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Abstract:

Chemical synthesis of polypeptides involves stepwise formation of amide bonds on an immobilized solid
support. The high yields required for efficient incorporation of each individual amino acid in the growing
chain are often impacted by sequence-dependent events such as aggregation. Here we apply deep
learning over ultraviolet-visible (UV-Vis) analytical data collected from 35,485 individual
fluorenylmethyloxycarbonyl (Fmoc) deprotection reactions performed with an automated fast-flow
peptide synthesizer. The integral, height and width of these time-resolved UV-Vis deprotection traces
indirectly allow for analysis of the iterative amide coupling cycles on resin. The computational model maps
structural representations of amino acids and peptide sequences to experimental synthesis parameters
and predicts the outcome of deprotection reactions with less than 4% error. Our deep learning approach
enables experimentally-aware computational design for prediction of Fmoc deprotection efficiency and
minimization of aggregation events, building the foundation for real-time optimization of peptide
synthesis in flow.



Introduction:

Amide bonds play a central role in nature. They covalently link amino acids in the peptides and proteins
involved in every aspect of life. In addition, amide bond formation is the most frequently used reaction in
medicinal chemistry and its preponderance is still increasing.(1) It was used at least once in ~60% of the
medicinal chemistry literature in 2014, and in ~7.2% of these reports amide bond formation occurred in
the context of amino acid couplings in solid phase peptide synthesis (SPPS).(1) In SPPS, multiple iterations
of amino acid couplings and deprotections on a solid support enable elongation of a polypeptide chain.(2)
By contrast to recombinant expression, SPPS allows for the incorporation of a virtually unlimited number
of non-canonical amino acids and site-directed mutations.(3) Synthetic peptides and proteins obtained
with SPPS technology are therefore of great therapeutic interest, but low atom-economy and secondary
events on resin, such as aggregation and aspartimide formation, limit their current application.(4, 5) The
availability or routine computational tools to predict and correct these events in real-time would be a
major breakthrough in improving overall synthesis quality of polypeptides.

Method development and optimization of organic reactions is labor-intensive and requires multiple
rounds of trial-and-error experimentation.(6) Flow chemistry offers the possibility to automate these
processes and often improves reaction outcomes relative to batch methods due to increased heat and
mass transfer. Automation of chemical reactions therefore leads to enhanced productivity and high
reproducibility.(7, 8) For example, a modular synthesis platform developed by Burke and co-workers
allows for the rapid synthesis and purification of various small molecules using bifunctional N-
methyliminodiacetic acid (MIDA) boronates as building blocks for Suzuki-Miyaura cross-couplings.(9, 10)
In addition to in-line purification, data collection from continuous flow systems is enabled by in-line
analysis, which increases mechanistic understanding through real-time monitoring of intermediates and
by-products in response to variation of synthesis parameters.(11) Building on similar concepts, Jamison
and co-workers developed a compact, fully-integrated and easily reconfigurable, benchtop system that
enables automated optimization of various chemical transformations using flow chemistry.(6) In addition,
we recently demonstrated the advantages of automated fast-flow peptide synthesis (AFPS) over
traditional SPPS techniques in terms of higher synthetic fidelity, increased length of the peptide chains
accessible, and significant decrease in synthesis time.(12)

Advancements in computational methods allow for the investigation of large-scale problems and
previously inaccessible correlations in organic reaction methodology. Improved algorithms can predict
reactivity and plan retrosynthetic routes from data.(13-16) Furthermore, their combination with state-
of-the-art automated experimental platforms can bring us closer to autonomous discovery. The Jensen
and Jamison groups developed a robotic flow chemistry platform able to plan, execute and evaluate new
reactions.(17) They demonstrated the capabilities of this setup by designing and conducting the synthesis
of multiple drug-like molecules. Because training data on flow chemistry is scarce, this approach requires
pre-processing batch synthesis data into equivalent flow parameters. To circumvent this issue and directly
build upon batch chemistry-based literature, Cronin and co-workers developed the Chemputer, an
automated synthesis platform that mimics batch synthesis.(18) Ada is another example of self-driving lab
for accelerated development of thin-films, based on ChemOS,(19) a software package for autonomous
discovery, and Phoenics,(20) a Bayesian optimization algorithm.(21) Additional efforts have utilized data-
driven approaches to predict products and reaction types from reactants and reagents,(13) and optimize
retrosynthetic routes using Monte Carlo tree search.(22) There have been attempts to optimize reaction
conditions using reinforcement learning and machine learning.(23, 24) Although these approaches are
able to predict retrosynthesis routes and optimize the conditions of reactions one at a time, prediction
and optimization of overall synthetic yield for arbitrary new reactions remains an open challenge.



Access to high-quality, interpretable and standardized datasets suitable for machine learning is a current
bottleneck as the literature on chemical reactions is often unstructured, exists in multiple formats,
sometime behind paywalls, and was collected on different reaction setups.(25) In addition, the published
literature contains partially irreproducible data, which are difficult to identify a priori.(26) Learning based
on data generated from automated experimental platforms could significantly improve predictions of
synthesis outcomes, but these data sets are usually limited in size.

Here, we demonstrate that an in-line collected large set of high-quality peptide synthesis data can be
leveraged to train effective deep learning approaches that predict reaction yield and in silico optimization
of synthesis parameters. A better understanding of individual reactions on resin could further improve
the synthetic process.(27) However, there are 400 possible binary couplings and 20" such possible
coupling steps for an n-amino acid polypeptide, considering only the canonical, proteinogenic amino
acids. The growth of the peptide chain on resin is complicated by additional sequence-dependent events,
such as aggregation.(28-30) Predictions of interactions that cause aggregation and strategies to prevent
them are described in the literature,(31-33) but the molecular and structural factors affecting aggregation
during synthesis on the solid support are not fully elucidated and therefore difficult to predict. Another
layer of complexity is added by the incorporation of non-canonical amino acids or building blocks with
uncommon protecting groups.

Automated fast-flow peptide synthesizer (AFPS) gives access to highly reproducible data. Peptide
synthesis data was generated on a fully automated fast-flow peptide synthesizer (AFPS) developed in our
laboratory which forms amide bonds orders of magnitude faster than commercial instruments (Fig.
1A).(34, 35) With this machine, deprotection of fluorenylmethyloxycarbonyl (Fmoc) groups is generally
guantitative and the resulting byproduct dibenzofulvene can be detected using an in-line UV-Vis detector
(310 nm).(36, 37) This data can be used to indirectly obtain information on the individual stepwise
coupling cycles and the overall synthesis performance. In contrast to conventional peptide synthesizers,
automated flow synthesis yields additional direct information on the Fmoc-deprotection steps by
generating a time-dependent UV-Vis trace.(38, 39) The integral and shape (width, height) of these signals
can be used to identify mass transfer issues during deprotection, which are interpreted as aggregation on
resin.
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Figure 1. Deep learning enables prediction and optimization of fast-flow peptide synthesis. A. An automated fast-flow peptide
synthesizer is used for the synthesis of peptides. Each synthesis run delivers UV-Vis traces for all coupling and deprotection
chemical steps. B. Deep learning is done over parameters — integral, width, height and difference between width and height —
calculated from the deprotection steps in the experimental data. The model predicts the relative change of deprotection peaks,
as a proxy for synthesis success, and aggregation events, based on the difference between width and height. The difference is
calculated by subtracting the percentage values of normalized height from normalized width. C. The model is used to predict
relative change in deprotection peaks and aggregation for all single-point mutations of the wild-type sequence. Mutants
predicted to be less aggregating and more aggregating than the wild-type sequence are experimentally synthesized and validated.

Over the past years we have systematically improved synthesis parameters and developed an amino acid-
specific recipe.(27) First, we screened various solvents, synthesis temperatures, coupling and
deprotection bases, coupling agents and flow rates. We then identified amino acids with low coupling
efficiency and optimized coupling times and reagents. Using this approach, we defined a recipe which now
allows for the routine synthesis of polypeptides of length corresponding to single domain proteins (up to
164 amino acids in length).(27) We envisaged that automated flow peptide synthesis could be improved
even further if we had a better understanding of sequence-dependent events, e.g., aggregation, that
occur during the process.

The dataset obtained from our optimization experiments contains 35,427 individual, highly reproducible
deprotection steps. Each reaction step is defined by the pre-synthesized sequence on the resin (termed
'pre-chain'), the features of the incoming amino acid and a set of synthesis parameters. There are 17,459
unique reaction steps, after removing outliers and averaging over duplicates (Sl Fig. 1, Sl Section 3.1). The
integral, height and width of deprotection traces were normalized to the first coupling step. Across all
unique Fmoc-deprotection steps, the average relative integral was 89% and the reproducibility was within
10%. From the statistical analysis of this high-fidelity data, we identified particularly challenging binary
coupling steps and looked for solutions to address them. The influence of sequence-specific interactions



on peptide synthesis cannot be addressed through human intuition alone due to the large combinatorial
design space and overwhelming dataset size. In order to understand and predict how peptide sequence
affects synthetic performance we turned to deep-learning algorithms (Fig. 1B).

Deep learning on high-quality synthesis data allows for prediction of UV-Vis deprotection traces.

Monomers in the pre-chain and incoming amino acids were represented using Extended-Connectivity
Fingerprints (ECFP, Fig. 2A).(40) This topological representation encodes the molecular graph into a bit-
vector of desired length where every feature represents one or more particular substructures. Common
substructures such as the amide backbone, C-terminal carboxy groups, and N-terminal amines appear in
most bit-vectors, while unique substructures in the side-chains distinguish the amino acid bit-vectors from
one another (SI Appendix 1).

All amino acids were represented with explicit protecting groups, since these can influence their reactivity
and physicochemical properties such as polarity. In the case of incoming amino acid, fingerprints were
generated from molecules with Fmoc protecting groups. The pre-chain was featurized as a row matrix of
ECFP bit-vectors with free amine groups (Fig. 2B). The peptide primary structure is thus captured by the
sequence of fingerprints, and each monomer chemistry by the ECFP bit-vector.

A deep neural network model was trained over the peptide representation and the synthesis parameters
to predict the integral, height and width of UV-Vis Fmoc deprotection traces normalized to the first
coupling in the peptide synthesis. These variables quantify the success of each reaction step (Fig. 2C). The
reactive structures are represented by the pre-chain row matrix and the incoming amino acid bit-vector.
The synthesis parameters include categorical and numerical features: reactor temperature, flow rate and
coupling-deprotection variables — coupling agent, pre-activation loop temperature, coupling and
deprotection strokes. The model architecture first processes individual variables, then concatenates the
outputs of the individual representation-learning layers, followed by fully-connected layers. This allows
the model to process and transform every variable in an optimal way before combining them.

The model was trained and validated on a random 70:30 split of the available data. For integral, height
and width, the prediction errors on held out test data are under 0.1 RMSE (6% relative to the range of the
training data, Fig. 2D, SI Fig. 2, Sl Table 1). For GLP-1 and other test sequences held out from the training
dataset, the UV-Vis traces predicted using the deep learning model match the experimentally obtained
traces within said uncertainty (Fig. 2E, Sl Fig. 2).
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Figure 2. Deep learning predicts near-accurate UV-Vis Fmoc deprotection traces. A. Amino acids are represented using
topological fingerprints. Fmoc- and side-chain protected representations are used for incoming amino acids, while amino acids
in the pre-chain are represented with only side-chain protection. Amino acid = black, Fmoc = blue, active ester = grey, side-chain
protecting group = red. B. The sequence on the resin is represented as a matrix of side-chain protected amino acid fingerprints.
The order of amino acids in the matrix is same as the order in the sequence. C. Schematic of the machine learning model shows
the multiple input and output variables. In the input, pre-chain and incoming amino acid representations featurize the chemistry
of the reaction, while other variables featurize the synthesis parameters — coupling agent, number of coupling strokes,
temperature of coupling, number of deprotection strokes, flow rate and temperature of reactor. In the output, integral of the
Fmoc deprotection bands, and their height, width and difference are used to train the model. The model was trained on 70% of
the dataset and its performance was evaluated on the remaining 30% of the dataset. D. The model predicts the integral for a
particular reaction step with error under 13% of the data range on the validation dataset. E. Integral, height and width obtained
from the model and experimental UV-Vis deprotection traces are overlaid for GLP-1 synthesis. The predictions from the model
match the experimental values within the error range. GLP-1 was not part of the training dataset.

Deep learning predicts and enables interpretation of aggregation.

We predicted sequence-dependent aggregation using our model. The analysis of previously collected
experimental data (27) suggests that certain sequence-dependent events, which are commonly defined
as aggregation, result in poor synthetic outcome. These are characterized with mass transfer issues and
slow reaction kinetics that are reflected in flattened, wider UV-Vis deprotection peaks. We use the
difference of normalized width minus normalized height (W-H) to quantify such events, and define
aggregation to have occurred when this difference is greater than 0.2 for a reaction step. We used the
model trained above to predict W-H difference directly. The model was able to predict W-H difference on
held out data with a RMSE of 0.13 (5.4% relative to the data range) (Sl Fig. 2C) which allows to identify
aggregation events. For GLP-1, which was not a part of the training dataset, the model is accurately able
to identify the aggregating step, i.e., the addition of Alal8 (A18) (Fig. 3A).

In order to interpret the decision-making process of the neural network, we trained a minimal model. (41)
This model was limited to pre-chain and incoming amino acid as input and difference between normalized
width and height as output. By taking the normalized gradient of the neural-network predictions with
respect to each bit-vector index of the input matrix, it is possible to quantify the contribution of the
particular index towards aggregation. Representing these values as a heatmap allows visualization of the
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decision-making process of the model, and enables identification of features in the input representation
which are responsible for aggregation.

We visualized the gradient activation map at the onset of aggregation for GLP-1 (Fig. 3B). The
substructures by amino acid are ranked from the ones contributing most (red) to least (blue) towards
aggregation. Averaged over the fingerprint indices, the model predicts Arg30 (R30) is the amino acid
contributing the most to aggregation, followed by Trp25 (W25) and Lys28 (K28) (Fig. 3C). Noteworthy, the
amino acids that impacted aggregation the most were far removed from the point of aggregation. Bulkier
side-chain protecting groups such as the aromatic moieties in arginine (Arg) and tryptophan (Trp), and the
tert-butyl protecting group in lysine (Lys) are the most activated substructures by amino acid respectively
(Fig. 3D). Substructures common to all amino acids are always present in the fingerprints and were
excluded from the substructure activation analysis.

To gain further insight on how the model learns aggregation, we interrogated the predictions of the
aggregation model using a reference dataset of 8,441 natural proteins with 50 amino acids or fewer from
the Protein Data Bank (accessed on April 17, 2020).(42) Similar trends were obtained in the activation
analysis of aggregation (SI Fig. 7). 45% of the sequences were predicted to be aggregating. Amino acids in
the pre-chain with aryl groups and bulkier side-chain protecting groups were found to be most activated
for aggregation (SI Fig. 10, Sl Table 4). On average, amino acids closest to the C-terminus are predicted to
contribute the most towards aggregation (SI Fig. 11). The relative contribution from subsequent amino
acids decreases the further their position is in the chain. The results delivered by our model suggest that
aromatic and bulky side-chain protecting groups are a main pre-chain structural determinant of
aggregation.

Deep learning model allows for sequence optimization of ‘difficult peptides’ using single-point
mutations.

Single-site mutagenesis coupled with interpretation of gradient activation maps enable optimization of
synthesis performance (Fig. 3C). All possible single-point mutants of wild-type GLP-1 and JR-10 were
computationally enumerated and ranked by the aggregation model. The selection of least aggregating
sequences was based on predicted aggregation and gradient activation maps. We observed that in most
cases the mutations of amino acids which were most activated for aggregation (Fig. 3C) led to a decrease
in the predicted aggregation.
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Figure 3. The deep learning model predicts, interprets and optimizes aggregation. A. Predicted difference (width-height) is
overlaid on the calculated difference from the experimentally obtained UV-Vis deprotection trace for GLP-1. The predicted
difference is within the error for the experimentally observed difference. Aggregation is defined as the step where the difference
between width and height is greater than 20%. B. Positive activation gradient map for GLP-1 pre-chain prior to the addition of
third Ala (A18). The mean activation values for individual amino acids and bit-vectors are shown along respective axes. C. Positive
activation gradient maps averaged over fingerprint indices for GLP-1 and JR-10 mutants show a sharp decrease in aggregation
from the negative control (GLP-1: R30S, JR-10: I12L) to the wild-type and the other mutants. The pre-chains considered in the
analysis are for the known aggregating regions in GLP-1 (addition of third Ala, A18) and JR-10 (addition of second Thr, T4). The
most activated amino acids are Arg, Trp and Lys in WT GLP-1, and Met and lle in WT JR-10. D. Most activated substructures by
amino acid for GLP-1 are shown. Amino acids with aryl groups and bulkier side-chain protecting groups are found to be most
activated. The analysis excluded substructures in the amino acid scaffold, both amide backbone and side chain native to the
respective amino acid. The red dot is the node atom and the black bonds/atoms represent the topological exploration of n-
nearest neighbors. E. Calculated difference from the experimental synthesis run for predicted sequence analogues of WT GLP-1
and WT JR-10. The analogues are predicted single point mutations of the sequence — K28R, W25P and W25H for GLP-1, and M10K,
I19P and I9R for JR-10. The predicted negative controls are R30S for GLP-1 and I9L for JR-10. The predicted sequence analogues,
except negative controls, are less aggregating at the respective step. Negative control for GLP-1 is more aggregating than GLP-1
itself. Negative control for JR-10 is less aggregating than JR-10, but more aggregating than the other analogues. F. Predicted GLP-
1 and JR-10 mutants which were experimentally validated are listed. All mutants predicted using the model contain the mutation
before the aggregating step, i.e., addition of third Ala for GLP-1, and addition of second Thr for JR-10. The in silico generation of
mutants had no such constraints.

From the list of mutants, we selected four sequences predicted to be less aggregating and one sequence
predicted to be more aggregating than the wild type sequence to evaluate our predictions experimentally
(Fig. 3E, F). The experimental traces for the difference between normalized width and height for the
mutants, including the negative control, matched the predictions of the model within 5% error (RMSE:
0.13). This outcome validates the accuracy of the model in minimizing aggregation and its robustness in
predicting negative controls.



The model was trained on a representation that is transferable across chemical structures and we
therefore determined if it would be able to predict synthesis outcome for unseen building blocks. We
therefore synthesized GLP-1 with backbone-modified glycine and pseudoprolines, both types of building
blocks are commonly used to avoid aggregation (Sl Table 3). For the pseudoproline building blocks Fmoc-
Ser(t-Bu)-Ser(WMeMepro)-OH and Fmoc-Phe-Thr(WMeMepro)-OH, the synthesis outcome was predicted
with high accuracy, whereas prediction for Fmoc-(DMB)Gly-OH building blocks was less accurate. These
experiments show the potential but also the limitations of the model, as training on more diverse building
blocks will likely improve the ability to predict synthesis outcome for completely new building blocks in
the future.

Statistical analysis of AFPS and PDB data sets

Statistical analysis over the entire AFPS dataset can inform future optimization of fast-flow peptide
synthesis (Fig. 4A-C). When we compared different synthesis parameters for all amino acid couplings
combined, we noticed that PyAOP shows improved synthesis outcomes when compared to the related
coupling agent HATU. In addition, extended coupling times also had a positive effect on the synthesis. The
overall differences for the coupling parameters are small, but these minor effects add up to have a
potentially major detrimental impact in the synthesis of long peptides, where >99% coupling efficiency
per incorporated amino acid is crucial.

Amino acids coupled under identical coupling conditions (single coupling with HATU) show diverse
histogram profiles for their relative change in deprotection peak integrals (Sl Fig. 3). Some residues, such
as glycine, leucine and lysine show narrow distributions around 100%, whereas alanine, cysteine,
histidine, asparagine, glutamine, arginine, serine, valine, tryptophan and threonine show broader
distributions. The latter set of residues in comparison to the former set is more prone to reduction in
deprotection yield, and are generally responsible for the overall decrease in synthesis quality. In our
optimized recipe file, all of these residues —except for tryptophan— are already coupled under modified
conditions (SI Fig. 4). To identify additional areas for optimization, we analyzed average coupling
efficiencies for our optimized synthesis recipe (Fig. 4D, SI Fig. 5). It was found that all amino acids couple
with high vyields, however, tryptophan, cysteine, isoleucine and lysine present opportunities for
improvement.

In addition, we found that aggregation is likely to occur at any position of the peptide chain more than 4
residues from the C-terminus, with an increased probability around positions 8 to 15 from the C-terminus
for both experimental AFPS and predicted PDB data sets (SI Fig. 6, 8). For this analysis we compared all
aggregating peptide sequences >20, >25 and >30 amino acids in length to obtain statistical information.
In addition, we also validated that aggregation is generally position-independent, except for the very first
amino acids that are coupled to the solid support (Fig. 4E). Further, the relative distributions of amino
acids in non-aggregating sequences and pre-chains of aggregating sequences were found to be similar (Sl
Fig. 9). We therefore conclude that amide bond formation in flow is amino acid- and sequence-dependent
but generally independent of the position of specific amino acids in the peptide.
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Figure 4. Synthesis data analysis identifies areas for further optimization. Histograms showing the comparative distribution of
the relative change of deprotection peak integrals filtered across the entire reaction step dataset by A. coupling agent (HATU,
PyAOP), B. coupling strokes (Single, Double) and C. coupling of serine from HATU subset with single coupling stroke to HATU
subset with double coupling strokes. The mean value and the distribution as a whole move towards the ideal relative change of
100% in all the latter cases. The integrals were normalized to the integral of the preceding reaction step. An integral greater than
100% only indicates that the present reaction was better than the preceding step. D. Mean values of amino acid-specific
deprotection peak integrals are shown. The integrals are normalized relative to the previous deprotection peak integrals. E. Mean
values of deprotection peak integrals at different positions are shown. Residue position pre-aggregation is same as the position
of the amino acid in the synthesis step. Residue position post-aggregation is the nth synthesis step after the aggregating step.
The analysis is based on the optimized recipe for each individual amino acid, except Trp which needs to be optimized further.

Discussion

Deep learning on an automatically collected analytical data set from an AFPS setup can be used to predict
peptide synthesis and sequence-specific events. Predicting sequence-dependent SPPS events is crucial for
developing more efficient synthesis protocols. Here, we make a first step towards this goal by using
analytical data from 35,427 individual, highly reproducible deprotection steps. Our model is able to
predict the synthesis outcome for sequences which are not part of the training dataset. In addition, the
sequences of aggregation-prone peptides were optimized for minimum aggregation using deep learning.
As a first demonstration, we analyzed the synthesis of GLP-1 and JR-10. We predicted single-point
mutations and experimentally validated improved synthesis outcome as a result of reduced aggregation.
In the future, we intend to extend this to optimize synthetic accessibility and functionality together.

Computational analysis and interpretable deep learning can be used to extract non-obvious or previously
hidden information from a large and complex data set. The general effect of changing key parameters in
the recipe (e.g., coupling agent, coupling strokes, temperature) was obtained from statistical analysis of
the entire data set and areas for additional improvement were identified. Regions prone to aggregation,
which are the source of many deleterious side-reactions, were predicted with high confidence. Statistical
analysis of the experimental AFPS data set and predicted PDB data set furthers the hypothesis that
aggregation occurs with increased probability around the tenth position from the C-terminus,(28)
although we also found aggregation at every other position of the protected peptide chain. We
determined that aggregation does not depend on the position of specific amino acids in the sequence.
We had already observed previously that the onset of aggregation can be shifted by increasing the
synthesis temperature,(27) and here we also demonstrate how a single point mutation far from the actual
predicted location of aggregation onset can obviate aggregation completely.
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Intrigued by these results we strived to decode main contributors to aggregation by understanding how
the model predicts these events. Using gradient activation on the deep learning model we determined
that residue-specific “activators for aggregation” are often found at a location in the peptide chain far
from the actual point of aggregation and close to the C-terminus of the peptide. The latter observation
may be a consequence of SPPS proceeding in all cases from the peptide C-terminus. Interrogation of the
activation maps revealed sequence-specific amino acids or substructures thereof that are most likely to
cause aggregation. We found that aromatic, hydrophobic side-chains and protecting groups such as
2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) and trityl (Trt) increased the probability for
aggregation and Arg(Pbf), Trp(Boc), His(Trt), Asn(Trt) and Cys(Trt) were the main contributors (in
decreasing order of relative contributions). This analysis is in line with reports in the literature stating that
hydrophobic amino acids lead to aggregation.(28, 31) However, we found aryl-containing residues and
protecting groups to be more activating than t-Bu groups or aliphatic amino acids.

The tools we developed here are valuable for de novo computational design and optimization of peptide
sequences, e.g., for personalized medicine. Artificial peptide and protein sequences are designed de novo
to address challenges in medicine and nanotechnology.(43) Most of these biopolymers, however, are
currently produced by recombinant methods. AFPS can significantly expedite and improve the synthesis
quality of these structures, as already demonstrated in the context of tumor neoantigen peptides for
personalized immunotherapy and cell-penetrating peptides.(44—46) In the event of an aggregating
sequence, we demonstrated that single-point mutations can avoid aggregation during synthesis.
Introducing point mutations into peptide and protein sequences is common practice in biology, often to
interrogate function of a specific amino acid. Although it needs to be evaluated if the mutated sequences
retain their biological function, we demonstrate how this approach can be valuable for improving the
quality of peptide synthesis. In future developments, homology search can be integrated in the
optimization process of bioactive peptide and protein chains to inform on mutational tolerance of the
sequence.

This method demonstrates how deep learning can be used to predict and optimize chemical reactions
using automated flow synthesis platforms. The model framework is agnostic of the experimental
instrumentation and can be used in principle for any flow chemistry reaction setup with capability for in-
line analysis. For polymer addition reactions, such as the synthesis of polyglycans or antisense
oligonucleotides, the pre-chain and incoming monomer may be based on the current featurization
framework with appropriate synthesis parameters, and trained on in-line monitoring parameters such as
those obtained using various analytical methods. The model's predictive power is intrinsically linked to
the availability of reproducible, standardized high-quality synthesis data for training. As our data set
continues to grow with every biopolymer that is synthesized on our AFPS systems, we intend to expand
the applicability of our model to additional reactions and building blocks, e.g., non-canonical amino acids
or backbone modifications, as already demonstrated for some new building blocks. In the future, we hope
to make the transition from an amino acid-based recipe to a sequence-dependent recipe wherein each
amino acid is coupled according to its nature and position in the peptide chain. We envision this approach
will ultimately lead to real-time in-line suggestion of synthesis parameters — a principle envisioned by
Erickson as early as 1981.(36)
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Methods

Automated flow peptide synthesis and UV-Vis data collection. All peptides were synthesized on three
automated-flow systems, which were built in the Pentelute lab and were described in detail in previous
publications.(27, 34, 35) The automated set up records amino acid sequence, stock solution type, pump
strokes, flow rate, temperatures in heating loops and at the entrance and exit of the reactor, backpressure
and in line UV-Vis data for every synthesis.

For test syntheses in this manuscript, synthesis conditions detailed in SI Table 2 were used. Capitalized
letters refer to L-amino acids, uncapitalized letters refer to b-amino acids or uncommon building blocks,
which are defined in the SI.

Unless otherwise noted, the following stock solutions were used for peptide synthesis: Fmoc-protected
amino acids (Fmoc-Ala-OHxH20, Fmoc-Arg(Pbf)-OH; Fmoc-Asn(Trt)-OH; Fmoc-Asp-(Ot-Bu)-OH; Fmoc-
Cys(Trt)-OH; Fmoc-GIn(Trt)-OH; Fmoc-Glu(Ot-Bu)-OH; Fmoc-Gly-OH; Fmoc-His(Trt)-OH; Fmoc-lle-OH;
Fmoc-Leu-OH; Fmoc-Lys(Boc)-OH; Fmoc-Met-OH; Fmoc-Phe-OH; Fmoc-Pro-OH; Fmoc-Ser(But)-OH; Fmoc-
Thr(t-Bu)-OH; Fmoc-Trp(Boc)-OH; Fmoc-Tyr(t-Bu)-OH; Fmoc-Val-OH) as a 0.40 M stock solution in DMF,
activating agents (HATU and PyAOP) as a 0.38 M stock solution in DMF, DIEA (undiluted), deprotection
stock solution (40% piperidine, 2% formic acid, 58% DMF). DMF was pre-treated with AldraAmine trapping
agents >24 h before synthesis. 50-200 mg H-Rink Amide (0.49 mmol/g and 0.18 mmol/g loading) and
HMPB ChemMatrix polyethylene glycol (0.45 mmol/g loading) resin was used in all experiments in the
data set, details on resin and scale are given for synthesis examples in this manuscript Sl.

Unless otherwise noted, a flow-rate of 40 mL/min and a temperature of 90 °C in the loop and 85-90 °C in
the reactor was used. Briefly,two large pumps (50 mL/min pump head) delivers 400 pL of solution per
pump stroke and a small pump (5 mL/min pump head) delivers 40 pL of solution per pump stroke. A
standard synthesis cycle involves (a) prewashing of the resin, (b) iterative coupling, washing, deprotection
and washing steps per amino acid building block. In the prewashing step the resin in swollen at elevated
temperatures for 60 s at 40 mL/min. The iterative synthesis cycles start with a coupling step where three
HPLC pumps are used: a large pump delivers the activating agent stock solution, a second large pump
delivers the amino acid stock solution and a small pump delivers DIEA. It is important to make sure that
all solutions reach the mixer in the flow set up at the same time to avoid by-product formation. The first
two pumps are delivering stock solutions for 8 pumping strokes in order to prime the coupling agent and
amino acid lines before the DIEA pump is started. The three pumps are then delivering sock solutions
together for a period of 7 pumping strokes. Afterwards, the activating agent pump and the amino acid
pump are changed using a rotary valve to select DMF. The three pumps are pumping together for a final
8 pumping strokes. For the consecutive washing step, the DIEA pump is stopped and the other two pumps
continue delivering DMF for another 40 pump strokes.

In the deprotection step, the two large pumps are used, one delivering DMF and one delivering the
deprotection solution in a 1:1 ratio. The pumps are activated for 13 pump strokes. Next, the rotary valves
select DMF for both pumps, and the resin is washed for an additional 40 pump strokes. The coupling—
deprotection cycle is repeated for every additional amino acid.

UV-Vis in line analysis is recorded past the reactor and prior to waste collection. The UV synthesis data at
a wavelength of 310 nm was collected from 35,427 individual deprotection steps from 1523 unique
peptide synthesis experiments on three AFPS systems. Sequences with canonical amino acids and with
length between 5 and 50 amino acids only were considered in the making of the data set. The recipe file
and AFPS raw file were analyzed to collect information about the coupling agent, coupling strokes,
coupling temperature, deprotection strokes, flow rate and reactor temperature. Integral, width and
height of the time-resolved traces were obtained using a modified version of the earlier published
code.(12)

16



Deep learning and optimization

Data pre-processing. The data set obtained from the AFPS was pre-processed before analysis (Sl Section
3.1). Two individual sets of normalization, by first and previous deprotection step, were performed.
Difference of width and height was calculated from the normalized traces. With 4 parameters and 2
different types of normalization, each deprotection step was quantified in terms of 8 variables. Out of
these variables, normalization-specific sets of 4 parameters were used for different tasks. The analysis
was performed on the parameters normalized by the previous deprotection step, and machine learning
model was trained on parameters normalized by first deprotection step.

The data set was trimmed to 28642 deprotection steps after removing the outliers. For parameters from
UV traces, a cut-off of 2 standard deviation for integral, width and height, and 1.5 for difference was used
to filter the data set. Deprotection steps with HATU and PyAOP as coupling agents; 8 and 21 as coupling
strokes; 9, 13, 20 and 26 as deprotection strokes; and flow rates of 40 and 80 mL/min were considered in
the data set. After averaging over the traces based on the pre-chain, incoming amino acid and synthesis
parameters, a total of 17459 unique deprotection steps.

Featurization. The pre-chain and incoming amino acid were featurized using 128-bit Morgan fingerprint
bit-vectors generated using RDKit (Appendix 1, 2).(47, 48) Coupling agent (HATU, PyAOP), coupling
strokes (8 - single, 21 - double), deprotection strokes (9, 13, 20, 26) and flow rates (40, 80 mL/min) were
treated as one-hot encoding representations. A machine variable (AFPS00, AFPS01, AFPS02) representing
the particular set-up in the lab on which the sequence was synthesized was added as a one-hot encoding.
The coupling temperature and reactor temperature were treated as continuous parameters. All
parameters were normalized to mean 0 and standard deviation 1 before training.

Model Training. The deep learning model was based on a multi-modal convolutional neural network
architecture. The input parameters included pre-chain, incoming amino acid, coupling agent, coupling
strokes, deprotection strokes, coupling temperature, reactor temperature, flow rate and machine
variable. Different sets of output parameters with individual and multiple combinations of normalization-
specific parameters were tried. The best performance was obtained using integral, width, height and
difference normalized by the first deprotection step. All hyperparameters were optimized using
SigOpt.(49) A train-validation split of 70-30 was used for the training. The model has a RMSE validation
loss of 0.52, 0.56, 0.47 and 0.48 for normalized integral, width, height and difference respectively.

Interpretability using gradient activation. Gradient activation analysis, based on our earlier work, was
used to interpret the decision-making process of the model. A model with pre-chain and incoming amino
acid features was used for the analysis. The pre-chain gradient map was used for analyses of average of
activated bit-vectors and amino acids. The map obtained from averaging over bit-vectors was used for
interpretation of aggregating positions and optimization of synthesis success by single point mutations.

Generation of mutants for optimization of aggregation. A brute-force approach was used to explore all
possible single point mutations of the seed sequence. Given the small sequence space for optimization,
less than 1000 for sequences with 50 or less amino acids, this approach exhaustively explored the
combinatorial space. The predicted trace and activation map for each mutant were obtained. The lowest
aggregating sequences and the most aggregating sequence (as negative control) were selected for
experimental validation.
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Data availability

The dataset, excluding proprietary sequences, used in the training and analysis of the model has been
provided in the online repository.

Code availability

All code used for training and optimization of the model is available at https://github.com/learningmatter-

mit/peptimizer.
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2 Materials and general methods

2.1 Reagents and solvents.

All reagents were purchased and used as received. Fmoc-protected amino acids (Fmoc-
Ala-OHxH20, Fmoc-Arg(Pbf)-OH; Fmoc-Asn(Trt)-OH; Fmoc-Asp-(O#-Bu)-OH; Fmoc-
Cys(Trt)-OH; Fmoc-GIn(Trt)-OH; Fmoc-Glu(O#-Bu)-OH; Fmoc-Gly-OH; Fmoc-His(Trt)-OH;
Fmoc-Ile-OH; Fmoc-Leu-OH; Fmoc-Lys(Boc)-OH; Fmoc-Met-OH; Fmoc-Phe-OH; Fmoc-Pro-
OH; Fmoc-Ser(But)-OH; Fmoc-Thr(z-Bu)-OH; Fmoc-Trp(Boc)-OH; Fmoc-Tyr(¢-Bu)-OH; Fmoc-
Val-OH), Fmoc-His(Boc)-OH and backbone protected amino acids were purchased from the
Novabiochem-line from Sigma Millipore; O-(7-azabenzotriazol-1-yl)-N,N,N’,N’-
tetramethyluronium hexafluorophosphate (HATU, >97.0% ), and (7-azabenzotriazol-1-
yloxy)tripyrrolidinophosphonium hexa-fluorophosphate (PyAOP, >97.0%) were purchased from
P3 Biosystems. Biosynthesis OmniSolv® grade N,N-dimethylformamide (DMF) was purchased
from EMD Millipore (DX1732-1). N-Methyl-2-pyrrolidone (NMP, >99.0%) was purchased from
Sigma-Aldrich and dried over PPT Pure Process Technology solvent system. AldraAmine trapping
agents (for 1000 — 4000 mL DMF, catalog number Z511706), Diisopropylethylamine (DIEA;
99.5%, biotech grade, catalog number 387649), piperidine (ACS reagent, >99.0%), trifluoroacetic
acid (HPLC grade, >99.0%), triisopropylsilane (>98.0%), acetonitrile (HPLC grade), formic acid
(FA, 295.0%) and 1,2-ethanedithiol (EDT, GC grade, >98.0%) were purchased from Sigma-
Aldrich. H-Rink Amide (0.49 mmol/g and 0.18 mmol/g loading) and HMPB ChemMatrix
polyethylene glycol (0.45 mmol/g loading) resin were purchased from PCAS Biomatrix. Water
was deionized using a Milli-Q Reference water purification system (Millipore). Nylon 0.22 um
syringe filters were TISCH brand SPEC17984.



3  Deep learning and optimization

3.1 Data set distribution
The pre-processing of the data set and the number of reaction steps that remained after each
step is as follows —
- Raw Dataset — 35427 steps
- Removal of unnatural amino acids — 35327 steps
- Removal of data points lying outside 2 standard deviations across all parameters — 33581
steps
- Removal of reaction steps with missing values — 33565 steps
- Removal of reaction steps for the following conditions — coupling temperature and reactor
temperature greater than 200 °C, deprotection strokes less than 5, flow rate other than 40
ml/min and 80 ml/min — 33159 steps
- Removal of reaction steps without complete syntheses, i.e. missing one or more amino
acid from the peptide sequence in the list of reaction steps — 28642 steps
- Averaging over reaction steps with same pre-chain, incoming amino acid and synthesis
parameters — 17459 steps

For the processed data set, where all parameters are normalized by the first deprotection step,
we see a Gaussian-like distribution for each of the parameters (SI Figure 1).

A B Cc D
2000 1000
% % § 2000 % 1000
O 1000 o 500 o o
% 1 2 % 1 2 % 1 E— 0 1
Integral Width Height Difference (Width-Height)

SI Figure 1. Distribution of the data normalized by the first deprotection step for different
parameters — A. Integral, B. Width, C. Height and D. Difference (Width - Height).

3.2 Training of the model
The model performance is shown in SI Figure 2.
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SI Figure 2. The model predictions for a particular reaction step are within 14% error on the
validation dataset for A. Height, B. Width and C. Difference.

SI Table 1. The minimum, maximum, standard deviation values, and model performance metrics
for different parameters in root mean squared error (RMSE) and % error (RMSE/range) are listed.



Standard

Training

Validation

Parameter Minimum | Maximum Deviation | Loss, RMSE | Loss, RMSE % Error
Area 0.10 1.94 0.15 0.06 0.08 4.12
Width 0.11 1.90 0.18 0.06 0.10 5.76
Height 0.55 1.44 0.12 0.05 0.05 6.07
Difference -1.07 1.31 0.27 0.09 0.13 5.38

3.3 Automated pipeline for optimization of difficult-to-synthesize sequences

An automated pipeline was set-up for prediction of traces for classical difficult-to-synthesize
sequences.(8, 9) The individual traces were predicted using the model (SI Section 3.4). Gradient
activation maps averaged over bit-vectors were obtained for mutants with less aggregation and
most aggregating (for negative control) than wild-type sequence (SI Section 3.4).

3.4 Prediction of traces and mutants for difficult-to-synthesize sequences

Each figure consists of A. predicted integral, width, height and difference traces with error

range (1 standard deviation), and B. gradient maps for negative control, wild-type and less
aggregating sequences, with activation color bar ranging from red to blue indicating the residues
contributing most to least towards aggregation for that particular coupling-deprotection step.




3.4.1 NRP-1, PDB_ID: 1KEX 1

A Sequence:NRP-1,PDB_ID: 1KEX 1
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3.4.2 Ubiquitin, PDB_ID: 1UBQ 1

A Sequence: Ubiquitin, PDB_ID: 1UBQ_1
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3.4.3 1-42 p-Amyloid

A Sequence:DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA,
1-42 3-Amyloid
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3.44 Thymosin

A Sequence: SDAAVDTSSEITTKDLKEKKEVWEEAEN, Thymosin
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3.4.5 ABRF 1992
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3.4.6 ABC 20-mer

A

Relative change of deprotection peaks, %

Mutants

Sequence: VYWTSPFMKLIHEQCNRADG, ABC 20-mer
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3.47 Sequence: EYLENPKKYIPGTKMIFAGIKKKTEREDLIAYLKKATNE

A Sequence: EYLENPKKYIPGTKMIFAGIKKKTEREDLIAYLKKATNE
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4 Experimental validation of predicted sequences
4.1 Synthesis parameters

Synthesis parameters are described in detail in the literature (SI Table 2).(3)

SI Table 2. Set of optimized synthesis conditions on the AFPS. Pump strokes refer to volumes
described in the general synthesis protocol.

Parameter Conditions

Temperature 85—90 °C in reactor, 9o °C in 10’ activation loop (for all other amino acids)**
Flow Rate 40 mL/min

Coupling step 0.40 M amino acids stocks in amine-free DMF

0.38 M activator stocks in amine-free DMF
Coupling conditions: HATU (23 pump strokes) except S&A w/ HATU (26 pump strokes) and H, N,
Q, V, R, T w/ PyAOP (26 pump strokes)

Deprotection step 40% pip in amine-free DMF with 2% formic acid (13 pump strokes)

Washing steps Amine-free DMF (40 pump strokes)

**NOTE: during the process of condition optimization C and H coupled were changed to the
following optimized protocol: activation with PyAOP (26 pump strokes) at 60 °C in 5’ activation
loop. However, for the peptides displayed in this manuscript the “old” protocol above was used.

4.2 Cleavage protocol

After synthesis, the peptidyl resin was washed with dichloromethane (3 x 5 mL), dried in a vacuum
chamber, and weighed. 50% of the resin was transferred into a 50 mL conical polypropylene tube.
For cleavage of peptides we used the following protocol':

Approximately 3 mL of cleavage solution (94% TFA, 1% TIPS, 2.5% EDT, 2.5% water) was
added to the tube. If needed, more cleavage solution was added to ensure complete submersion.
The tube was kept at room temperature for 2 h. Ice cold diethyl ether (45 mL) was added to the
cleavage mixture and the precipitate was collected by centrifugation and triturated twice more with
cold diethyl ether (45 mL). The supernatant was discarded. Residual ether was allowed to
evaporate and the peptide was dissolved in 50% acetonitrile in water with 0.1% TFA (long peptides
were dissolved 70% acetonitrile in water with 0.1% TFA). The peptide solution was filtrated with
a Nylon 0.22 pm syringe filter and frozen, lyophilized until dry, and weighed.

4.3 Liquid chromatography—mass spectrometry (LC-MS)

For mass analysis, the filtered peptide solution (10 puL of a Img/mL solution) was diluted in
50% acetonitrile in water with 0.1% TFA (90 pL) to a final concentration approximately
0.1 mg/mL. LC-MS chromatograms and associated high resolution mass spectra were acquired
using an Agilent 6520 Accurate-Mass Q-TOF LC-MS (abbreviated as 6520) or an Agilent 6550
iFunnel Q-TOF LC-MS system (abbreviated as 6550). Solvent compositions used in the LC-MS
are 0.1% formic acid in H20 (solvent A) and 0.1% formic acid in acetonitrile (solvent B). The
following LC-MS methods were used:

! Note: for short peptides, which were soluble in ether (e.g. JR-10), the trituration step was skipped and TFA was
evaporated before addition of 50% acetonitrile in water with 0.1% TFA.
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o 1-61% B over 33 min, Phenomenex Jupiter C4 column (6550)

LC conditions: Phenomenex Jupiter C4 column: 1.0 x 150 mm, 5 pm, column
temperature: 40 °C, gradient: 0-2 min 1% B, 2-30 min 1-91% B, 30-34 min 61-90% B;
flow rate: 0.1 mL/min. A final 4-min hold was performed at a flow rate of 0.1 mL/min.
The total method time was 38 min. MS is on from 4 to 30 min.

MS conditions: positive electrospray ionization (ESI) extended dynamic mode in
mass range 100-1700 m/z.

o 1-91% B over 20 min, Phenomenex Jupiter C4 column (6550)

LC conditions: Phenomenex Jupiter C4 column: 1.0 X 150 mm, 5 um, column
temperature: 40 °C, gradient: 0-2 min 1% B, 2-18 min 1-91% B, 18-21 min 91% B; flow
rate: 0.1 mL/min. A final 4-min hold was performed at a flow rate of 0.1 mL/min. The total
method time was 25 min. MS is on from 4 to 18 min.

MS conditions: positive electrospray ionization (ESI) extended dynamic mode in
mass range 100-1700 m/z.

o 1-61% B over 18 min, Luna C18 column (6550)

LC conditions: Phenomenex Luna C18 column: 0.5 x 150 mm, 5 pm, column
temperature: 40 °C, gradient: 0-2 min 1% B, 2-14 min 1-61% B, 14-18 min 61-91% B;
flow rate: 0.1 mL/min. A final 5-min hold was performed at a flow rate of 0.1 mL/min.
The total method time was 23 min. MS is on from 4 to 14 min.

MS conditions: positive electrospray ionization (ESI) extended dynamic mode in
mass range 100-1700 m/z.

o [-91% B over 30 min, Luna C18 column (6550)

LC conditions: Phenomenex Luna C18 column: 0.5 x 150 mm, 5 pm, column
temperature: 40 °C, gradient: 0-2 min 1% B, 2-30 min 1-91% B, 30-34 min 61-90% B;
flow rate: 0.1 mL/min. A final 4-min hold was performed at a flow rate of 0.1 mL/min.
The total method time was 38 min. MS is on from 4 to 30 min.

MS conditions: positive electrospray ionization (ESI) extended dynamic mode in
mass range 100—1700 m/z.

Data were processed using Agilent MassHunter Workstation Qualitative Analysis Version
B.06.00 with BioConfirm Software.

4.4 Analytical high-performance liquid chromatography (HPLC)

For determination of purity by HPLC, the filtered peptide solution was diluted in 50%
acetonitrile in water with 0.1% TFA (100 pL) to a final concentration of approximately 1.0 mg/mL.
Peptide samples containing cysteines were diluted in 6M Guanidinium chloride containing
100 mM DTT. The samples were analyzed on Agilent Technologies 1200 Series, which was
computer-controlled through Agilent ChemStation software.

For standard analysis of all peptide samples, analytical HPLC spectra were recorded on an
analytical Agilent Zorbax 300SB-C3 column (2.1 mm x 150 mm, 5-pum particle size). A linear
gradient of acetonitrile with a 0.08% TFA additive (solvent B) in water with a 0.1% TFA additive
(solvent A) was used. After a 3-min hold, gradients of 1% B per minute ramped up over 60 min at
a flow rate of 0.4 mL/min. Gradients started at 5% B (annotated as “5-65% B over 60 min”). A
final 3-min hold was performed. The total method time was 66 min. Crude HPLC purities were
determined by manual integration of all signals in the area of 5—-60 min.
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4.5 Determination of yield

Molecular weight of peptide sequences was determined via ChemDraw, accounting for the weight
of a TFA counter-ion for each basic residue (K, R, H) in addition to the N-terminal amine. For
example, for a peptide with sequence “KALE” the molecular weight of the peptide as TFA salt is
calculated as 916 g/mol (= 688 + 2 X 114).

The weight of lyophilized powders of the peptides was directly measured using analytical scales
(XS205DU Analytical Balance, Mettler-Toledo) [note: use of deionizers such as SPI Westek
Workstation Still Air Ionizer helps with measurements]. Following folding, protein concentration
was measured based on the outlined procedures under “Determination of protein concentration”.

Theoretical yield was determined based on weight of the resin, resin loading, and the molecular
weight (with TFA) of each peptide.

For example, for the KALE sequence synthesized on 50 mg resin with 0.44 mmol/g loading,
theoretical yield is:

mmol
theoretical yield = 0.44

g
X 50 X 916— = 20
ms mol ms

Yield of crude peptide was determined based on the ratio of weight of lyophilized crude peptide
(as TFA salt) to theoretical yield multiplied by the purity determined by UV absorption at 280 nm
(analytical HPLC).

In the example above, if 10 mg of crude KALE peptide is produced and the purity by analytical
HPLC is 50%, synthesis yield is:

X 0.50 x 100 = 25%

eld = 10 mg
o ~ 20mg
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4.6 Computational and analytical data
4.6.1 GLP-1 mutants

Synthesis Data for GLP-1 (R30S)

Sequence:

Resin:

Synthesis time:

HAEGTFTSDV SSYLEGQAAK EFIAWLVKGS (30 AA)

100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage

1.1h

a) LCMS data, TIC

Relative change of deprotection peaks, %

150% 1

100% 1

50% 1

150% 1

100% 1

50% -

Integral

vvvvvvvvvvvvvvvvvvvvvvvvvvv

GKVLWA | FEKAAQGELYSSVDSTFTGEAH

Width

vvvvvvvvvvvvvvvvvvvvvvvvvvv

GKVLWA | FEKAAQGELYSSVDSTFTGEAH

b) LCMS data, TIC

Height
150% 1

100% Nz

50% 1

vvvvvvvvvvvvvvvvvvvvvvvvvvv

GKVLWA | FEKAAQGELYSSVDSTFTGEAH

80%

O% oo

-80%

Difference

GKVLWA | FEKAAQGELYSSVDSTFTGEAH

c) HPLC data

Desired
Peptide
m/4 =
807.6593
I/L deletion || H deletion
m/4 = m/4=
779.3857 773.3927
V deletion A deletion
m/4 = m/4=
782.8913 789.8988
isomer E deletion
m/5 =

642.3400\

/ mi4 =
& 7753957

Total ion counts vs. time (min)

1-91% B over 20 min
Phenomenex Jupiter C4 column (6550)

AN I

2 0 0 50
absorption at 214 nm vs. time [min]
5-65% B over 60 min
analytical Zorbax 300SB-C3 column
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Synthesis Data for GLP-1 (WT)

Sequence: HAEGTFTSDV SSYLEGQAAK EFIAWLVKGR (30 AA)
Resin: 100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-

terminal amide after cleavag

Synthesis time: 1.1h

a) LCMS data, TIC

Integral
150% 1 150%

100% A=A { 100%

vvvvvvvvvvvvvvvvvvvvvvvvvvv

GKVLWA | FEKAAQGELYSSVDSTFTGEAH

Relative change of deprotection peaks, %

50% 1 50% 1

(&

Height

vvvvvvvvvvvvvvvvvvvvvvvvvvv

GKVLWA | FEKAAQGELYSSVDSTFTGEAH

Width 809 | Difference
150% 1
100% 1 0%
50% 1
-80%
GKVLWA | FEKAAQGEL YSSVDSTFTGEAH GKVLWA | FEKAAQGELYSSVDSTFTGEAH
b) LCMS data, TIC c) HPLC data
Desired
Peptide

m/4 = 824.85 \

H deletion or
Amino trucation
m/4 = 790.66
W deletion
m/5 =623.33
V deletion

m/5 = 640.3283
Aspartimide \
m/5 = 656.9393

Total ion counts vs. time (min)

1-61% B over 33 min
Phenomenex Jupiter C4 column (6550)

absorption at 214 nm vs. time [min]

5-65% B over 60 min
analytical Zorbax 300SB-C3 column
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Synthesis Data for GLP-1 K28R
HAEGTFTSDV SSYLEGQAAK EFIAWLVRGR (30 AA)

100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the
C-terminal amide after cleavage

Sequence:

Resin:

Synthesis time:

1.1h

a) LCMS data, TIC

150% 1

50% 1

100(%) B

Integral

GRVLWA | FEKAAQGELYSSVDSTFTGEAH

...........................

150% -

100% 1

Relative change of deprotection peaks, %

50% 1

Width

...........................

GRVLWA | FEKAAQGELYSSVDSTFTGEAH
b) LCMS data, TIC

150%

100% 1>

50%

Height

rrrrrrrrrrrrrrrrrrrrrrrrrrr

GRVLWA | FEKAAQGELYSSVDSTFTGEAH

80%

0%

-80%

Difference

GRVLWA | FEKAAQGELYSSVDSTFTGEAH
c) HPLC data

V deletion
m/5 =
630.5275 E deletion
m/5 =
. 624.5297
I/L deletion

m/5 =

Phenomenex Jupiter C4 column (6550)

Desired
Peptide
m/5 = 650.3419

Total ion counts vs. time (min)

1-91% B over 20 min

M

analytical Zorbax 300SB-C3 column

2 30 40 50
absorption at 214 nm vs. time [min]

5-65% B over 60 min
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Synthesis Data for GLP-1 (W25P)

Sequence: HAEGTFTSDV SSYLEGQAAK EFIAPLVKGR (30 AA)

Resin: 100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage

Synthesis time: 1.1h

a) LCMS data, TIC

Integral

150% |
100%

50%

........................

GKVLPA | FEKAAQGELYSSVDSTFTGEAH

Width

150% 1

100%

Relative change of deprotection peaks, %

50% 1

b) LCMS data, TIC

........................

GKVLPA | FEKAAQGELYSSVDSTFTGEAH

Height
150%

100% N

50% 1

vvvvvvvvvvvvvvvvvvvvvvvvv

GKVLPA | FEKAAQGELYSSVDSTFTGEAH

80% | Difference

0% /i

-80%

GKVLPA | FEKAAQGELYSSVDSTFTGEAH

c) HPLC data

Desired Peptide
m/5 = 642.3400

4

F deletion
m/5 =
612.9239

isomer
m/5 =
642.3400\

Total ion counts vs. time (min)

1-91% B over 20 min

Phenomenex Jupiter C4 column (6550)

A

10 20 30 40 50
absorption at 214 nm vs. time [min]

5-65% B over 60 min
analytical Zorbax 300SB-C3 column
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Synthesis Data for GLP-1 (W25H)
Sequence: HAEGTFTSDV SSYLEGQAAK EFIAHLVKGR (30 AA)

Resin: 100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage

Synthesis time: 1.1h

a) LCMS data, TIC

Integral Height
X 150% 150% A
")
X
©
8 100% =™ 100% N
c
2
k7]
2 50%; 50% 1
[]
g e e
g GKVLHA | FEKAAQGELYSSVDSTFTGEAH GKVLHA | FEKAAQGELYSSVDSTFTGEAH
[T
° Width 80% Difference
o 150% 1
c
©
£
[3)
© 100% ¢ 0%
5
)
®  50%
-80%
GKVLHA | FEKAAQGELYSSVDSTFTGEAH GKVLHA FEKAAQGELYSSVDSTFTGEAH
b) LCMS data, TIC c) HPLC data
Desired
Peptide
m/5 = 650.3419
V deletion
m/5 =
630.5275
E deletion
I/L deletion m/5 = 624.5297
m/5 =
627.7251
Total ion counts vs. time (min) absorption at 214 nm vs. time [min]
1-91% B over 20 min 5-65% B over 60 min
Phenomenex Jupiter C4 column (6550) analytical Zorbax 300SB-C3 column
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4.6.2 JR-10 mutants

Synthesis Data for JR-10 (I9L)

Sequence:

Resin:

Synthesis time:

a) LCMS data, TIC

Relative change of deprotection peaks, %

WFFTL ISTLM (10 AA)

100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage

23 min

Integral
150% 1
100% """ e
50% A
L T s | L T T F W
Width
150% 1
100% 1
50% 1
L T S I L T T F W

b) LCMS data, TIC

Height
150% A
100% 1
50% 1
L T S T T F W
80% | Difference

0%

-80%

L T S
c) HPLC data

F deletion

m/2 =532.79

W deletion
m/2 =513.29

Peptide + t-Bu
m/2 = 634.36

Amino trunc. ¢I

2 =
m/2 = 439.76

p— el LN N

Total ion counts s, time (min)

1-91% B over 30 min
Luna C18 column (6550)

Desired Peptide
m/2 = 606.33

/

FMOC
trunc. F2
m/2 =
550.79

*Purity and yield are not
recorded due to the
presence of cleavage
impurities in the sample,
no ether washes were
performed

L_JLLM

absorption at 214 nm vs. time [min]

5-65% B over 60 min

analytical Zorbax 300SB-C3 column
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Synthesis Data for JR-10 (WT)
Sequence: WFFTL ISTIM (10 AA)

Resin: 100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage

Synthesis time: 23 min

a) LCMS data, TIC

Integral Height

2 150% 150% |
")
X
©
2 100%;
c
.0
whd
S 50%;
it
o
% | T S | L T T F W | T S | L T T F W
T
(e
° Width 80% Difference
& 150%
s S T e
©
<
LA e W - a, N 2 Sy
o 100%; 0% =
2 e T S
wid
)
[}
 50%-

-80%

Il T s | L T T F W I T s 1 L T T F W

b) LCMS data, TIC c) HPLC data

*Purity and yield are not

Desired Peptide recorded due to the
m/2 = 606.33 presence of cleavage
impurities in the sample,
/ no ether washes were
F deletion performed
m/2 = 532.80
W deletion
m/2 =513.29 trElr\w/Icolcf:Z
m/2 =
Amino trunc. 550.79
F2
m/2 = 439.76 \
. Y y /\/’ kﬁ-j"ml‘/\'\__n_.___,'\/\_ L‘\‘—AJ“/V"J
Totalioncounts v, e e} absorption at 214 nm vs. time [min]
1-91% B over 30 min 5-65% B over 60 min
Luna C18 column (6550) analytical Zorbax 300SB-C3 column
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Synthesis Data for JR-10 (M10K)
Sequence: WFFTL ISTIK (10 AA)

Resin:

100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-

terminal amide after cleavage

Synthesis time: 23 min

a) LCMS data, TIC
Integral

R 150% 1

"

4

© .

g_ 100% +=

c

2

S  50%;

s

3 Il T s 1 L T T F W

©

[T

o Width

& 150% |

c

©

=

($]

o 100%

2=

k]

€ 50%

b) LCMS data, TIC

150% A

100% 1

50% 1

I T s |1 L T T F W

80% Difference

0%

-80%

| T S | L T T F W
c) HPLC data

Desired
Peptide

/m/2 =604.86

W deletion
m/2 =511.82
Peptide + FMOC
m/2 =715.89
Amino trunc.
F2
m/2 = 438.28

Total ion counts vs. time (min)

1-91% B over 30 min
Luna C18 column (6550)

*Purity and yield are not
recorded due to the
presence of cleavage
impurities in the sample,
no ether washes were
performed

absorption at 214 nm vs. time [min]

5-65% B over 60 min

analytical Zorbax 300SB-C3 column




Synthesis Data for JR-10 (I9P)

Sequence:

Resin:

Synthesis time:

a) LCMS data, TIC

WFFTL ISTPM (10 AA)

100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage

23 min

Integral
150%

100% 7 —Tomo——

2
)
9
©
[
o
[ =
)
-
O 50%
°
b T T T
= P T S I L T T F
T
[T
3 Width
o 150%
c
©
L
[($)
o 100%-
=
k-
(]
 50%;
P T s I L T T F

b) LCMS data, TIC

Height
150% 1
100% 12
50% 1
P T S I L T T F W
80% Difference
0%~

-80%

P T S
c) HPLC data

Peptide + t-
Bu
m/2 =
626.35

Desired Peptide
m/2 = 598.31

\

Total ion counts vs. time (min)

1-91% B over 30 min
Luna C18 column (6550)

*Purity and yield are not
recorded due to the
presence of cleavage
impurities in the sample,
no ether washes were
performed

Jo A

o

absorption at 214 nm vs. time [min]

5-65%

B over 60 min

analytical Zorbax 300SB-C3 column
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Synthesis Data for JR-10 (I9R)
Sequence: WFFTL ISTRM (10 AA)

Resin: 100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage

Synthesis time: 23 min

a) LCMS data, TIC

Integral
2 150%:;
a
¥4
©
g 100% e
ol
]
S 50%1
°
s R T S | L T T F W
T
[T
g Width
o 150%
c
©
L
(5]
o 100%-
2
©
()
& 50%7

R T S I L T T F W

b) LCMS data, TIC

Height
150% 1
100% 1
50% 1
R T S I L T T F W
80% Difference

0% &

-80%

c) HPL

R T
C data

Desired Peptide
m/2 = 627.84

M deletion
m/2 = 562.32

Desired
Peptide
m/3 =
418.90

N

Total ion counts vs, time (min)

1-91% B over 30 min
Luna C18 column (6550)

o

*Purity and yield are not
recorded due to the
presence of cleavage
impurities in the sample,
no ether washes were
performed

L

st

absorption at 214 nm vs. time [min]

5-65% B over 60 min
analytical Zorbax 300SB-C3 column
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4.6.3 Additional sequences

Synthesis Data for AB[10-26]

80 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-

Sequence: YEVHHQKLVFF AEDVGS (16 AA)
Resin:

terminal amide after cleavage
Synthesis time: 38 min

a) LCMS data, TIC

Relative change of deprotection peaks, %

150%

100%

50% 1

150% 1

100% 1

50%

Integral

GVDEAFFVLKQHHVEY

Width

GVDEAFFVLKQHHVEY

b) LCMS data, TIC

150% 1

100% 1

50% -

GVDEAFFVLKQHHVEY

80%| Difference

0%

-80%
GVDEAFFVLKQHHVEY

c) HPLC data

L deletion deletion
m/4 =473.5 /n/S =626.0

—— —

Desired Peptide
p m/4 =501.8

4

H deletion
m/3 =623.0

KorQ

N

Total ion counts vs. time (min)

1-61% B over 18 min
Luna C18 column (6550)

Purity = 57%

MML\

absorption at 214 nm vs. time [min]

5-65% B over 60 min
analytical Zorbax 300SB-C3 column
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Synthesis Data for ACP[65-74]
Sequence: VQAAIDYING (10 AA)

Resin: 80 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage

Synthesis time: 23 min

a) LCMS data, TIC

Integral
150% -

100% 1

50% 1

A A Q V

150% 1

100% 1

Relative change of deprotection peaks, %
zZ
<
o

50% 1

N | Y D I A A Q V
b) LCMS data, TIC

Height
150% 1
100% 1
50% 1
N | Y D I A A Q V

80% Difference

0%

-80%

N I Y D I A A Q V
c) HPLC data

Desired
Peptide
m/2 =531.8

d

?7?
m/3 = 423.58

N

Total ion counts vs. time (min)

1-61% B over 18 min
Luna C18 column (6550)

Purity = 96%

absorption at 214 nm vs. time [min]

5—65% B over 60 min

analytical Zorbax 300SB-C3 column
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Synthesis Data for barstar[75-90]
Sequence: FREAKAEGCD ITIILS (16 AA)

Resin: 80 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage

Synthesis time: 38 min

a) LCMS data, TIC

Integral Height
150% 1 150%

100%

50% 1

L1 I TIDCGEAKAERF L1 I TIDCGEAKAERF

Relative change of deprotection peaks, %

150% A 80%
o/ |
100% 0%
50% A
-80% Difference
L1 I TIDCGEAKAERTF L1 I TIDCGEAKAERTF
b) LCMS data, TIC c) HPLC data
Desired Peptide
m/3 = 589.0
C deletion
m/3 = 554.6
R deletion Purity = 56%
| or L deletion m/2 = 804.9
Total ion counts vs. time (min) absorption at 214 nm vs. time [min]
1-61% B over 18 min 5-65% B over 60 min
Luna C18 column (6550) analytical Zorbax 300SB-C3 column




Synthesis Data for IAPP[1-18]
Sequence: ATQRLANFLV H (11 AA)

Resin: 80 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-

terminal amide after cleavage

Synthesis time: 25 min

a) LCMS data, TIC

Integral

150% A

100% T~

50%

150% 1

100% W

50% 1

Relative change of deprotection peaks, %

VL F NALRAO QTA
b) LCMS data, TIC

VLFNALZRA GQTA

80% | Difference

0%

-80%
vV L F N A L R QT A

c) HPLC data

Desired Peptide
m/3 =423.6

¥

F deletion
m/3 = 374.6
H deletion
L deletion m/2 = 566.3
m/3 = 385.9

Ny ¥

Total ion counts vs. time (min)

1-61% B over 18 min
Luna C18 column (6550)

Purity = 66%
——h LLM‘K
absorption at 214 nm vs. time [min]

5-65% B over 60 min

analytical Zorbax 300SB-C3 column
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4.6.4 Backbone-modified peptides

How does backbone protection affect GLP-1 synthesis? And can we predict the synthesis outcome
for residues that are new to the model?

SI Table 3. Point mutations in GLP-1 with building blocks with are new to the model.

Amidator —— . HPLC Crude

No. Sequence Add. Building Block (= i) purity yield

1412 HAEGT FTSDV SSYLE GQAAK EFIAW LVKGR 77% 30%

1413 HAEGT FTSDV SSYLE GQAAK EFIAW LVKGR DMB-Gly (synthesized) 60% 26%
synthesized as: HAEGT FTSDV SSYLE jQAAK EFIAW LVKGR

1417 HAEGT FTSDV SSYLE GQAAK EFIAW LVKGR DMB-Gly (synthesized) 74% 29%
synthesized as: HAEGT FTSDV SSYLE GQAAK EFIAW LVKiR

Fmoc-Ser(t-Bu)-

1415 HAEGT FTSDV SSYLE GQAAK EFIAW LVKGR Ser(WNeNepro)-OH 79% 36%
synthesized as: HAEGT FTSDV iYLE GQAAK EFIAW LVKGR

1416 HAEGT FTSDV SSYLE GQAAK EFIAW LVKGR Fmoc-Phe-Thr(WMeMepro)-OH 77% 34%

synthesized as: HAEGT iSDV SSYLE GQAAK EFIAW LVKGR

Outcome: Fmoc-Ser(t-Bu)-Ser(WMeMepro)-OH improves GLP-1 synthesis and minimizes H deletions.
DMB-Gly seems to reduce deletions in the aggregation area (QAAK) — combination of both could lead
to better results.
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Synthesis Data for GLP-1 (Fmoc-(DMB)Gly-OH 1)

Sequence: HAEGTFTSDV SSYLEGQAAK EFIAWLVKGR (30 AA);
G = Fmoc- (DMB) G|y—-OH
Resin: 100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-

terminal amide after cleavage

Synthesis time: 1.1h
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a) LCMS data, TIC

Relative change of deprotection peaks, %

150% 1

100% 1

50% 1

Integral

...........................

RGKVLWA | FEKAAQi ELYSSVDSTFTGEAH
Width

150% 1

100% 1=

50%

100%

Height

..........................

RGKVLWA | FEKAAQi ELYSSVDSTFTGEAH

Difference

150% 1
100% " 0%
50% A
-100%
RGKVLWA | FEKAAQi ELYSSVDSTFTGEAH RGKVLWA | FEKAAQi ELYSSVDSTFTGEAH
b) LCMS data, TIC c) HPLC data
Desired
Peptide
m/4 = 824.85 \
H deletion or
Amino trucation
m/4 = 790.66
V deletion
m/5 = 640.3283
Aspartimide
m/5 = 656.9393 \
:1 é 6 l7 Ig sl; 1lo 1IO 2l0 C’:O 4IO 5'0

Total ion counts vs. time (min)

1-91% B over 15 min

Phenomenex Jupiter C4 column (6550)

absorption at 214 nm vs. time [min]

5-65% B over 60 min
analytical Zorbax 300SB-C3 column

Synthesis Data for GLP-1 (Fmoc-(DMB)Gly-OH 2)

Sequence:

Resin:

G = Fmoc- (DMB) G|y-OH

HAEGTFTSDV SSYLEGQAAK EFIAWLVKGR (30 AA);

100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-
terminal amide after cleavage
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Synthesis time: 1.1h
a) LCMS data, TIC

Integral Height
2
" 150% 150% -
4
a 100%+«" 100% K-
c -
‘g 50% 1 50% -
ey
=
k) Ri KVLWA | FEKAAQGELYSSVDSTFTGEAH Ri KVLWA | FEKAAQGELYSSVDSTFTGEAH
e
o Width 1009  Difference
g 150%-
=
(3]
g 100% ~o° 0%
2
o
&’ 50% A
-100%

Ri KVLWA | FEKAAQGELYSSVDSTFTGEAH RiKVLWA | FEKAAQGELYSSVDSTFTGEAH
b) LCMS data, TIC c) HPLC data

Desired

Peptide

m/4 = 824.85 \

H deletion or
Amino trucation
m/4 = 790.66

V deletion
m/5 = 640.3283
Aspartimide
m/5 = 656.9393

4 5 6 7 8 9 10 11 10 20 30 40 50

Total ion counts vs. time (min) absorption at 214 nm vs. time [min]
1-91% B over 15 min 5-65% B over 60 min
Phenomenex Jupiter C4 column (6550) analytical Zorbax 300SB-C3 column

Synthesis Data for GLP-1 (Fmoc-Ser(t-Bu)-Ser(WMeMepro)-OH)

Sequence: HAEGTFTSDV SSYLEGQAAK EFIAWLVKGR (30 AA);
SS = Fmoc-Ser (#-Bu)-Ser (¥ "Ypro)-OH
Resin: 100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-

terminal amide after cleavage
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Synthesis time: 1.1h
a) LCMS data, TIC

Integral Height
> 150%; 150% 1
2
o
2 100%:- 100% 1
c
0
*g' 50% | 50% 1
s
2 RGKVLWA | FEKAAQGELY i VDSTFTGEAH RGKVLWA | FEKAAQGELY i VDSTFTGEAH
—
g’, Width 100% Difference
£ 150%
=
(3]
.g 100% + 0%
S
& 50%-
-100%

RGKVLWA | FEKAAQGELY i VDSTFTGEAH RGKVLWA | FEKAAQGELY i VDSTFTGEAH
b) LCMS data, TIC c) HPLC data

Desired

Peptide

m/4 = 824.85 \

V deletion
m/5 = 640.3283
Aspartimide

m/5 = 656.9393 \
L\_A_
T
8

»,

I T T T

I T T T T

T 1
9 10 11 10 20 30 40 50

4 5 6 7
Total ion counts vs. time (min) absorption at 214 nm vs. time [min]
1-91% B over 15 min 5-65% B over 60 min

Phenomenex Jupiter C4 column (6550) analytical Zorbax 300SB-C3 column
Synthesis Data for GLP-1 (Fmoc-Phe-Thr(WMeMepro)-OH)
Sequence: HAEGTFTSDV SSYLEGQAAK EFIAWLVKGR (30 AA);

FT = Fmoc—Phe-Thr (Y " "pro)—OH

Resin: 100 mg of RINK amide ChemMatrix® (0.49 mmol/g), yielding the C-

terminal amide after cleavage
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Synthesis time:

1.1h

a) LCMS data, TIC

Relative change of deprotection peaks, %

Integral

150%

100% 1

50% 1

...........................

RGKVLWA | FEKAAQGELYSSVDS i TGEAH

Height

150% 1

100% 1

50% 1

..........................

RGKVLWA | FEKAAQGELYSSVDS i TGEAH

Width 100% | Difference
150% -
100% 1 0%
50% 1
-100%
RGKVLWA | FEKAAQGELYSSVDS i TGEAH RGKVLWA | FEKAAQGEL YSSVDS i TGEAH
b) LCMS data, TIC c) HPLC data
Desired
Peptide
m/4 = 824.85 \
H deletion or
Amino trucation
m/4 = 790.66
V deletion
m/5 = 640.3283
Aspartimide
m/5 = 656.9393 \
T
./._/,_ﬂ"'/L M\NAM-«»‘ i Ve
6 7 8 9 9 10 20 30 40 50
Total lon counts vs. time (min) absorption at 214 nm vs. time [min]
1-91% B over 15 min 5-65% B over 60 min
Phenomenex Jupiter C4 column (6550) analytical Zorbax 300SB-C3 column
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S Statistical analysis of AFPS data set

5.1 Distribution of integrals for different synthesis parameters

Deprotection peak integrals were analyzed for different combinations of synthesis parameters
for coupling of each incoming amino acid (SI Figure 3-5, Appendix 2). On an average, PyAOP
and double coupling strokes are seen to be more effective than HATU and single coupling strokes
respectively. Apart from the mean of the distribution being shifted towards the right, indicating
better coupling, the spread is also narrower thereby indicating more consistency of coupling thus

reproducibility.
HATU:Single
A, #255 C, #125 D, #375 E, #471 F, #289
209 ,=100.0 201 =979 201 4=99.4 201 ;=985 209 =995
0=6.3 0=10.4 o=4.1 o=4.7 0=6.5
15 151 151 151 15
10 101 104 101 10
5 51 5 5 5
0 0 0 0 0
80 100 120 80 100 120 80 100 120 80 100 120 80 100 120
G, #5634 H, #217 I, #277 K, #453 L, #663
201 ,=101.4 201 ,=99.6 201 =972 201 =981 209 =987
0=6.1 0=6.0 o=7.1 0=5.2 0=5.2
15 151 15 151 15
10 101 104 101 10
(=]
0\“ 5 5 5 5 5
[ =]
o
S 0l . 0 0 ; ~ 0k : — gl ; :
5 80 100 120 80 100 120 80 100 120 80 100 120 80 100 120
o M, #147 N, #124 P, #359 Q, #141 R, #119
-
% 201 u=100.6 201 ;=973 201 ,=98.9 201 =965 201 y=93.4
5 0=8.9 0=10.6 0=6.0 o=112 o=7:1
15 151 15 151 15
10 10 104 10 10
5 51 51 51 5
0 . = 0 ; 2l o : — 0 ‘ — 0 , :
80 100 120 80 100 120 80 100 120 80 100 120 80 100 120
S, #207 T, #104 V, #183 W, #147 Y, #258
207 ,=99.0 201 ,=98.4 207 ,=99.0 201 4=976 209 ,=98.0
o=49 0=6.7 o=4.4 0=6.3 0=5.9
15 15 151 151 15
10 104 101 104 10
5 5 5 51 5
0l ! — ol . — ol ; — ol . 1 olt ! ,
80 100 120 80 100 120 80 100 120 80 100 120 80 100 120

Relative change of deprotection peak integrals, %

SI Figure 3. Distribution of integrals for optimized recipe by amino acid. Relative change of
deprotection peak integrals for reaction steps with HATU coupling agent, single coupling stroke
and 40 mL/min flow rate by amino acid. The number of data points for each amino have been

mentioned after #.
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20

154

104

20

154

101

20

Distribution, %

151

101

20

151

104

HATU:Single

Post-Optimization

A, #249, @1024 C, #155, @NA 20 D, #539, @539 20 E, #717, @717 F, #425, @425
u=100.2 u=102.2 u=97.2 Mu=NA u=298.9 u=98.9 u=97.6 u=97.6 H=98.9 u=98.9
0=5.2 o=4.9 0=53 g=NA o=3.4 o=3.4 0=3.8 0=3.8 0=4.6 0=4.6

15 15 154 151

10 10 10 101

5 5 54 51
- T 0+— T 0 0 0 T T
80 100 120 80 100 120 80 100 120 80 100 120 80 100 120

G, #873, @873 20 H, #235, @103 50 |, #401, @401 50 K, #700, @700 50 L, #952, @952
u=100.7 u=100.7 u=98.8 u=104.1 u=97.2 u=97.2 u=97.4 u=97.4 H=98.6 u=98.6
0=4.2 0=4.2 0=4.38 0=3.8 o=4.1 o=4.1 o=4.1 o=4.1 0=4.2 0=4.2

15 15 15 151
10 10 104 104
5 5 5 51
T T T 00— T T 00— T T 0-— T T 0-+— T T
80 100 120 80 100 120 80 100 120 80 100 120 80 100 120

M, #216, @216 20 N, #117, @290 20 P, #592, @592 20 Q, #130, @414 20 R, #117, @856
u=99.3 M=199.3 M=96.1 u=101.4 Mu=199.0 u=99.0 u=97.2 u=101.6 H=93.7 u=101.6
g=3.7 g=3.7 0=4.6 0=5.2 o=4.1 o=4.1 o=5.4 g=4.2 0=6.9 o=53

15 15 154 154
10 10 104 104
5 5 51 51
v T v 0-+— T T 00— T T 00— T T 0-+— T T
80 100 120 80 100 120 80 100 120 80 100 120 80 100 120

S, #207, @994 20 T, #101, @357 20 V, #183, @425 20 W, #207, @207 20 Y, #376, @376
u=99.0 pu=101.2 Hu=98.1 u=101.8 Hu=199.0 u=101.6 u=97.4 u=97.4 Hu=98.1 u=98.1
o=4.9 o=4.4 o=45 o=45 og=4.4 o=4.2 o=5.4 o=5.4 0=4.2 o=4.2

15 15 15 154
10 10 104 104
5 5 51 51
0 0 0 0
80 100 120 80 100 120 80 100 120 80 100 120 80 100 120

Relative change of deprotection peak integrals, %
SI Figure 4. Distribution of deprotection peak integrals by amino acid for HATU coupling agent
and single coupling stroke (blue) and after optimization parameters (red).(3) In the optimized
synthesis protocol, A and S were coupled with HATU (double coupling) and H, N, Q, R, T and V
were coupled with PyAOP (double couplings). It is noteworthy, that C was also coupled with
PyAOP (double couplings) under the final conditions, however, only a few data points existed for
this amino acid. The number of data points for each combination are noted above the specific
distribution after the symbol notation - # for HATU:Single and @ for optimized parameters.
Distributions for which the number of data points is less than 20 are not visualized and the number
is not noted as NA (not applicable).
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HATU:Single HATU:Double PyAOP:Single PyAOP:Double

55 A, #249, @NA, 1024, *NA 20 C, #155, @NA, 2220, *NA 20 D, #539, @NA, 7232, *NA 20 E, #717, @29, 7246, *NA 56 F, #425, @NA, 7281, *NA
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SI Figure 5. Distribution of deprotection peak integrals by amino acid for different combinations
of coupling agent (HATU, PyAOP) and coupling strokes (Single, Double). The number of data
points for each combination are noted above the specific distribution after the symbol notation - #
for HATU:Single, @ for PyAOP:Single, ~ for HATU:Double and * for PyAOP:Double.
Distributions for which the number of data points is less than 20 are not visualized and the number
is not noted as NA (not applicable).
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5.2 Onset of aggregation

To identify the position from C-terminus where aggregation starts, we analyzed all pre-chains
of aggregating sequences (SI Figure 6). Position for onset of aggregation was defined as the first
coupling-deprotection step where the difference between width and height in the deprotection trace
was greater than 20%. Sequences of lengths greater than 20, 25 and 30 were analyzed individually.
The maximum position at which aggregation can start was restricted to the minimum length for
each case. For instance, in the analysis of all sequences greater than 20 amino acids, the data set
was restricted to the sequences where the aggregation starts before 20 amino acids.

10
L20, #180
X 3 L25, #143
s L30, #93
8 6
3
3 4
—_
(O]
o 2
0

1 5 10 15 20 25 30
Position of Incoming Amino Acid

SI Figure 6. The onset of aggregation is analyzed for sequences of length (L) greater than 20, 25
and 30. # followed by the numerical quantity indicates the number of sequences in the dataset
with the unique pre-chain where aggregation starts.
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6 Statistical analysis of PDB data set

6.1 Downloading and pre-processing of data set

The PDB dataset was downloaded and pre-processed (accessed on April 17, 2020).(/0) From
the FASTA file, only sequences with less than equal to 50 amino acids were selected. Redundant
sequences and sequences with unnatural residues were removed. A total of 8441 out of 33982
sequences remained after the pre-processing, and were used for further analysis (SI Figure 7).

10
7.5
5

Distribution, %

25
0

0 10 20 30 40 50
Sequence Length

SI Figure 7. Distribution of sequences for different sequence lengths.

6.2 Prediction of aggregation

Complete traces for difference were obtained for all sequences using the pre-trained model. If
difference at all coupling-deprotection steps was less than 20%, then the sequence was marked as
a non-aggregating sequence. If aggregation was seen at a particular step, then the pre-chain of that
step was added to the list of aggregating pre-chains and the sequence was added to the list of
aggregating sequences. Based on the heuristic definition of aggregation used in the current study,
3815 out of 8441, or 45% of the sequences were predicted to have at least one aggregating
coupling-deprotection step.

6.3 Onset of aggregation

Onset of aggregation for the PDB sequences was calculated for sequences with different
minimum lengths, similar to SI Section 5.1 (SI Figure 8).

12

2 20, #2160
c 9 25, #2099
Kl 30, #1940
5 6 35, #1552
2 40, #1055
» 3 45, #644

a .

0 J
0 10 20 30 40 50

Residue Position
SI Figure 8. The onset of aggregation is analyzed for PDB sequences of different minimum

lengths. # followed by the numerical quantity indicates the number of sequences in the dataset
with the unique pre-chain where aggregation starts.

6.4 Distribution of amino acids
Distribution of amino acids in non-aggregating sequences and pre-chain at the aggregating

step of aggregating sequences was similar (SI Figure 9). Based on this, it may be said that
aggregation is mostly independent of the residue composition.
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I Non Aggregating I Aggregating

Distribution, %
»

ACDEFGHIKLMNPQRSTVWY
Residue
SI Figure 9. Distribution of amino acids in non-aggregating sequences and pre-chain at the
aggregating step of aggregating sequences is similar.

6.5 Activation analysis

Activation maps for pre-chains of all aggregating sequences were calculated. For analysis,

sum of all activations by position, residue and bit-indices for each residue was done for sequences
with greater than equal to 25 residues.

Residues and side chain protecting groups with aryl groups are found to be the most activated
for aggregation, consistent with previous findings. (SI Figure 10; SI Table 3).

12
X
s 9
)
5 6
2
» 3
(m)

0

ACDEFGHIKLMNPQRSTVWY
Residue

SI Figure 10. Distribution of residues responsible for aggregation, as calculated from gradient
activation maps.

Residues at the C-terminus are predicted to be the principal contributors to aggregation (SI
Figure 11). There is a polynomial decay in the contribution of aggregation from other positions
for this specific data set. This result is consistent with the mutations of GLP-1 and JR-10 (SI
Section 4) which were predicted and experimentally validated. A majority of mutants, both less
and more aggregating, had single point mutations for C-terminal residues. Further, the predicted
mutants for the difficult-to-synthesize sequences (SI Section 3.8) demonstrate a similar trend.

—_

Distribution, %
o w [0)] (o) N

—_

5 10 15 20 25

Residue Position
SI Figure 11. Distribution of residue positions responsible for aggregation, as calculated from
gradient activation maps.
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SI Table 4. List of indices for the most activated substructures for the residues contributing most
to aggregation. Barring indices redundant across all amino acids and those belong to the amino
acid scaffold, bulkier protecting groups are most activated.

Most
activated
indices

10
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25

77

101

93

26

37

116

121

45

111

Arg

16

93

68

53

44

111
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21

121

34

His

70

73

87

13

17

79

107

111

115

112

Asn

104

101

11

36

56

122

127

47

106

Cys

&3

&5

37

116

88

45

61

47

Tyr

78

66

73

54

61

79

&9

36

22

60

Phe

42

79

32

73

64

&9

22

121

39
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8 Appendix 1

The substructures used in the training of the model have been indexed by their respective bit-
vector indices. The blue shaded circle represents the node atom of the substructure and dark bonds
depict the topological exploration of the n-nearest neighbors. The bonds and atoms that are not a
part of the specific topological exploration are in grey color. Atoms which are a part of an aromatic
ring have a yellow shaded circle to differentiate them from the rest.
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8.2 Substructures for pre-chain residues
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9 Appendix 2

Histogram of relative change of deprotection peak integrals by amino acid, for different coupling
agents — HATU () and PyAOP (' ). The number of data points are noted above the specific
distribution after the symbol notation - # and @ for respective conditions. Distributions for which
the number of data points is less than 20 are not visualized and the number is not noted as NA (not
applicable). The mean and standard deviation for respective distributions are noted.
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Histogram of relative change of deprotection peak integrals by amino acid, for different coupling
strokes — Single () and Double (). The number of data points are noted above the specific
distribution after the symbol notation - # and @ for respective conditions. Distributions for which
the number of data points is less than 20 are not visualized and the number is not noted as NA (not
applicable). The mean and standard deviation for respective distributions are noted.
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Histogram of relative change of deprotection peak integrals by amino acid, for different
combinations of coupling agent:coupling strokes — HATU:Single () and HATU:Double (' ). The
number of data points are noted above the specific distribution after the symbol notation - # and
@ for respective conditions. Distributions for which the number of data points is less than 20 are
not visualized and the number is not noted as NA (not applicable). The mean and standard
deviation for respective distributions are noted.
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Histogram of relative change of deprotection peak integrals by amino acid, for different
combinations of coupling agent:coupling strokes — PyAOP:Single () and PyAOP:Double ().
The number of data points are noted above the specific distribution after the symbol notation - #
and @ for respective conditions. Distributions for which the number of data points is less than 20
are not visualized and the number is not noted as NA (not applicable). The mean and standard
deviation for respective distributions are noted.).
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Histogram of relative change of deprotection peak integrals by amino acid, for different
combinations of coupling agent:coupling strokes — HATU:Single () and PyAOP:Single( ). The
number of data points are noted above the specific distribution after the symbol notation - # and
@ for respective conditions. Distributions for which the number of data points is less than 20 are
not visualized and the number is not noted as NA (not applicable). The mean and standard
deviation for respective distributions are noted.
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Histogram of relative change of deprotection peak integrals by amino acid, for different
combinations of coupling agent:coupling strokes — HATU:Double (=) and PyAOP:Double ().
The number of data points are noted above the specific distribution after the symbol notation - #
and @ for respective conditions. Distributions for which the number of data points is less than 20
are not visualized and the number is not noted as NA (not applicable). The mean and standard
deviation for respective distributions are noted.
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