52363	144.06	9.1	-0.1	3.1	12.1	-331.4516
PS	-1442.8369596	133.54658	154.348	-38.3	0.9	-0.1	-37.5	20.0531
2,6-difluoro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1436.7306633	120.90060	149.583	0.0	0.0	0.0	0.0	21.9297
TS	-1436.7201611	121.10522	138.459	6.6	0.2	3.5	10.3	-268.0216
PS	-1436.7804009	121.64097	148.945	-31.2	0.7	0.2	-30.3	22.6591
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1542.0000347	127.89485	156.893	0.0	0.0	0.0	0.0	27.3537
TS	-1541.9875827	127.56909	150.364	7.8	-0.3	2.0	9.5	-324.8034
7.0								
PS	-1542.0698566	128.61707	156.149	-43.8	0.7	0.2	-42.9	25.387
PS 2,3,4,5,6-pentafluoro	-1542.0698566 E	128.61707 ZPE	156.149 S	-43.8 Δ E	0.7 Δ ZPE	0.2 - T Δ S	-42.9 Δ G calc	25.387 v
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔGcalc	υ
2,3,4,5,6-pentafluoro	E -1734.3856029	ZPE 106.40281	S 160.883	Δ E 0.0	Δ ZPE 0.0	- T Δ S 0.0	ΔG _{calc}	υ 20.0889
2,3,4,5,6-pentafluoro RS TS	E -1734.3856029 -1734.3798443	ZPE 106.40281 106.49258	S 160.883 152.094	ΔE 0.0 3.6	Δ ZPE 0.0 0.1	- T Δ S 0.0 2.8	ΔG _{calc} 0.0 6.5	υ 20.0889 -189.2089
2,3,4,5,6-pentafluoro RS TS PS	E -1734.3856029 -1734.3798443 -1734.4467195	ZPE 106.40281 106.49258 107.06774	S 160.883 152.094 164.707	ΔE 0.0 3.6 -38.4	Δ ZPE 0.0 0.1 0.7	-TΔS 0.0 2.8 -1.2	ΔG _{calc} 0.0 6.5 -38.9	υ 20.0889 -189.2089 5.4584
2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	E -1734.3856029 -1734.3798443 -1734.4467195 E	ZPE 106.40281 106.49258 107.06774 ZPE	\$ 160.883 152.094 164.707 \$	ΔE 0.0 3.6 -38.4 ΔE	Δ ZPE 0.0 0.1 0.7 Δ ZPE	-TΔS 0.0 2.8 -1.2 -TΔS	ΔGcalc 0.0 6.5 -38.9 ΔGcalc	υ 20.0889 -189.2089 5.4584 υ

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S51. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2055.2620499	156.67046	197.705	0.0	0.0	0.0	0.0	22.4306
TS	-2055.2484667	157.17314	186.581	8.5	0.5	3.5	12.5	-323.5784
PS	-2055.3134990	157.84919	198	-32.3	1.2	-0.1	-31.2	13.3636
4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1595.6796661	162.80622	192.494	0.0	0.0	0.0	0.0	17.8855
TS	-1595.6665795	162.81241	176.348	8.2	0.01	5.1	13.3	-332.1461
PS	-1595.7381136	163.80171	189.695	-36.7	1.0	0.9	-34.8	16.8895
2,6-difluoro	E	ZPE	S	ΔE	Δ Z PE	-ΤΔS	ΔG_{calc}	υ
RS	-1589.6353623	151.08293	184.634	0.0	0.0	0.0	0.0	19.8214
TS	-1589.6248656	151.50084	174.591	6.6	0.4	3.1	10.1	-274.2715
PS	-1589.6818927	152.30770	183.626	-29.2	1.2	0.3	-27.7	21.3463
2-fluoro-4-nitro	E	ZPE	S	ΔE	Δ Z PE	-ΤΔS	ΔG_{calc}	υ
RS	-1694.9037957	157.64879	197.713	0.0	0.0	0.0	0.0	16.6447
TS	-1694.8923934	157.89537	186.996	7.2	0.2	3.4	10.8	-310.5195
PS	-1694.9696190	158.80770	194.94	-41.3	1.2	0.9	-39.3	13.9617
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔE	Δ Z PE	-ΤΔS	ΔG_{calc}	υ
RS	-1887.2905617	136.20351	202.435	0.0	0.0	0.0	0.0	20.6642
TS	-1887.2843890	136.52097	190.066	3.9	0.3	3.9	8.1	-226.258
TS PS	-1887.2843890 -1887.3557432		190.066 190.688	3.9	0.3	3.9	8.1	-226.258 15.1247
		136.52097						
PS	-1887.3557432	136.52097 138.58635	190.688	-40.9	2.4	3.7	-34.8	15.1247
PS 3-fluoro-4-nitro	-1887.3557432 E	136.52097 138.58635 ZPE	190.688 S	-40.9 Δ E	2.4 Δ ZPE	3.7 - T Δ S	-34.8 Δ G calc	15.1247 v

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S52. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2208.1731695	188.51369	220.321	0.0	0.0	0.0	0.0	19.1392
TS	-2208.1537816	187.62340	220.625	12.2	-0.9	-0.1	11.2	-318.2203
PS	-2208.2230609	189.34747	222.784	-31.3	0.8	-0.8	-31.2	15.7009
4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1748.5846590	193.92064	221.836	0.0	0.0	0.0	0.0	18.1209
TS	-1748.5702951	193.69953	215.956	9.0	-0.2	1.8	10.6	-332.1585
PS	-1748.6433847	194.01429	226.487	-36.9	0.1	-1.5	-38.2	13.0271
2,6-difluoro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1742.4098809	184.17449	201.372	0.0	0.0	0.0	0.0	23.1067
TS	-1742.4002826	184.73336	195.444	6.0	0.6	1.9	8.5	-254.0158
PS	-1742.4378561	184.81254	208.664	-17.6	0.6	-2.3	-19.2	14.5464
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1847.8123900	189.36537	220.815	0.0	0.0	0.0	0.0	18.7224
TS	-1847.8046853	190.00686	210.408	4.8	0.6	3.3	8.7	-270.3738
PS	-1847.8813220	190.75027	218.078	-43.3	1.4	0.9	-41.0	18.0807
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2040.2035249	168.10969	225.341	0.0	0.0	0.0	0.0	11.7815
TS	-2040.1912314	168.05982	218.789	7.7	-0.05	2.1	9.7	-241.5549
PS	-2040.2709492	169.72211	215.335	-42.3	1.6	3.1	-37.6	14.9447
PS 3-fluoro-4-nitro			215.335 S	-42.3 Δ E	1.6 Δ ZPE	3.1 - T Δ S	-37.6 ΔGcalc	14.9447 v
	-2040.2709492	169.72211						
3-fluoro-4-nitro	-2040.2709492 E	169.72211 ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S53. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2513.9880841	253.18732	263.722	0.0	0.0	0.0	0.0	21.2262
TS	-2513.9582942	252.10255	272.726	18.7	-1.1	-2.8	19.2	-342.5189
PS	-2514.0591272	256.97688	258.78	-44.6	-1.6	1.5	-44.7	13.7788
4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-2054.4041216	257.57639	270.968	0.0	0.0	0.0	0.0	16.7626
TS	-2054.3737914	256.36054	279.803	19.0	-1.2	-2.8	15.0	-349.729
PS	-2054.4710658	260.06720	267.761	-42.0	2.5	1.0	-38.5	12.8992
2,6-difluoro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2048.3575885	246.02196	264.398	0.0	0.0	0.0	0.0	17.7056
TS	-2048.3289186	245.82629	268.283	18.0	-0.2	-1.2	17.3	-325.0493
PS	-2048.3935449	247.00953	269.499	-22.6	1.0	-1.6	-23.2	12.141
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2153.6223468	252.61400	273.807	0.0	0.0	0.0	0.0	20.7761
TS	-2153.6100237	253.37812	266.733	7.7	0.8	2.2	10.7	-322.0363
PS	-2153.6845054	255.03453	271.99	-39.0	2.4	0.6	-36.0	6.3165
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔE	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-2346.0206453	233.05359	270.252	0.0	0.0	0.0	0.0	12.3535
TS TS	-2346.0206453 -2345.9896939	233.05359 230.71353	270.252 280.841	0.0	-2.3	-3.3	0.0	12.3535 -317.5782
TS	-2345.9896939	230.71353	280.841	19.4	-2.3	-3.3	13.8	-317.5782
TS PS	-2345.9896939 -2346.0625396	230.71353 232.67986	280.841 281.569	19.4	-2.3 -0.4	-3.3 -3.5	13.8	-317.5782 15.7874
TS PS 3-fluoro-4-nitro	-2345.9896939 -2346.0625396 E	230.71353 232.67986 ZPE	280.841 281.569 S	19.4 -26.3 Δ E	-2.3 -0.4 Δ ZPE	-3.3 -3.5 - T Δ S	13.8 -30.2 Δ G calc	-317.5782 15.7874 υ

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S54. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1902.2303188	129.47170	158.174	0.0	0.0	0.0	0.0	24.8632
TS	-1902.2191858	129.66221	148.557	7.0	0.2	3.0	10.2	-302.0405
PS	-1902.2763628	129.97825	158.163	-28.9	0.5	0.0	-28.4	21.8115
4-nitro	E	ZPE	S	ΔE	Δ Z PE	-ΤΔS	ΔG_{calc}	υ
RS	-1442.6434689	135.59843	151.311	0.0	0.0	0.0	0.0	29.8035
TS	-1442.6315931	135.71633	142.807	7.5	0.1	2.7	10.3	-316.6842
PS	-1442.6973623	136.14742	147.904	-33.8	0.5	1.1	-32.2	30.4802
2,6-difluoro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1436.6228870	123.25751	150.624	0.0	0.0	0.0	0.0	16.7084
TS	-1436.6159961	123.66497	138.298	4.3	0.4	3.9	8.6	-263.5941
PS	-1436.6695536	124.32118	143.773	-29.3	1.1	2.1	-26.1	29.8583
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1541.8755269	130.54571	154.853	0.0	0.0	0.0	0.0	26.5774
	10 .110 / 00 20 20 3	130.3 1371						
TS	-1541.8657148	130.37507	148.341	6.2	-0.2	2.0	8.0	-303.4558
				6.2	-0.2 0.2	2.0		-303.4558 15.2376
TS	-1541.8657148	130.37507	148.341				8.0	
TS PS	-1541.8657148 -1541.9376867	130.37507 130.77852	148.341 155.359	-39.0	0.2	-0.2	8.0	15.2376
TS PS 2,3,4,5,6-pentafluoro	-1541.8657148 -1541.9376867 E	130.37507 130.77852 ZPE	148.341 155.359 S	-39.0 Δ E	0.2 Δ ZPE	-0.2 - T Δ S	8.0 -38.9 Δ G calc	15.2376 v
TS PS 2,3,4,5,6-pentafluoro RS	-1541.8657148 -1541.9376867 E -1734.3035296	130.37507 130.77852 ZPE 108.33934	148.341 155.359 S 158.701	-39.0 Δ E 0.0	0.2 Δ ZPE 0.0	-0.2 - T Δ S 0.0	8.0 -38.9 Δ G calc	15.2376 v 25.7602
TS PS 2,3,4,5,6-pentafluoro RS TS	-1541.8657148 -1541.9376867 E -1734.3035296 -1734.2955291	130.37507 130.77852 ZPE 108.33934 108.21717	148.341 155.359 S 158.701 154.41	-39.0 ΔE 0.0 5.0	0.2 Δ ZPE 0.0 -0.1	-0.2 - T Δ S 0.0 1.3	8.0 -38.9 ΔGcalc 0.0 6.2	15.2376 v 25.7602 -259.2123
TS PS 2,3,4,5,6-pentafluoro RS TS PS	-1541.8657148 -1541.9376867 E -1734.3035296 -1734.2955291 -1734.3648894	130.37507 130.77852 ZPE 108.33934 108.21717 109.06680	148.341 155.359 S 158.701 154.41 158.021	-39.0 ΔE 0.0 5.0 -38.5	0.2 Δ ZPE 0.0 -0.1 0.7	-0.2 - T Δ S 0.0 1.3 0.2	8.0 -38.9 ΔGcalc 0.0 6.2 -37.6	15.2376 v 25.7602 -259.2123 19.671
TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-1541.8657148 -1541.9376867 E -1734.3035296 -1734.2955291 -1734.3648894 E	130.37507 130.77852 ZPE 108.33934 108.21717 109.06680 ZPE	148.341 155.359 S 158.701 154.41 158.021 S	-39.0 ΔE 0.0 5.0 -38.5 ΔE	0.2 Δ ZPE 0.0 -0.1 0.7 Δ ZPE	-0.2 -TΔS 0.0 1.3 0.2 -TΔS	8.0 -38.9 ΔGcalc 0.0 6.2 -37.6 ΔGcalc	15.2376 v 25.7602 -259.2123 19.671 v

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S55. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2055.1207362	158.94941	189.054	0.0	0.0	0.0	0.0	25.6321
TS	-2055.1098227	159.91714	178.383	6.8	1.0	3.3	11.1	-286.8049
PS	-2055.1628737	159.91984	190.532	-26.4	1.0	-0.5	-25.9	18.4388
4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1595.1585719	164.92086	189.93	0.0	0.0	0.0	0.0	15.3242
TS	-1595.1485956	165.40078	177.103	6.3	0.5	4.0	10.8	-292.9074
PS	-1595.2115938	166.56085	178.44	-33.3	1.6	3.6	-28.0	21.2865
2,6-difluoro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1589.5139781	153.55655	176.472	0.0	0.0	0.0	0.0	12.6314
TS	-1589.5084384	154.32346	164.288	3.5	0.8	3.8	8.1	-263.6809
PS	-1589.5608268	154.86447	172.585	-29.4	1.3	1.2	-26.9	13.7385
2-fluoro-4-nitro	E	ZPE	S	ΔΕ	Δ Z PE	-ΤΔS	ΔG_{calc}	υ
RS	-1694.7662152	159.96108	186.04	0.0	0.0	0.0	0.0	16.8048
TS	-1694.7559900	160.02391	183.316	6.4	0.1	0.9	7.4	-287.2524
I .								
PS	-1694.8218693	160.97527	188.798	-34.9	1.0	-0.9	-34.8	8.7122
PS 2,3,4,5,6-pentafluoro			188.798 S	-34.9 Δ E	1.0 Δ ZPE	-0.9 -ΤΔS	-34.8 Δ G calc	8.7122 v
	-1694.8218693	160.97527						
2,3,4,5,6-pentafluoro	-1694.8218693 E	160.97527 ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔGcalc	υ
2,3,4,5,6-pentafluoro	-1694.8218693 E -1887.1950942	160.97527 ZPE 138.44987	S 186.076	Δ E 0.0	Δ ZPE 0.0	- T Δ S 0.0	ΔG _{calc}	υ 20.7785
2,3,4,5,6-pentafluoro RS TS	-1694.8218693 E -1887.1950942 -1887.1918690	160.97527 ZPE 138.44987 138.86566	S 186.076 178.975	ΔE 0.0 2.0	Δ ZPE 0.0 0.4	-TΔS 0.0 2.2	ΔG _{calc} 0.0 4.6	υ 20.7785 -242.4723
2,3,4,5,6-pentafluoro RS TS PS	-1694.8218693 E -1887.1950942 -1887.1918690 -1887.2553077	160.97527 ZPE 138.44987 138.86566 139.56447	\$ 186.076 178.975 185.411	ΔE 0.0 2.0 -37.8	Δ ZPE 0.0 0.4 1.1	-TΔS 0.0 2.2 0.2	ΔG _{calc} 0.0 4.6 -36.5	υ 20.7785 -242.4723 16.0994
2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-1694.8218693 E -1887.1950942 -1887.1918690 -1887.2553077 E	160.97527 ZPE 138.44987 138.86566 139.56447 ZPE	\$ 186.076 178.975 185.411 \$	ΔE 0.0 2.0 -37.8 ΔE	Δ ZPE 0.0 0.4 1.1 Δ ZPE	-TΔS 0.0 2.2 0.2 -TΔS	ΔGcalc 0.0 4.6 -36.5 ΔGcalc	υ 20.7785 -242.4723 16.0994 υ

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S56. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2208.0122575	189.95869	215.269	0.0	0.0	0.0	0.0	19.9339
TS	-2207.9979597	188.73019	220.196	9.0	-1.2	-1.5	6.3	-285.5131
PS	-2208.0758671	192.54810	203.591	-39.9	2.6	3.7	-33.7	24.2042
4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1748.4273098	196.06219	208.126	0.0	0.0	0.0	0.0	21.9257
TS	-1748.4097162	195.70859	208.107	11.0	-0.4	0.01	10.6	-287.6699
PS	-1748.4702918	197.12423	207.891	-27.0	1.1	0.1	-25.8	25.862
2,6-difluoro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-1742.4059059	183.99968	202.582	0.0	0.0	0.0	0.0	19.9971
TS	-1742.4002826	184.73336	195.444	3.5	0.7	2.2	6.4	-254.0158
PS	-1742.4378561	184.81254	208.664	-20.0	0.8	-1.9	-21.1	14.5464
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
DC	101- (0							
RS	-1847.6577928	190.12158	215.848	0.0	0.0	0.0	0.0	22.5405
TS	-1847.6577928 -1847.6525576	190.12158 191.31248	215.848	3.3	1.2	2.7	7.2	22.5405 -250.3784
TS	-1847.6525576	191.31248	207.305	3.3	1.2	2.7	7.2	-250.3784
TS PS	-1847.6525576 -1847.7387341	191.31248 194.05504	207.305 201.412	3.3 -50.8	1.2 3.9	2.7 4.5	7.2 -42.3	-250.3784 12.2827
TS PS 2,3,4,5,6-pentafluoro	-1847.6525576 -1847.7387341 E	191.31248 194.05504 ZPE	207.305 201.412 S	3.3 -50.8 Δ E	1.2 3.9 Δ ZPE	2.7 4.5 - T Δ S	7.2 -42.3 Δ G calc	-250.3784 12.2827 υ
TS PS 2,3,4,5,6-pentafluoro RS	-1847.6525576 -1847.7387341 E -2040.0836239	191.31248 194.05504 ZPE 167.75719	207.305 201.412 S 222.958	3.3 -50.8 ΔE 0.0	1.2 3.9 Δ ZPE 0.0	2.7 4.5 - T Δ S 0.0	7.2 -42.3 ΔGcalc 0.0	-250.3784 12.2827 v 22.5661
TS PS 2,3,4,5,6-pentafluoro RS TS	-1847.6525576 -1847.7387341 E -2040.0836239 -2040.0807041	191.31248 194.05504 ZPE 167.75719 168.61569	207.305 201.412 S 222.958 216.178	3.3 -50.8 ΔE 0.0 1.8	1.2 3.9 Δ ZPE 0.0 0.9	2.7 4.5 - T Δ S 0.0 2.1	7.2 -42.3 ΔGcalc 0.0 4.8	-250.3784 12.2827 v 22.5661 -229.391
TS PS 2,3,4,5,6-pentafluoro RS TS PS	-1847.6525576 -1847.7387341 E -2040.0836239 -2040.0807041 -2040.1413948	191.31248 194.05504 ZPE 167.75719 168.61569 169.68559	207.305 201.412 S 222.958 216.178 219.142	3.3 -50.8 ΔE 0.0 1.8 -36.3	1.2 3.9 Δ ZPE 0.0 0.9 1.9	2.7 4.5 -TAS 0.0 2.1 1.2	7.2 -42.3 Δ G calc 0.0 4.8 -33.1	-250.3784 12.2827 v 22.5661 -229.391 13.3498
TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-1847.6525576 -1847.7387341 E -2040.0836239 -2040.0807041 -2040.1413948 E	191.31248 194.05504 ZPE 167.75719 168.61569 169.68559 ZPE	207.305 201.412 S 222.958 216.178 219.142 S	3.3 -50.8 ΔE 0.0 1.8 -36.3 ΔE	1.2 3.9 Δ ZPE 0.0 0.9 1.9 Δ ZPE	2.7 4.5 -TΔS 0.0 2.1 1.2 -TΔS	7.2 -42.3 ΔGcalc 0.0 4.8 -33.1 ΔGcalc	-250.3784 12.2827 v 22.5661 -229.391 13.3498 v

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S57. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2513.7909346	253.34747	260.123	0.0	0.0	0.0	0.0	21.437
TS	-2513.7737635	253.38714	254.641	10.8	0.04	1.7	12.5	-279.4276
PS	-2513.8669030	256.52395	246.337	-47.7	3.2	4.3	-40.2	17.5961
4-nitro	E	ZPE	S	ΔE	Δ Z PE	-ΤΔS	ΔG_{calc}	υ
RS	-2054.1986122	258.61012	261.306	0.0	0.0	0.0	0.0	19.785
TS	-2054.1855888	258.95387	258.979	8.2	0.3	0.7	9.2	-283.7645
PS	-2054.2672984	261.38123	250.497	-43.1	2.8	3.4	-36.9	20.118
2,6-difluoro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2048.1832695	246.33395	252.61	0.0	0.0	0.0	0.0	22.5942
TS	-2048.1633144	246.38654	260.715	12.5	0.1	-2.5	10.1	-266.2105
PS	-2048.2254820	248.24379	249.356	-26.5	1.9	1.0	-23.6	19.2489
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔΖΡΕ	-ΤΔS	ΔG_{calc}	υ
RS	-2153.4343846	252.06002	261 212	0.0	0.0	0.0		2
IND.	-2133.4343846	253.86993	261.213	0.0	0.0	0.0	0.0	26.7784
TS	-2153.4343846	253.86993 254.63689	261.213 257.159	6.3	0.0	1.3	8.4	-275.8933
TS	-2153.4243330	254.63689	257.159	6.3	0.8	1.3	8.4	-275.8933
TS PS	-2153.4243330 -2153.5234315	254.63689 257.25805	257.159 241.666	6.3 -55.9	0.8	1.3 6.1	8.4	-275.8933 19.9415
TS PS 2,3,4,5,6-pentafluoro	-2153.4243330 -2153.5234315 E	254.63689 257.25805 ZPE	257.159 241.666 S	6.3 -55.9 Δ E	0.8 3.4 Δ ZPE	1.3 6.1 - T Δ S	8.4 -46.4 Δ G calc	-275.8933 19.9415 υ
TS PS 2,3,4,5,6-pentafluoro RS	-2153.4243330 -2153.5234315 E -2345.8626304	254.63689 257.25805 ZPE 230.60870	257.159 241.666 S 268.447	6.3 -55.9 ΔE 0.0	0.8 3.4 Δ ZPE 0.0	1.3 6.1 - T Δ S 0.0	8.4 -46.4 Δ G calc	-275.8933 19.9415 v 25.7861
TS PS 2,3,4,5,6-pentafluoro RS TS	-2153.4243330 -2153.5234315 E -2345.8626304 -2345.8536709	254.63689 257.25805 ZPE 230.60870 233.20247	257.159 241.666 S 268.447 258.991	6.3 -55.9 ΔE 0.0 5.6	0.8 3.4 Δ ZPE 0.0 2.6	1.3 6.1 - T Δ S 0.0 3.0	8.4 -46.4 ΔGcalc 0.0 11.2	-275.8933 19.9415 υ 25.7861 -265.0677
TS PS 2,3,4,5,6-pentafluoro RS TS PS	-2153.4243330 -2153.5234315 E -2345.8626304 -2345.8536709 -2345.9524015	254.63689 257.25805 ZPE 230.60870 233.20247 233.84567	257.159 241.666 S 268.447 258.991 253.307	6.3 -55.9 ΔE 0.0 5.6 -56.3	0.8 3.4 Δ ZPE 0.0 2.6 3.2	1.3 6.1 - T Δ S 0.0 3.0 4.7	8.4 -46.4 Δ G calc 0.0 11.2 -48.4	-275.8933 19.9415 v 25.7861 -265.0677 21.7803
TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-2153.4243330 -2153.5234315 E -2345.8626304 -2345.8536709 -2345.9524015 E	254.63689 257.25805 ZPE 230.60870 233.20247 233.84567 ZPE	257.159 241.666 S 268.447 258.991 253.307 S	6.3 -55.9 ΔE 0.0 5.6 -56.3 ΔE	0.8 3.4 Δ ZPE 0.0 2.6 3.2 Δ ZPE	1.3 6.1 -TΔS 0.0 3.0 4.7 -TΔS	8.4 -46.4 ΔGcalc 0.0 11.2 -48.4 ΔGcalc	-275.8933 19.9415 v 25.7861 -265.0677 21.7803 v

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). ν denotes the first vibrational frequency (cm⁻¹).

Table S58. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $\omega B97X$ -D³ functional.^a

Water Molecules	O _{nuc}	S	O _{lg}
4-chloro-3-nitro	-1.111641	1.232147	-0.572697
4-nitro	-1.116133	1.259782	-0.58486
2,6-difluoro	-1.10774	1.19289	-0.471096
2-fluoro-4-nitro	-1.121515	1.219911	-0.527337
2,3,4,5,6-pentafluoro	-1.123791	1.119482	-0.400261
3-fluoro-4-nitro	-1.120591	1.231624	-0.559804

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S59. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
4-chloro-3-nitro	-1.052228	1.154162	-0.505857
4-nitro	-1.056234	1.117773	-0.4649
2,6-difluoro	-1.115392	1.211859	-0.463366
2-fluoro-4-nitro	-1.056456	1.065096	-0.405403
2,3,4,5,6-pentafluoro	-1.133838	1.125565	-0.377429
3-fluoro-4-nitro	-1.068044	1.115811	-0.464594

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S60. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
4-chloro-3-nitro	-0.906699	1.15772	-0.430702
4-nitro	-0.903971	1.094185	-0.427313
2,6-difluoro	-0.946515	0.981219	-0.312967
2-fluoro-4-nitro	-0.936568	0.995378	-0.372016
2,3,4,5,6-pentafluoro	-0.919628	0.973341	0.029137
3-fluoro-4-nitro	-0.911288	0.975482	-0.438907

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S61. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
4-chloro-3-nitro	-0.818968	1.53004	-0.557081
4-nitro	-0.808109	1.375266	-0.539817
2,6-difluoro	-0.719478	1.129583	-0.187656
2-fluoro-4-nitro	-0.794135	1.115757	-0.309453
2,3,4,5,6-pentafluoro	-0.648572	0.903609	0.131355
3-fluoro-4-nitro	-0.889096	1.226026	-0.545571

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S62. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M11L¹ functional.^a

Water Molecules	O _{nuc}	S	$\mathbf{O}_{\mathbf{lg}}$
4-chloro-3-nitro	-1.126065	1.238842	-0.581367
4-nitro	-1.128893	1.244377	-0.588531
2,6-difluoro	-1.123921	1.210062	-0.475852
2-fluoro-4-nitro	-1.131816	1.20932	-0.523576
2,3,4,5,6-pentafluoro	-1.126397	1.120806	-0.396262
3-fluoro-4-nitro	-1.139186	1.221296	-0.559813

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S63. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
4-chloro-3-nitro	-1.054268	1.177652	-0.516051
4-nitro	-1.048351	1.173881	-0.508858
2,6-difluoro	-1.107014	1.239456	-0.483114
2-fluoro-4-nitro	-1.064281	1.138652	-0.434989
2,3,4,5,6-pentafluoro	-1.155153	1.095868	-0.355669
3-fluoro-4-nitro	-1.060325	1.167686	-0.493242

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S64. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
4-chloro-3-nitro	-0.869986	1.038718	-0.332873
4-nitro	-0.922275	1.035309	-0.383091
2,6-difluoro	-0.915672	0.973609	-0.273618
2-fluoro-4-nitro	-0.905535	0.953933	-0.305688
2,3,4,5,6-pentafluoro	-0.878166	0.980448	0.092381
3-fluoro-4-nitro	-1.006325	0.933329	-0.364949

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S65. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	O _{nuc}	S	O _{lg}
4-chloro-3-nitro	-0.770574	1.310195	-0.37252
4-nitro	-0.809259	1.14282	-0.477867
2,6-difluoro	-0.720382	1.157698	-0.205206
2-fluoro-4-nitro	-0.850967	1.064396	-0.333301
2,3,4,5,6-pentafluoro	-0.688973	0.802573	0.075625
3-fluoro-4-nitro	-0.822024	1.283624	-0.535008

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S66. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M062X⁴ functional.^a

Water Molecules	O _{nuc}	S	O _{lg}
4-chloro-3-nitro	-1.138291	1.236014	-0.564708
4-nitro	-1.139127	1.250009	-0.560361
2,6-difluoro	-1.136644	1.210623	-0.464085
2-fluoro-4-nitro	-1.140526	1.206306	-0.502166
2,3,4,5,6-pentafluoro	-1.144043	1.084718	-0.393913
3-fluoro-4-nitro	-1.142764	1.240041	-0.545671

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S67. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	O _{nuc}	S	$\mathbf{O}_{\mathbf{lg}}$
4-chloro-3-nitro	-1.049775	1.22034	-0.521161
4-nitro	-1.048017	1.195557	-0.504796
2,6-difluoro	-1.12217	1.205036	-0.437561
2-fluoro-4-nitro	-1.055519	1.124415	-0.423785
2,3,4,5,6-pentafluoro	-1.159782	1.115634	-0.352506
3-fluoro-4-nitro	-1.052143	1.212126	-0.498027

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S68. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
4-chloro-3-nitro	-0.950593	1.076789	-0.408504
4-nitro	-0.959323	1.082878	-0.417571
2,6-difluoro	-1.002794	1.001605	-0.285461
2-fluoro-4-nitro	-0.989268	0.998185	-0.323282
2,3,4,5,6-pentafluoro	-1.004115	1.026607	0.042262
3-fluoro-4-nitro	-1.035300	1.000186	-0.418766

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S69. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	O _{nuc}	S	O _{lg}
4-chloro-3-nitro	-0.94733	1.313362	-0.498923
4-nitro	-0.854524	1.254148	-0.535374
2,6-difluoro	-0.825784	1.061389	-0.11393
2-fluoro-4-nitro	-0.927407	1.060805	-0.306961
2,3,4,5,6-pentafluoro	-0.739404	0.712602	-0.238053
3-fluoro-4-nitro	-0.789773	1.301197	-0.50345

^a Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S70. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.291921	1.096961	-0.387663
TS	-1.111641	1.232147	-0.572697
PS	-0.509717	1.072833	-0.855893
4-nitro	Onuc	S	Olg
RS	-1.296563	1.12486	-0.391163
TS	-1.116133	1.259782	-0.58486
PS	-0.537492	1.114613	-0.804766
2,6-difluoro	O _{nuc}	S	O_{lg}
RS	-1.323328	1.183321	-0.347723
TS	-1.10774	1.19289	-0.471096
PS	-0.605661	1.191238	-0.802531
2-fluoro-4-nitro	O _{nuc}	S	O _{lg}
RS	-1.296515	1.091244	-0.338531
TS	-1.121515	1.219911	-0.527337
PS	-0.582166	1.231353	-0.770628
2,3,4,5,6-pentafluoro	O _{nuc}	S	O_{lg}
RS	-1.307134	1.160055	-0.296363
TS	-1.123791	1.119482	-0.400261
PS	-0.509743	1.102915	-0.782979
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.296716	1.091253	-0.374008
TS	-1.120591	1.231624	-0.559804
PS	-0.578857	1.21737	-0.798075

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S71. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	O _{nuc}	S	$\mathbf{O}_{\mathbf{lg}}$
RS	-1.205177	1.139172	-0.406195
TS	-1.052228	1.154162	-0.505857
PS	-0.50458	1.091234	-0.85603
4-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.135373	1.179743	-0.392427
TS	-1.056234	1.117773	-0.4649
PS	-0.521243	1.113486	-0.801443
2,6-difluoro	Onuc	S	O_{lg}
RS	-1.193485	1.176152	-0.351537
TS	-1.115392	1.211859	-0.463366
PS	-0.529381	1.099076	-0.811984
2-fluoro-4-nitro	O _{nuc}	S	O_{lg}
RS	-1.201943	1.11984	-0.377146
TS	-1.056456	1.065096	-0.405403
PS	-0.501699	1.100824	-0.750857
2,3,4,5,6-pentafluoro	Onuc	S	Olg
RS	-1.219956	1.041389	-0.237303
TS	-1.133838	1.125565	-0.377429
PS	-0.477058	1.01544	-0.741634
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.200008	1.125621	-0.377
TS	-1.068044	1.115811	-0.464594
PS	-0.515291	1.049907	-0.812597

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S72. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.229317	1.041916	-0.341015
TS	-0.906699	1.15772	-0.430702
PS	-0.479935	0.96767	-0.755464
4-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.236077	1.037997	-0.390759
TS	-0.903971	1.094185	-0.427313
PS	-0.903971	1.094185	-0.427313
2,6-difluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.088478	0.971709	-0.220458
TS	-0.946515	0.981219	-0.312967
PS	-0.515885	0.992838	-0.707345
2-fluoro-4-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.085704	0.989754	-0.264487
TS	-0.936568	0.995378	-0.372016
PS	-0.500829	1.017799	-0.776886
2,3,4,5,6-pentafluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.092728	0.966197	-0.002528
TS	-0.919628	0.973341	0.029137
PS	-0.512507	1.054881	-0.696406
3-fluoro-4-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.246425	0.990739	-0.357892
TS	-0.911288	0.975482	-0.438907
PS	-0.602037	1.111286	-0.819751

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S73. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-0.718829	1.146725	-0.413029
TS	-0.818968	1.53004	-0.557081
PS	-0.419947	0.891689	-0.805632
4-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.016168	1.025112	-0.394967
TS	-0.808109	1.375266	-0.539817
PS	-0.551013	0.968566	-0.730409
2,6-difluoro	Onuc	S	\mathbf{O}_{lg}
RS	-0.962349	1.128122	-0.29799
TS	-0.719478	1.129583	-0.187656
PS	-0.49093	1.060843	-0.673744
2-fluoro-4-nitro	O _{nuc}	S	$\mathbf{O}_{ ext{lg}}$
RS	-1.027716	1.108502	-0.489306
TS	-0.794135	1.115757	-0.309453
PS	-0.433804	0.912395	-0.505965
2,3,4,5,6-pentafluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.058844	0.899329	-0.193228
TS	-0.648572	0.903609	0.131355
PS	-0.58977	1.110336	-0.706082
3-fluoro-4-nitro	Onuc	S	$\mathbf{O}_{ ext{lg}}$
RS	-0.976802	1.184277	-0.393949
TS	-0.889096	1.226026	-0.545571
PS	-0.617534	1.044413	-0.770858

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S74. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M11L¹ functional.^a

4-chloro-3-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.283734	1.078308	-0.382041
TS	-1.126065	1.238842	-0.581367
PS	-0.556229	1.119408	-0.845815
4-nitro	Onuc	S	Olg
RS	-1.284482	1.080957	-0.379139
TS	-1.128893	1.244377	-0.588531
PS	-0.585248	1.238508	-0.772942
2,6-difluoro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.325572	1.136336	-0.317996
TS	-1.123921	1.210062	-0.475852
PS	-0.528407	1.121804	-0.783681
2-fluoro-4-nitro	O _{nuc}	S	O _{lg}
RS	-1.277816	1.019658	-0.314991
TS	-1.131816	1.20932	-0.523576
PS	-0.549292	1.10734	-0.737144
2,3,4,5,6-pentafluoro	O _{nuc}	S	O _{lg}
RS	-1.288597	0.996416	-0.243606
TS	-1.126397	1.120806	-0.396262
PS	-0.541094	1.095936	-0.769538
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.285697	1.028887	-0.352591
TS	-1.139186	1.221296	-0.559813
PS	-0.554839	1.120693	-0.780017

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S75. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.193072	1.083588	-0.38828
TS	-1.054268	1.177652	-0.516051
PS	-0.592371	1.058217	-0.851023
4-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.188192	1.032376	-0.357577
TS	-1.048351	1.173881	-0.508858
PS	-0.546385	1.050097	-0.769466
2,6-difluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.227928	1.033377	-0.336466
TS	-1.107014	1.239456	-0.483114
PS	-0.499219	1.156265	-0.795488
2-fluoro-4-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.183884	0.997508	-0.345811
TS	-1.064281	1.138652	-0.434989
PS	-0.604822	1.038779	-0.733007
2,3,4,5,6-pentafluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.224148	0.98398	-0.234458
TS	-1.155153	1.095868	-0.355669
PS	-0.520891	1.03032	-0.724211
3-fluoro-4-nitro	Onuc	S	$\mathbf{O}_{ ext{lg}}$
RS	-1.196171	1.072024	-0.374475
TS	-1.060325	1.167686	-0.493242
PS	-0.574846	1.083251	-0.767394

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S76. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	O _{nuc}	S	O_{lg}
RS	-1.293306	0.996599	-0.396281
TS	-0.869986	1.038718	-0.332873
PS	-0.48212	1.019022	-0.745712
4-nitro	O _{nuc}	S	O_{lg}
RS	-1.247046	0.996753	-0.367373
TS	-0.922275	1.035309	-0.383091
PS	-0.360786	0.822035	-0.70989
2,6-difluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.101469	0.929305	-0.220078
TS	-0.915672	0.973609	-0.273618
PS	-0.625749	1.041767	-0.770563
2-fluoro-4-nitro	O _{nuc}	S	O_{lg}
RS	-1.100258	0.907941	-0.222727
TS	-0.905535	0.953933	-0.305688
PS	-0.520253	0.94726	-0.723689
2,3,4,5,6-pentafluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.082253	0.980383	-0.17232
TS	-0.878166	0.980448	0.092381
PS	-0.50781	0.949684	-0.621905
3-fluoro-4-nitro	Onuc	S	O _{lg}
RS	-1.247119	0.994394	-0.298148
TS	-1.006325	0.933329	-0.364949
PS	-0.610627	1.19919	-0.758327

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S77. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.217712	1.25397	-0.383196
TS	-0.770574	1.310195	-0.37252
PS	-0.563039	1.160276	-0.788853
4-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.195468	0.879597	-0.324804
TS	-0.809259	1.14282	-0.477867
PS	-0.352874	0.977358	-0.666439
2,6-difluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.120235	0.957035	-0.214598
TS	-0.720382	1.157698	-0.205206
PS	-0.550149	0.895955	-0.64519
2-fluoro-4-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.121165	1.002055	-0.311068
TS	-0.850967	1.064396	-0.333301
PS	-0.563774	1.009113	-0.528711
2,3,4,5,6-pentafluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.038878	0.917971	-0.202779
TS	-0.688973	0.802573	0.075625
PS	-0.467841	0.81433	-0.580926
3-fluoro-4-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.120558	1.31893	-0.445532
TS	-0.822024	1.283624	-0.535008
PS	-0.519243	1.116256	-0.766397

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S78. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.278676	1.10438	-0.386967
TS	-1.138291	1.236014	-0.564708
PS	-0.55209	1.113685	-0.868249
4-nitro	Onuc	S	Olg
RS	-1.275519	1.121414	-0.387754
TS	-1.139127	1.250009	-0.560361
PS	-0.558318	1.13009	-0.804851
2,6-difluoro	O _{nuc}	S	O_{lg}
RS	-1.333103	1.171004	-0.332848
TS	-1.136644	1.210623	-0.464085
PS	-0.535889	1.121027	-0.799473
2-fluoro-4-nitro	O _{nuc}	S	O _{lg}
RS	-1.277332	1.055781	-0.330178
TS	-1.140526	1.206306	-0.502166
PS	-0.541	1.090886	-0.761832
2,3,4,5,6-pentafluoro	O _{nuc}	S	O_{lg}
RS	-1.302291	1.047271	-0.27546
TS	-1.144043	1.084718	-0.393913
PS	-0.542495	1.094986	-0.779909
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.281241	1.083053	-0.368749
TS	-1.142764	1.240041	-0.545671
PS	-0.550723	1.110838	-0.79328

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S79. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.183837	1.149404	-0.419296
TS	-1.049775	1.22034	-0.521161
PS	-0.548575	1.033961	-0.855738
4-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.174682	1.064808	-0.358528
TS	-1.048017	1.195557	-0.504796
PS	-0.454976	1.055828	-0.814666
2,6-difluoro	Onuc	S	O_{lg}
RS	-1.235459	1.131061	-0.32058
TS	-1.12217	1.205036	-0.437561
PS	-0.5427	1.143453	-0.770924
2-fluoro-4-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.177047	1.123947	-0.371349
TS	-1.055519	1.124415	-0.423785
PS	-0.525182	1.072611	-0.783297
2,3,4,5,6-pentafluoro	Onuc	S	O_{lg}
RS	-1.230799	1.026602	-0.260471
TS	-1.159782	1.115634	-0.352506
PS	-0.538141	1.114017	-0.737218
3-fluoro-4-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.185341	1.13244	-0.384258
TS	-1.052143	1.212126	-0.498027
PS	-0.545217	1.096529	-0.817359

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S80. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.225708	1.027141	-0.429412
TS	-0.950593	1.076789	-0.408504
PS	-0.596497	1.090874	-0.847179
4-nitro	O _{nuc}	S	O_{lg}
RS	-1.238816	1.009553	-0.39931
TS	-0.959323	1.082878	-0.417571
PS	-0.455648	1.027233	-0.76437
2,6-difluoro	Onuc	S	\mathbf{O}_{lg}
RS	-1.114188	0.938976	-0.195632
TS	-1.002794	1.001605	-0.285461
PS	-0.599429	1.001954	-0.704403
2-fluoro-4-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.110392	0.977804	-0.252159
TS	-0.989268	0.998185	-0.323282
PS	-0.616365	1.168065	-0.781993
2,3,4,5,6-pentafluoro	Onuc	S	O_{lg}
RS	-1.134079	1.010442	0.018025
TS	-1.004115	1.026607	0.042262
PS	-0.511334	1.016364	-0.580361
3-fluoro-4-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.189591	0.934662	-0.309007
TS	-1.0353	1.000186	-0.418766

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S81. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.026154	1.294638	-0.404148
TS	-0.94733	1.313362	-0.498923
PS	-0.604425	0.917057	-0.82233
4-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-0.964724	1.12928	-0.397992
TS	-0.854524	1.254148	-0.535374
PS	-0.621103	1.146464	-0.805452
2,6-difluoro	Onuc	S	\mathbf{O}_{lg}
RS	-0.881376	0.889385	-0.252883
TS	-0.825784	1.061389	-0.11393
PS	-0.556304	1.08863	-0.587597
2-fluoro-4-nitro	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.078287	1.068172	-0.322814
TS	-0.927407	1.060805	-0.306961
PS	-0.607599	1.087578	-0.7628
2,3,4,5,6-pentafluoro	Onuc	S	\mathbf{O}_{lg}
RS	-0.724007	0.746927	-0.156613
TS	-0.739404	0.712602	-0.238053
PS	-0.627537	0.998366	-0.667454
3-fluoro-4-nitro	Onuc	S	\mathbf{O}_{lg}
RS	-1.061803	1.267365	-0.408913
TS	-0.789773	1.301197	-0.50345
PS	-0.467775	0.952009	-0.77534

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the ChelpG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S82. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $\omega B97X-D^3$ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.35	1.71	0.2621	0.5633
4-nitro	2.35	1.71	0.2639	0.5569
2,6-difluoro	2.41	1.70	0.2263	0.5636
2-fluoro-4-nitro	2.38	1.72	0.2496	0.5467
2,3,4,5,6-pentafluoro	2.50	1.70	0.1916	0.5556
3-fluoro-4-nitro	2.38	1.71	0.2529	0.552

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S83. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the ωB97X-D³ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.32	1.72	0.2476	0.549
4-nitro	2.32	1.72	0.2456	0.5485
2,6-difluoro	2.38	1.71	0.2188	0.5496
2-fluoro-4-nitro	2.35	1.72	0.2335	0.5353
2,3,4,5,6-pentafluoro	2.44	1.72	0.2005	0.5381
3-fluoro-4-nitro	2.34	1.72	0.2381	0.5415

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S84. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.31	1.73	0.2211	0.5312
4-nitro	2.30	1.73	0.2242	0.5336
2,6-difluoro	2.34	1.72	0.2088	0.551
2-fluoro-4-nitro	2.36	1.71	0.2039	0.5515
2,3,4,5,6-pentafluoro	2.42	1.73	0.1772	0.5216
3-fluoro-4-nitro	2.30	1.72	0.226	0.5462

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S85. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the ωB97X-D³ functional.^a

Water Molecules	ecules S-O _{nuc} Distance S-O _{lg} Distance		S-O _{nuc} BO	S-O _{lg} BO	
4-chloro-3-nitro	2.26	1.73	0.2475	0.5495	
4-nitro	2.26	1.73	0.2506	0.5523	
2,6-difluoro	2.29	1.73	0.2207	0.5456	
2-fluoro-4-nitro	2.31	1.73	0.2264	0.5356	
2,3,4,5,6-pentafluoro	2.33	1.74	0.207	0.5322	
3-fluoro-4-nitro	2.26	1.73	0.2475	0.5495	

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S86. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M11L¹ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.31	1.69	0.2428	0.5515
4-nitro	2.31	1.70	0.2543	0.532
2,6-difluoro	2.35	1.68	0.2196	0.554
2-fluoro-4-nitro	2.34	1.70	0.2327	0.5274
2,3,4,5,6-pentafluoro	2.41	1.68	0.193	0.5462
3-fluoro-4-nitro	2.33	1.70	0.2408	0.5268

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S87. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.29	1.70	0.2466	0.536
4-nitro	2.30	1.70	0.2412	0.5261
2,6-difluoro	2.32	1.69	0.2294	0.5407
2-fluoro-4-nitro	2.32	1.71	0.231	0.5176
2,3,4,5,6-pentafluoro	2.37	1.69	0.2087	0.5316
3-fluoro-4-nitro	2.31	1.71	0.2377	0.5171

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S88. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.26	1.71	0.2249	0.5191
4-nitro	2.26	1.71	0.2234	0.5166
2,6-difluoro	2.28	1.69	0.2208	0.5397
2-fluoro-4-nitro	2.31	1.69	0.2116	0.5347
2,3,4,5,6-pentafluoro	2.34	1.70	0.1947	0.5122
3-fluoro-4-nitro	2.29	1.71	0.2175	0.5171

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S89. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.22	1.72	0.2459	0.5249
4-nitro	2.22	1.72	0.2432	0.5151
2,6-difluoro	2.23	1.71	0.2311	0.5246
2-fluoro-4-nitro	2.26	1.71	0.2314	0.5172
2,3,4,5,6-pentafluoro	2.25	1.72	0.2213	0.513
3-fluoro-4-nitro	2.23	1.71	0.2377	0.54

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S90. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M062X⁴ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.39	1.69	0.2314	0.5774
4-nitro	2.39	1.69	0.2306	0.5775
2,6-difluoro	2.44	1.69	0.196	0.5769
2-fluoro-4-nitro	2.41	1.69	0.2203	0.5659
2,3,4,5,6-pentafluoro	2.47	1.70	0.1949	0.5604
3-fluoro-4-nitro	2.40	1.69	0.2266	0.5701

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S91. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{nuc} Distance S-O _{lg} Distance S-O _{nu}		S-O _{lg} BO
4-chloro-3-nitro	2.35	1.70	0.2195	0.5732
4-nitro	2.35	1.70	0.2173	0.5692
2,6-difluoro	2.40	1.69	0.2047	0.577
2-fluoro-4-nitro	2.38	1.70	0.2041	0.5583
2,3,4,5,6-pentafluoro	2.45	1.69	0.1841	0.5703
3-fluoro-4-nitro	2.36	1.70	0.2125	0.5659

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S92. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.33	1.71	0.1936	0.553
4-nitro	2.31	1.71	0.2027	0.5577
2,6-difluoro	2.36	1.70	0.1882	0.5676
2-fluoro-4-nitro	2.37	1.69	0.1855	0.5679
2,3,4,5,6-pentafluoro	2.42	1.71	0.1609	0.5367
3-fluoro-4-nitro	2.33	1.70	0.1979	0.5643

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S93. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.29	1.69	0.2281	0.5897
4-nitro	2.26	1.7	0.2308	0.5915
2,6-difluoro	2.32	1.70	0.1921	0.5599
2-fluoro-4-nitro	2.35	1.7	0.1936	0.5551
2,3,4,5,6-pentafluoro	2.34	1.71	0.1888	0.5625
3-fluoro-4-nitro	2.26	1.7	0.2228	0.5915

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S94. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $\omega B97X$ -D³ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.04	1.62	0.0037	0.6738
TS	2.35	1.71	0.2621	0.5633
PS	1.59	5.96	0.763	0.0001
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.87	1.61	0.0059	0.6746
TS	2.35	1.71	0.2639	0.5569
PS	1.59	3.99	0.7569	0.0007
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.70	1.62	0.0032	0.6669
TS	2.41	1.70	0.2263	0.5636
PS	1.59	4.62	0.7485	0.0005
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.90	1.62	0.0059	0.66
TS	2.38	1.72	0.2496	0.5467
PS	1.59	4.10	0.7539	0.0006
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.26	1.63	0.0036	0.6431
TS	2.50	1.70	0.1916	0.5556
PS	1.59	4.95	0.7576	0.0003
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.87	1.62	0.0059	0.666
TS	2.38	1.71	0.2529	0.552
PS	1.59	4.18	0.7542	0.0005

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S95. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.58	1.62	0.0016	0.676
TS	2.32	1.72	0.2476	0.549
PS	1.59	4.62	0.7432	0.0002
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.62	1.61	0.0013	0.7122
TS	2.32	1.72	0.2456	0.5485
PS	1.59	4.72	0.7438	0.0002
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.48	1.62	0.0097	0.6722
TS	2.35	1.70	0.2195	0.5732
PS	1.59	3.42	0.7332	0.0037
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.60	1.62	0.0017	0.6573
TS	2.35	1.72	0.2335	0.5353
PS	1.59	4.72	0.7458	0.0002
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.88	1.64	0.0066	0.631
TS	2.44	1.72	0.2005	0.5381
PS	1.59	4.65	0.7496	0.0002
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.62	1.62	0.0017	0.6655
TS	2.34	1.72	0.2381	0.5415
PS	1.59	3.88	0.7551	0.0008

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S96. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.67	1.61	0.0004	0.6712
TS	2.31	1.73	0.2211	0.5312
PS	1.55	4.41	0.8323	0.0003
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.39	1.61	0.0003	0.6907
TS	2.30	1.73	0.2242	0.5336
PS	1.45	1.59	0.7446	0.0008
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.80	1.63	0.0055	0.6457
TS	2.34	1.72	0.2088	0.551
PS	1.56	4.56	0.8262	0.0003
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.69	1.63	0.0077	0.6427
TS	2.36	1.71	0.2039	0.5515
PS	1.56	4.67	0.8203	0.0002
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.72	1.64	0.0072	0.6151
TS	2.42	1.73	0.1772	0.5216
PS	3.72	1.64	0.0072	0.6151
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.68	1.62	0.0005	0.6722
TS	2.30	1.72	0.226	0.5462
PS	1.48	4.73	1.0626	0.0001

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S97. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.41	1.61	0.0005	0.6994
TS	2.26	1.73	0.2475	0.5495
PS	1.59	4.54	0.7378	0.0003
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.08	1.60	0.0004	0.719
TS	2.26	1.73	0.2506	0.5523
PS	1.48	4.40	1.0432	0.0006
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.63	1.61	0.0001	0.6893
TS	2.29	1.73	0.2207	0.5456
PS	1.58	4.6	0.768	0.0003
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.21	1.62	0.0002	0.6765
TS	2.31	1.73	0.2264	0.5356
PS	1.59	3.52	0.7492	0.0021
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-Olg BO
RS	4.57	1.63	0.0006	0.6744
TS	2.33	1.74	0.207	0.5322
PS	1.47	5.5	1.1459	0.0001
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.41	1.61	0.0005	0.6994
TS	2.26	1.73	0.2475	0.5495
PS	1.59	4.54	0.7378	0.0003

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S98. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M11L¹ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.76	1.59	0.0032	0.6809
TS	2.31	1.69	0.2428	0.5515
PS	1.56	3.77	0.7547	0.0017
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.79	1.59	0.0027	0.6817
TS	2.31	1.70	0.2543	0.532
PS	1.56	4.09	0.7523	0.0012
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.39	1.59	0.0012	0.6351
TS	2.35	1.68	0.2196	0.554
PS	1.56	3.59	0.7462	0.0022
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.71	1.60	0.0036	0.6697
TS	2.34	1.70	0.2327	0.5274
PS	1.56	3.81	0.757	0.0011
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.82	1.61	0.0013	0.6044
TS	2.41	1.68	0.193	0.5462
PS	1.56	3.76	0.7542	0.0015
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.77	1.59	0.0026	0.684
TS	2.33	1.70	0.2408	0.5268
PS	1.56	3.86	0.7573	0.0011

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S99. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.76	1.59	0.0048	0.6801
TS	2.29	1.70	0.2466	0.536
PS	1.56	3.78	0.7415	0.0018
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.75	1.59	0.0047	0.6768
TS	2.30	1.70	0.2412	0.5261
PS	1.56	3.82	0.737	0.0016
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.36	1.59	0.002	0.6482
TS	2.32	1.69	0.2294	0.5407
PS	1.56	3.64	0.7284	0.0022
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.73	1.60	0.0044	0.6678
TS	2.32	1.71	0.231	0.5176
PS	1.56	3.83	0.7455	0.0012
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.71	1.61	0.0119	0.6278
TS	2.34	1.70	0.1947	0.5122
PS	1.52	4.63	0.8365	0.0002
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.72	1.59	0.005	0.6763
TS	2.31	1.71	0.2377	0.5171
PS	1.56	3.81	0.7411	0.0018

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S100. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.09	1.59	0.0006	0.6782
TS	2.26	1.71	0.2249	0.5191
PS	1.55	3.95	0.7735	0.0015
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.03	1.59	0.0005	0.676
TS	2.26	1.71	0.2234	0.5166
PS	1.56	3.96	0.7451	0.0012
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.84	1.59	0.0091	0.6506
TS	2.28	1.69	0.2208	0.5397
PS	1.54	3.73	0.791	0.0017
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.77	1.59	0.0015	0.6547
TS	2.31	1.69	0.2116	0.5347
PS	1.54	3.59	0.7975	0.0016
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.71	1.61	0.0119	0.6278
TS	2.34	1.70	0.1947	0.5122
PS	1.52	4.63	0.8365	0.0002
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.66	1.60	0.0018	0.655
TS	2.29	1.71	0.2175	0.5171
PS	1.56	4.54	0.7564	0.0005

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S101. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.27	1.59	0.0008	0.6709
TS	2.22	1.72	0.2459	0.5249
PS	1.46	4.8	0.9992	0.0002
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.81	1.58	0.0001	0.6991
TS	2.22	1.72	0.2432	0.5151
PS	1.46	4.6	0.9886	0.0004
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.89	1.59	0.0005	0.6649
TS	2.23	1.71	0.2311	0.5246
PS	1.56	3.62	0.7711	0.0032
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.39	1.6	0.003	0.6371
TS	2.26	1.71	0.2314	0.5172
PS	1.55	3.64	0.7785	0.001
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.77	1.62	0.0008	0.6486
TS	2.25	1.72	0.2213	0.513
PS	1.56	3.93	0.768	0.0021
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.97	1.6	0.0003	0.6687
TS	2.23	1.71	0.2377	0.54
PS	1.47	4.29	1.0008	0.0009

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S102. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.61	1.61	0.0097	0.6705
TS	2.39	1.69	0.2314	0.5774
PS	1.59	3.58	0.752	0.0022
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.53	1.61	0.0112	0.6722
TS	2.39	1.69	0.2306	0.5775
PS	1.59	3.63	0.7535	0.0014
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.31	1.62	0.0042	0.6624
TS	2.44	1.69	0.196	0.5769
PS	1.59	3.28	0.7421	0.0047
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.54	1.62	0.0113	0.6576
TS	2.41	1.69	0.2203	0.5659
PS	1.59	3.56	0.7545	0.0016
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.70	1.64	0.0073	0.6398
TS	2.47	1.70	0.1949	0.5604
PS	1.59	3.49	0.7503	0.0023
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.57	1.61	0.0105	0.6633
TS	2.40	1.69	0.2266	0.5701
PS	1.59	3.59	0.7545	0.0016

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S103. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.8	1.61	0.0066	0.6703
TS	2.43	1.67	0.2193	0.587
PS	4.9	1.55	0.8516	0.0003
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.52	1.61	0.0085	0.6682
TS	2.35	1.70	0.2173	0.5692
PS	1.59	3.60	0.7435	0.0018
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.29	1.62	0.018	0.6546
TS	2.40	1.69	0.2047	0.577
PS	1.59	3.20	0.7509	0.0052
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.36	1.62	0.0133	0.655
TS	2.38	1.70	0.2041	0.5583
PS	1.58	3.51	0.7607	0.0019
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.35	1.63	0.0183	0.638
TS	2.45	1.69	0.1841	0.5703
PS	1.59	3.36	0.7575	0.0032
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.47	1.62	0.0097	0.6651
TS	2.36	1.70	0.2125	0.5659
PS	1.58	3.58	0.7603	0.0017

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S104. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.27	1.61	0.0009	0.6795
TS	2.33	1.71	0.1936	0.553
PS	1.50	4.64	0.9739	0.0002
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.09	1.61	0.0005	0.696
TS	2.31	1.71	0.2027	0.5577
PS	1.59	3.77	0.7513	0.0013
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.19	1.63	0.0181	0.6397
TS	2.36	1.70	0.1882	0.5676
PS	1.60	3.17	0.7007	0.0065
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.19	1.63	0.0188	0.6392
TS	2.37	1.69	0.1855	0.5679
PS	1.48	4.72	1.0595	0.0002
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-Olg BO
RS	2.98	1.66	0.0297	0.5907
TS	2.42	1.71	0.1609	0.5367
PS	1.58	3.47	0.7484	0.0026
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.22	1.62	0.0049	0.6592
TS	2.33	1.70	0.1979	0.5643
PS	1.59	3.47	0.7329	0.0021

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S105. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.2	1.62	0.0037	0.6745
TS	2.29	1.69	0.2281	0.5897
PS	1.48	4.59	1.1217	0.0003
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.16	1.62	0.004	0.6855
TS	2.26	1.7	0.2308	0.5915
PS	1.48	3.99	1.1272	0.0013
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.32	1.62	0.0027	0.6531
TS	2.32	1.70	0.1921	0.5599
PS	1.59	3.20	0.7749	0.0058
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.13	1.62	0.0062	0.6462
TS	2.35	1.7	0.1936	0.5551
PS	1.49	4.07	1.0766	0.0006
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.08	1.64	0.0074	0.6401
TS	2.34	1.71	0.1888	0.5625
PS	1.48	3.86	1.1097	0.0008
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.28	1.62	0.0026	0.6761
TS	2.26	1.7	0.2228	0.5915
PS	1.49	4.88	1.0429	0.0004

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Cartesian Coordinates of Optimized Stationary Points

Due to the large number of stationary points involved, Cartesian coordinates of all stationary points have been presented as a separate zip file.

Supplementary References

- 1. Peverati, R.; Truhlar, D. G., M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. *J. Phys. Chem. Lett.* **2012**, *3*, 117-124.
- 2. Younker, J. M.; Hengge, A. C., A Mechanistic Study of the Alkaline Hydrolysis of Diaryl Sulfate Diesters. *J. Org. Chem.* **2004**, *69*, 9043-9048.
- 3. Chai, J.-D.; Head-Gordon, M., Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615-6620.
- 4. Zhao, Y.; Truhlar, D. G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.
- 5. Breneman, C. M.; Wiberg, K. B., Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. *J. Comp. Chem.* **1990**, *11*, 361-373.
- 6. Hine, J., Rate and Equilibrium in the Addition of Bases to Electrophilic Carbon and in S_N1 Reactions. *J. Am. Chem. Soc.* **1971**, *93*, 3701-3708.
- 7. Wiberg, K. B., Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. *Tetrahedron* **1968**, *24*, 1083-1096.
- 8. Foster, J. P.; Weinhold, F., Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980, 102, 7211-7218.

Other files

CartesianCoordinates.zip (383.70 KiB)

view on ChemRxiv • download file