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Development of a catalytic multicomponent reaction by orthogonal activation of readily available substrates for
the streamlined difunctionalization of alkynes is a compelling objective in organic chemistry. Alkyne
carboalkynylation, in particular, offers a direct entry to valuable 1,3-enynes with different substitution patterns.
Here, we show that the synthesis of stereodefined 1,3-enynes featuring a trisubstituted olefin is achieved by
merging alkynes, alkynyl bromides and redox-active N-(acyloxy)phthalimides through nickel-catalyzed
reductive alkylalkynylation. Products are generated in up to 89% yield as single regio- and E isomers.
Transformations are tolerant of diverse functional groups and the resulting 1,3-enynes are amenable to further
elaboration to synthetically useful building blocks. With olefin-tethered N-(acyloxy)phthalimides, a cascade
radical addition/cyclization/alkynylation process can be implemented to obtain 1,5-enynes. The present study
underscores the crucial role of redox-active esters as superior alkyl group donors compared to haloalkanes in
reductive alkyne dicarbofunctionalizations.
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Nickel-Catalyzed Site- and Stereoselective Reductive 
Alkylalkynylation of Alkynes 

 

Yi Jiang1, Jiaoting Pan1,2, Tao Yang1, Joel Jun Han Lim1, Yu Zhao1,2* & Ming Joo Koh1* 

 

Development of a catalytic multicomponent reaction by orthogonal activation of readily 

available substrates for the streamlined difunctionalization of alkynes is a compelling objective 

in organic chemistry. Alkyne carboalkynylation, in particular, offers a direct entry to valuable 

1,3-enynes with different substitution patterns. Here, we show that the synthesis of 

stereodefined 1,3-enynes featuring a trisubstituted olefin is achieved by merging alkynes, 

alkynyl bromides and redox-active N-(acyloxy)phthalimides through nickel-catalyzed reductive 

alkylalkynylation. Products are generated in up to 89% yield as single regio- and E isomers. 

Transformations are tolerant of diverse functional groups and the resulting 1,3-enynes are 

amenable to further elaboration to synthetically useful building blocks. With olefin-tethered 

N-(acyloxy)phthalimides, a cascade radical addition/cyclization/alkynylation process can be 

implemented to obtain 1,5-enynes. The present study underscores the crucial role of redox-

active esters as superior alkyl group donors compared to haloalkanes in reductive alkyne 

dicarbofunctionalizations. 

Aliphatic carboxylic acids are abundant feedstock chemicals that have found extensive utility 

in chemical synthesis.1-2 With recent advances in cross-coupling chemistry, these readily available 

organic molecules which were once regarded as non-traditional cross-partners, have emerged as 

convenient alkyl donors in catalytic decarboxylative CC bond forming transformations, either 

via the innate carboxyl groups3-10 or their activated ester derivatives.11-23 These developments 

are further driven by the much wider commercial availability of alkyl carboxylic acids as compared 

to conventional alkyl halides or alkylmetal reagents.12,22,24 A related class of reactions that utilize 

N-(acyloxy)phthalimides (or NHPI esters) involve decarboxylative alkyl additions to alkynes25 or 

alkenes.26-37 Intrigued by previous studies, we speculated if alkyl NHPI esters could be exploited 

in three-component processes by merging with an alkyne and an alkynyl halide to deliver 

synthetically valuable acyclic 1,3-enyne motifs, conjugated entities commonly embedded within 

natural products, pharmaceuticals, agrochemicals and materials.38-42  
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Various routes to architecturally analogous 1,3-enynes that contain a trisubstituted alkene 

moiety43-54 have been developed, but the majority focused on two-component systems involving 

coupling reactions of elaborated alkynes/alkenes as starting materials.43,47-48,51-54 Three-

component catalytic regimes44-46,49 starting from simpler, more readily accessible substrates offer 

a more practical approach to expeditiously assemble the desired products. However, these 

methods suffer from a number of shortcomings. Activated α-functionalized alkyl halides are 

frequently employed to generate a stabilized alkyl radical species for alkyne addition,44 and a 

second catalyst is sometimes required to promote C(sp)C(sp2) bond formation44-45,49 which limit 

broad utility.       

 

Fig. 1  The significance of developing site- and stereoselective reductive alkyne alkylalkynylation. a, State-of-the-art advances 

in multicomponent reductive alkyl-functionalizations of unsaturated CC bonds. Examples of reductive additions to alkynes with 

sp-hybridized electrophiles are yet to be reported, presumably due to the difficulties of overcoming rapid homocoupling of the 

reactive alkynyl halide. b, Ni-catalyzed reductive alkylalkynylation of alkynes using NHPI esters and haloalkynes offers a 

convenient strategy to assemble stereodefined 1,3-enynes in one step by exploiting widely available redox-active esters as 

efficient alkyl group donors. R, functional group; X, halide; cat., catalyst; NHPI, N-hydroxyphthalimide; TDAE, 

tetrakis(dimethylamino)ethylene. 
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A growing class of three-component dicarbofunctionalization reactions pertain to the 

regioselective addition of carbogenic groups, derived from stable electrophilic organohalides (vs. 

the more sensitive organometallic reagents55-56), across CC  bonds in the presence of a mild 

reducing agent.57-62 To date, most reductive alkyl-functionalization processes involve alkyl-aryl or 

alkyl-alkenyl additions to olefins using iodo- or bromoalkanes as the alkyl group donor (Fig. 1a). 

In contrast, the corresponding transformations with alkynes are severely under-developed and 

restricted to alkyl-arylations using organoiodide reagents.57 One longstanding challenge that 

arises from three-component reductive alkynylation processes is the high propensity of the 

haloalkyne electrophile to undergo facile homocoupling in the presence of a Ni-based complex, 

inadvertently suppressing the desired alkylalkynylation pathway (Fig. 1a, inset; see Fig. 4 for 

further discussion). Notwithstanding these limitations, we reasoned that the union of an alkyne, 

an alkynyl halide and a redox-active NHPI ester can be achieved using a Ni-based catalyst under 

appropriate reductive conditions to give diverse 1,3-enynes with simultaneous control of site and 

stereoselectivity (Fig. 1b).  

Our motivation to pursue this approach is twofold: (1) The greater variety of N-

(acyloxy)phthalimides accessible from aliphatic carboxylic acids (vs. alkyl halides) means that 

diverse aliphatic units (tertiary, secondary, primary) can be incorporated; (2) The ability of NHPI 

esters to promote challenging alkylalkynylations in which alkyl halides fail to deliver, by 

minimizing rampant undesired pathways arising from homocoupling63-64 and cross-coupling14,16 

of the alkynyl halide and NHPI ester reactants, as well as alkyne cyclotrimerization65 (see Fig. 4 

for further discussion). Herein, we disclose the first reductive protocol that accomplishes 

selective alkyne alkylalkynylation using NHPI esters as efficient aliphatic group donors. 

Results  
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Reaction optimization. Examination of conditions for the reaction of 1a (1 equiv.), 2a (1.2 equiv.) 

and 3a (2.5 equiv.) showed that the desired 1,3-enyne product 4a could be obtained in 67% GC 

yield (>95% regio- and E selectivity) in the presence of 10 mol % of the Ni-based complex derived 

from NiBr2·diglyme and L1, Mn (2.5 equiv.) and DMA as solvent under ambient conditions (Table 

1, entry 1). Switching the reducing agent to Zn or tetrakis(dimethylamino)ethylene (TDAE) led to 

poor yields of 4a with excessive by-product formation from 1a cyclotrimerization65 and 2a 

homocoupling63-64 (Table 1, entries 2 and 3). Other Ni-based complexes were less effective in 

promoting alkylalkynylation (Table 1, entry 4), while less electron-rich bipyridine and 

phenanthroline ligands L2L8 afforded 4a in unsatisfactory yields (Table 1, entry 5). Changing 

DMA to other polar solvents also did not improve results (Table 1, entry 6).  

In order to enhance the catalytic efficiency and/or suppress the undesired formation of diyne 

by-products,63-64 various additives were experimented as detailed in Table 1, entries 710. 

Addition of TMSCl (known to activate the Mn(0) surface66) to the reaction system was somewhat 

detrimental (Table 1, entry 7), whereas ZnCl2 or MgBr2 additives67 also reduced the yield of 4a 

(Table 1, entries 8 and 9). Considering the previously reported role of lithium salts in minimizing 
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diyne formation,14 we found that the use of LiBr (0.5 equiv.) indeed improved results, affording 

4a in 76% yield (73% isolated; Table 1, entry 10). 

Substrate scope. To examine the generality of the established conditions, we tested a range of 

electronically and sterically diverse aryl- and heteroaryl-substituted alkynes, and the desired 

products 4baa were isolated in 4081% yield as single regio- and E isomers (Fig. 2). Both 

electron-rich and electron-deficient arenes are tolerated, including those that contain a Lewis 

basic aniline (4g), Brønsted acidic NHBoc (4h) and electrophilic aldehyde (4k). Synthesis of 4j (<5% 

hydrodebromination side products) that is functionalized with a bromoaryl substituent highlights 

the transformation’s remarkable chemoselectivity. As demonstrated by the preparation of 4b, 

the transformations may be performed on larger scale (3 mmol) without appreciable diminution 

in efficiency.  

Products that bear heterocyclic units (4q and 4r), as well as those derived from complex 

bioactive compounds (4uw) could be generated. By using a D-substituted alkyne, 

tetrasubstituted deuterium-labelled olefins such as 4x, which otherwise might be difficult to 

prepare by other means, could be secured through the present protocol. However, internal 

alkynes were resistant to alkylalkynylation (cf. 5; <5% conv. to product). Aliphatic alkynes were 

also found to be ineffective substrates under the standard conditions. Besides silyl-substituted 

bromoalkynes, aryl- and alkyl-functionalized alkynyl bromides also underwent efficient reaction 

to deliver the expected 1,3-enynes 4yaa in 4653% yield and 9495% E selectivity. 
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Fig. 2  The scope of alkynes and alkynyl bromides. Regioisomeric ratios (r.r.) and E:Z ratios were determined by GC and 1H NMR 

analysis. Yields are for isolated and purified products. aThe reaction was conducted on 3 mmol scale. bThe reactions were 

conducted with LiBr (1 equiv.) and DMSO as solvent. cThe products were generated in 95:5 E:Z ratio. dThe product was generated 

in 94:6 E:Z ratio. R, functional group; DMA, N,N-dimethylacetamide; RT, room temperature; Boc, tert-butoxycarbonyl.  

A wide assortment of aliphatic NHPI esters served as effective reagents for alkylalkynylation 

(Fig. 3). These include tertiary alkyl N-(acyloxy)phthalimides (affording 4abar with quaternary 

carbon centers), secondary alkyl N-(acyloxy)phthalimides (affording 4au and 4av with tertiary 

carbon centers) as well as primary alkyl N-(acyloxy)phthalimides (4aw and 4ax). To facilitate 

secondary and primary alkyl additions, an additional 10 mol % of CuTC was added as co-catalyst 

to improve yields, possibly by stabilization of the corresponding alkyl radicals generated.68 The 

diversity of aliphatic groups which can be installed (such as oxetane 4af, pyrans 4ak and 4al, 
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piperidine 4an and acid-labile acetal 4am) compares favorably with previous methods that 

employed less readily available haloalkanes.57,60,69 

 

Fig. 3  The scope of redox-active esters. Regioisomeric ratios (r.r.), diastereomeric ratios (d.r.) and E:Z ratios were determined 

by GC and 1H NMR analysis. Yields are for isolated and purified products. aThe reactions were conducted with 1 (3 equiv.) and 2 

(1 equiv.). bThe reactions were conducted with 1 (1 equiv.), 2 (1.5 equiv.) and C4F9I (1.72 equiv.). cThe reactions were conducted 

with 1 (3 equiv.), 2 (1 equiv.) and LiBr (1 equiv.) with L4 (12 mol %) as ligand and CuTC (10 mol %) as co-catalyst. dThe reactions 

were conducted with 1 (3 equiv.), 2 (1 equiv.) and LiBr (1 equiv.) with L1 (12 mol%) as ligand and CuTC (10 mol %) as co-catalyst. 

R, functional group; DMA, N,N-dimethylacetamide; RT, room temperature; TBS, tert-butyldimethylsilyl; Ts, p-toluenesulfonyl; TC, 

thiophene-2-carboxylate. 

Structurally sophisticated alkyl additions could be implemented as exemplified by the 

products 4aq (from ketopinic acid) and 4ar (from dehydroabietic acid). To incorporate fluoroalkyl 

units, due to the difficulty of fluoroalkyl NHPI esters to generate the requisite fluorinated radical 

species,70 we turned to perfluoroalkyl iodide to deliver alkylalkynylation of both aryl- and alkyl-

substituted alkynes. In the event, the F-containing 1,3-enynes 4as and 4at were successfully 

isolated in 53% and 36% yields, respectively. 
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Mechanistic studies. As shown in Fig. 4, studies were carried out to elucidate the mechanism of 

the reductive alkyne alkylalkynylation process.  

 

Fig. 4  Mechanistic investigations. a, Unsuccessful alkylalkynylation attempts using iodoalkane as alkyl group donor. b, Two-

component control experiments. R, functional group; L, ligand; THF, tetrahydrofuran; Py, pyridine; TDAE, 

tetrakis(dimethylamino)ethylene; RT, room temperature. 

Remarkably, control experiments showed that when NHPI ester 3a was replaced by the 

corresponding 2-iodo-2-methylpropane 6, there was <5% conv. to the 1,3-enyne product 4a. 

Instead, the alkyne 1a was fully consumed in cyclotrimerization65 to form arene side products, 
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and homocoupling of bromoalkyne 2a to give diyne 7 was detected (Fig. 4a). Repeating the 

reaction under previously established reductive dicarbofunctionalization conditions57 also did 

not yield 4a (<5% conv. of 1a, ~40% conv. of 2a to 7). These observations not only highlight the 

importance of the redox-active ester component as an effective alkyl donor in these 

multicomponent reactions, but also provide hints that the alkynyl bromide was probably much 

more reactive (vs. the alkyl iodide), inadvertently suppressing the desired alkylalkynylation 

pathway and causing homocoupling of the bromoalkyne to predominate. 

Additional control experiments shed further light on the reaction (Fig. 4b). Under standard 

conditions, the reaction between bromoalkyne 2a and 6 led to full conversion of 2a to diyne 7 

(<5% cross-coupling to 8 detected). When alkyne 1a was treated with 2a under the same 

conditions, >95% conv. to 7 was also detected and 1a underwent undesired cyclotrimerization. 

In contrast, replacing the iodoalkane 6 with NHPI ester 3a only afforded trace amounts of 7 (<5% 

cross-coupling to 8) and 3a was fully consumed (presumably by decomposition under the 

reductive conditions71). These observations imply that the presence of 3a somehow inhibited 2a 

homocoupling by preferentially engaging with an in situ-generated organonickel species, albeit 

no productive reaction could occur if alkyne 1a was absent to trap the t-Bu radical formed (see 

Fig. 5). Notably, subjecting 1a to 3a under the established conditions selectively furnished Z 

alkene 9 in 14% GC yield, leading us to deduce that the CC(t-Bu) bond and the adjacent CNi 

bond are generated in an anti configuration (presumably to minimize steric repulsions) within 

the alkenylnickel intermediate I (see Fig. 5). In the absence of the alkynyl bromide, 9 might be 

formed by adventitious protodemetallation of I with residual moisture. 

Based on our investigations and related studies,14,60,64 a tentative mechanism is proposed in 

Fig. 5. Starting from an in situ-generated Ni(0) species i (e.g. from reduction of the Ni(II) pre-

catalyst14,64, oxidative addition with bromoalkyne 2 followed by single-electron reduction in the 

presene of Mn gives rise to an alkynylnickel(I) species iii. At this stage, a second molecule of 2 

could potentially react with iii to give dialkynylnickel(III) vii that subsequently reductively 

eliminates to afford the undesired diyne side product 7. However, if a NHPI ester 3 is present in 

the system, the reaction trajectory could be altered as 3 chemoselectively engages with iii, 

through a single-electron transfer (SET) decarboxylative pathway,14 to furnish alkynylnickel(II) 

complex iv with concomitant ejection of CO2, phthalimide anion and an alkyl radical species. 

Facile capture of the alkyl radical by alkyne 1 generates an alkenyl radical that recombines with 

iv to form E-alkenylnickel(III) complex v. The ensuing reductive elimination then generates Ni(I) 



  Koh, Zhao et al., Page 10 

phthalimide vi and releases the desired 1,3-enyne 4. Following another single-electron reduction 

by Mn, i is regenerated to turn over the catalytic cycle. On the other hand, a less reactive alkyl 

halide (vs. alkyl NHPI ester) is not capable of efficiently intercepting alkynylnickel(I) complex iii, 

consequently allowing other side reactions such as homocoupling 2 to become competitive in 

the system. 

 

Fig. 5  Proposed catalytic mechanism for reductive alkylalkynylation. Unlike a haloalkane, NHPI ester 3 is capable of intercepting 

the putative alkynylnickel intermediate iii to promote alkylalkynylation and suppress adventitious homocoupling of 2 to diyne 7. 

R, functional group; L, ligand; Phth, phthaloyl.  

Synthetic transformations. Using redox-active esters 10 tethered to a terminal olefin, we 

postulated that a cascade pathway72 commencing from alkyl radical addition to the alkyne 

followed by an intramolecular 5-exo-trig cyclization with the C=C bond to give a second alkyl 

radical species III before reassociation with the Ni complex for subsequent alkynylation could 

occur (Fig. 6a). This would give rise to complex 1,5-enynes 11 bearing a trisubstituted 

cyclopentene nucleus and an alkyne appendage. Gratifyingly, the Ni-catalyzed cascade processes 

proceeded smoothly to generate the desired products 11ae in up to 85% yield, further 

demonstrating the versatility of the alkylalkynylation regime by taking advantage of radical-based 

reactivity modes to construct complex molecules. 
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Fig. 6  Application to cascade processes and further derivatization. a, Cascade radical addition/cyclization/alkynylation to 

furnish 1,5-enynes. b, Chemical transformations of stereodefined 1,3-enynes to synthetically valuable building blocks. R, 

functional group; DMA, N,N-dimethylacetamide; DCM, dichloromethane; THF, tetrahydrofuran; RT, room temperature; cat., 

catalyst; Bn, benzyl; Boc, tert-butoxycarbonyl; Tf, trifluoromethanesulfonyl; m-CPBA; meta-chloroperoxybenzoic acid.  

Utility of the 1,3-enyne products is showcased through a series of synthetic manipulations 

involving both the olefin and alkyne motifs towards the preparation of diverse molecular 

structures (Fig. 6b). Using the desilylated derivative 12 from 4b,73 facile transformation of the 

terminal alkyne moiety to a spectrum of different products can be effected by partial 

hydrogenation to the 1,3-diene 13 in 52% yield,74 Au-catalyzed hydration to ketone 14 in 79% 

yield,75 and Cu-catalyzed azide-alkyne cycloaddition to 1,2,3-triazole 15 in 70% yield.76 In another 
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instance, chemoselective epoxidation of the trisubstituted olefin followed by Au-catalyzed 

cycloisomerization77 afforded the disubstituted furan derivative 16 in 51% overall yield. On the 

other hand, partial cis-selective hydrogenation of the internal alkyne in 4z generated sterically 

congested 1,3-diene 17 in 40% yield as a single Z isomer. 

To conclude, we have demonstrated that a single Ni-based catalyst is capable of mediating 

regio- and stereoselective alkyl-alkynyl additions to alkynes to deliver valuable 1,3-enyne 

products. Access to 1,5-enynes was achieved through a radical-based cascade transformation, 

and our investigations shed light on the superior performance of redox-active esters in 

overcoming undesired haloalkyne homocoupling by competitively intercepting a putative 

alkynylnickel intermediate. In situations where two electrophilic halides proved to be ineffective, 

the synergistic combination of a redox-active ester and an organohalide may provide viable 

solutions to address other longstanding challenges in dicarbofunctionalizations that employ 

multiple electrophiles. 

Data availability   

All data are available from the corresponding authors upon reasonable request.  
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1. General information 

All commercial reagents were used without additional purification, unless 

otherwise stated. Anhydrous solvent was purchased from commercial sources and 

transferred under an argon atmosphere. NMR spectra were recorded on Bruker 400 

MHz and Bruker DPX 500 MHz spectrometer. Chemical shifts are reported in ppm 

from tetramethylsilane with the solvent resonance resulting from incomplete 

deuterium incorporation as the internal standard (CDCl3: δ 7.26 ppm). Data are 

reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t 

= triplet, q = quartet, br = broad, m = multiplet, dt = doublet of triplet, dd = double 

doublet, ddd = doublet of a double doublet), and coupling constants (Hz). 13C NMR 

spectra were recorded on Bruker 400 MHz and Bruker DPX 500 MHz spectrometer 

with complete proton decoupling. Chemical shifts are reported in ppm from 

tetramethylsilane with the solvent resonance as the internal standard (CDCl3: δ 77.20 

ppm). 19F NMR spectra were recorded on Bruker 400 MHz spectrometer with 

complete proton decoupling or proton coupling. High-resolution mass spectrometric 

data (HRMS) were obtained using Agilent 7200 Q-TOF and Bruker MicroTOF-Qll 

(APCI, or Electrospray ionization, ESI). GC-MS analysis was performed on 

Shimadzu GCMS-QP2020 gas chromatography coupled to a Shimadzu QP2010 mass 

selective detector. Values for regioisomeric ratio and E/Z of products were determined 

by GC (GC-QP2030) and NMR analysis. 

Solvents 

Solvents (acetonitrile, CH2Cl2, diethyl ether, tetrahydrofuran and toluene) were 

purified under a positive pressure of dry nitrogen gas by a modified Innovative 

Technologies purification system. N,N-Dimethylacetamide (anhydrous), 

N,N-dimethylformamide (anhydrous), dimethyl sulfoxide (anhydrous), 

dimethoxyethane (anhydrous) and 1,4-dioxane (anhydrous) were used as received. All 

purification procedures of products were carried out with reagent grade solvents. 

Materials  

Unless otherwise noted, commercial reagents were purchased from Aldrich, Alfa 
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Aesar, or other commercial suppliers and were used as received. Anhydrous NiI2 

(99.5% (metals basis)) were purchased from Alfa Aesar. Anhydrous NiBr2(diglyme), 

NiCl2(glyme), and Ni(cod)2 were purchased from Sigma Aldrich. Mn (powder, 

≥99.9% trace metals basis) was purchased from Sigma Aldrich. Anhydrous LiBr, 

anhydrous MgBr2, anhydrous ZnCl2 and TMSCl were purchased from Sigma Aldrich, 

Alfa Aesar or TCI (Tokyo Chemical Industry). 

2. Preparation of Substrates 

Scheme S1. Substrate scope of alkynes and alkynyl bromides 
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Scheme S2. Substrate scope of NHPI esters 

 

2.1 General procedure A for preparation of redox-active NHPI esters 

 

NHPI esters were prepared according to a previously reported procedure[1]. A 

round-bottom flask was charged with (if solid) carboxylic acid (1.0 equiv.), 

N-hydroxyphthalimide (1.0 – 1.1 equiv.) and DMAP (0.1 equiv.). Dichloromethane 

was added (0.2– 0.4 M), and the mixture was stirred vigorously. Carboxylic acid (1.0 

equiv.) was added via syringe (if liquid). DIC (1.1 equiv.) was then added dropwise 

via syringe, and the mixture was allowed to stir until the acid was consumed 

(determined by TLC). Typical reaction times were between 0.5 to 3 h. The mixture 

was filtered through a fritted funnel and rinsed with additional CH2Cl2/Et2O. The 

solvent was removed under reduced pressure, and purification by column 
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chromatography afforded the corresponding activated esters, which were used without 

further purification unless otherwise noted. Note: Some esters are prone to hydrolysis 

on silica gel during column chromatography and should be purified as quickly as 

possible to avoid decomposition.  

3. Analytical data of substrates 

1-Ethoxy-4-(ethynyl-d)benzene (S1, 96%D) 

 

The title compound was prepared according to a reported procedure.[2] 

1H NMR (400 MHz, CDCl3): δ 7.43 – 7.40 (m, 2H), 6.84 – 6.81 (m, 2H), 4.03 (q, 2H, 

J = 7.0 Hz), 2.99 (s, 0.04H), 1.41 (t, 3H, J = 7.0 Hz); HRMS (EI) m/z calcd for 

C10H9DO [M]+: 147.0789, found: 147.0783. 

(2R,5S)-N-(4-Ethynylphenyl)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]hepta

ne-2-carboxamide 4,4-dioxide (S2) 

 

The title compound was prepared according to a reported procedure.[3] 

1H NMR (400 MHz, CDCl3): δ 8.23 (br, 1H), 7.52 – 7.47 (m, 4H), 4.70 (s, 1H), 4.32 

(s, 1H), 3.60 (s, 2H), 3.08 (s, 1H), 1.73 (s, 3H), 1.51 (s, 3H); 13C NMR (101 MHz, 

CDCl3): δ 172.6, 164.6, 136.7, 133.3, 120.0, 119.3, 83.1, 77.7, 64.7, 64.0, 60.8, 38.7, 

19.7, 18.5; HRMS (ESI) m/z calcd for C16H16N2NaO4S [(M+Na)+]: 355.0723, found: 

355.0725. 

(8R,9S,13S,14S)-3-Ethynyl-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-c

yclopenta[a]phenanthren-17-one (S3) 
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The title compound was prepared according to a reported procedure.[4] 

1H NMR (400 MHz, CDCl3): δ 7.29 – 7.26 (m, 1H), 7.25 – 7.23 (m, 2H), 3.02 (s, 1H), 

2.90 – 2.87 (m, 2H), 2.54 – 2.47 (m, 1H), 2.44 – 2.39 (m, 1H), 2.30 (td, 1H, J = 10.6, 

4.5 Hz), 2.19 – 2.10 (m, 1H), 2.09 – 1.95 (m, 3H), 1.66 – 1.58 (m, 2H), 1.56 – 1.41 (m, 

4H), 0.91 (s, 3H); 13C NMR (126 MHz, CDCl3): δ 220.9, 141.0, 136.8, 132.8, 129.6, 

125.5, 119.6, 83.9, 76.6, 50.7, 48.1, 44.6, 38.1, 36.0, 31.7, 29.2, 26.5, 25.7, 21.7, 14.0; 

HRMS (EI) m/z calcd for C20H22O [M]+: 278.1665, found: 278.1663. 

2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(4-ethynylphenyl)a

cetamide (S4) 

 

The title compound was prepared according to a reported procedure.[3] 

1H NMR (400 MHz, CDCl3): δ 7.64 – 7.60 (m, 3H), 7.48 – 7.44 (m, 2H), 7.37 (s, 4H), 

6.94 (d, 1H, J = 2.5 Hz), 6.86 (d, 1H, J = 9.0 Hz), 6.70 (dd, 1H, J = 9.0, 2.5 Hz), 3.79 

(s, 3H), 3.77 (s, 2H), 3.03 (s, 1H), 2.42 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 

168.50, 168.46, 156.5, 139.8, 138.0, 136.8, 133.6, 133.0, 131.3, 131.1, 130.3, 129.4, 

119.8, 118.1, 115.4, 112.5, 112.3, 101.0, 83.4, 77.1, 55.9, 33.5, 13.5; HRMS (ESI) 

m/z calcd for C27H22ClN2O3 [(M+H)+]: 457.1313, found: 457.1316. 

(Bromoethynyl)triisopropylsilane (S5) 

 

The title compound was prepared according to a reported procedure.[5] 
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1H NMR (400 MHz, CDCl3): δ 1.08 (s, 21H); 13C NMR (101 MHz, CDCl3): δ 83.7, 

61.9, 18.7, 11.5; HRMS (EI) m/z calcd for C11H21BrSi [M]+: 260.0590, found: 

260.0585. 

1-(Bromoethynyl)-4-methoxybenzene (S7) 

 

The title compound was prepared according to a reported procedure.[5] 

1H NMR (400 MHz, CDCl3): δ 7.40 – 7.37 (m, 2H), 6.85 – 6.81 (m, 2H), 3.81 (s, 3H); 

13C NMR (101 MHz, CDCl3): δ 160.1, 133.6, 115.0, 114.1, 80.1, 55.5, 48.0; HRMS 

(EI) m/z calcd for C9H7BrO [M]+: 209.9675, found: 209.9672. 

((3-Bromoprop-2-yn-1-yl)oxy)benzene (S8) 

 

The title compound was prepared according to a reported procedure.[5] 

1H NMR (400 MHz, CDCl3): δ 7.34 – 7.30 (m, 2H), 7.04 – 6.96 (m, 3H), 4.72 (s, 2H); 

13C NMR (101 MHz, CDCl3): δ 157.7, 129.7, 121.8, 115.0, 75.3, 56.8, 47.7; HRMS 

(EI) m/z calcd for C9H7BrO [M]+: 209.9675, found: 209.9670. 

1,3-Dioxoisoindolin-2-yl pivalate (S9) 

 

Following the General procedure A with pivalic acid (1.02 g, 10.0 mmol) and 

N-hydroxyphthalimide (1.79 g, 11.0 mmol) in CH2Cl2 (20.0 mL) at rt for 0.5 h 

afforded 1.98 g (80%) of the title compound after purification by column 

chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.89 – 7.85 (m, 2H), 7.80 – 7.77 (m, 2H), 1.43 (s, 9H); 

13C NMR (101 MHz, CDCl3): δ 174.5, 162.2, 134.8, 129.2, 124.0, 38.6, 27.2. 

1,3-Dioxoisoindolin-2-yl 2,2-dimethylbutanoate (S10) 
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Following the General procedure A with 2,2-dimethylbutanoic acid (232 mg, 2.0 

mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 

0.5 h afforded 407 mg (78%) of the title compound after purification by column 

chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.88 – 7.85 (m, 2H), 7.80 – 7.76 (m, 2H), 1.78 (q, 2H, 

J = 7.5 Hz), 1.38 (s, 6H), 1.04 (t, 3H, J = 7.5 Hz); 13C NMR (101 MHz, CDCl3): δ 

174.1, 162.3, 134.8, 129.3, 124.0, 42.7, 33.7, 24.8, 9.3; HRMS (ESI) m/z calcd for 

C14H15NNaO4 [(M+Na)+]: 284.0893, found: 284.0900. 

1,3-Dioxoisoindolin-2-yl 3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropanoate 

(S11) 

 

Following the General procedure A with 

3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropanoic acid (464 mg, 2.0 mmol) and 

N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 0.5 h 

afforded 603 mg (80%) of the title compound after purification by column 

chromatography (eluent, 5:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.75 – 7.72 (m, 2H), 7.68 – 7.64 (m, 2H), 3.66 (s, 2H), 

1.29 (s, 6H), 0.82 (s, 9H), 0.00 (s, 6H); 13C NMR (101 MHz, CDCl3): δ 172.8, 161.9, 

134.7, 129.1, 123.9, 69.3, 44.9, 25.9, 22.0, 18.3, -5.6; HRMS (ESI) m/z calcd for 

C19H27NNaO5Si [(M+Na)+]: 400.1551, found: 400.1557. 

1,3-Dioxoisoindolin-2-yl 3-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethyl 

silyl)oxy)methyl)-2-methylpropanoate (S12) 
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Following the General procedure A with 

3-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-2-methylpro

panoic acid (724 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in 

CH2Cl2 (10.0 mL) at rt for 0.5 h afforded 790 mg (78%) of the title compound after 

purification by column chromatography (eluent, 5:1 hexane: EtOAc). Physical State: 

white solid. 

1H NMR (400 MHz, CDCl3): δ 7.89 – 7.84 (m, 2H), 7.78 – 7.74 (m, 2H), 3.93 (d, 2H, 

J = 9.4 Hz), 3.81 (d, 2H, J = 9.5 Hz), 1.36 (s, 3H), 0.91 (s, 18H), 0.09 (s, 6H), 0.08 (s, 

6H); 13C NMR (101 MHz, CDCl3): δ 171.3, 161.9, 134.7, 129.3, 124.0, 63.8, 50.6, 

26.0, 18.4, 17.3, -5.4, -5.5; HRMS (ESI) m/z calcd for C25H41NNaO6Si2 [(M+Na)+]: 

530.2365, found: 530.2378. 

1,3-Dioxoisoindolin-2-yl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (S13) 

 

Following the General procedure A with 

5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid (500 mg, 2.0 mmol) and 

N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 1 h afforded 

561 mg (71%) of the title compound after purification by column chromatography 

(eluent, 5:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.90 – 7.86 (m, 2H), 7.81 – 7.78 (m, 2H), 7.00 (d, 1H, 

J = 7.8 Hz), 6.67 – 6.65 (m, 2H), 4.01 (t, 2H, J = 5.0 Hz), 2.32 (s, 3H), 2.19 (s, 3H), 

1.98 – 1.94 (m, 4H), 1.45 (s, 6H); 13C NMR (101 MHz, CDCl3): δ 173.9, 162.3, 157.1, 

136.7, 134.9, 130.4, 129.2, 124.0, 123.8, 120.9, 112.2, 67.9, 42.1, 37.6, 25.3, 25.2, 
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21.6, 15.9; HRMS (ESI) m/z calcd for C23H25NNaO5 [(M+Na)+]: 418.1625, found: 

418.1620. 

1,3-Dioxoisoindolin-2-yl 3-methyloxetane-3-carboxylate (S14) 

 

Following the General procedure A with 3-methyloxetane-3-carboxylic acid (232 

mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) 

at rt for 0.5 h afforded 360 mg (69%) of the title compound after purification by 

column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.92 – 7.88 (m, 2H), 7.83 – 7.79 (m, 2H), 5.17 (d, 2H, 

J = 6.2 Hz), 4.54 (d, 2H, J = 6.2 Hz), 1.84 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 

170.6, 161.9, 135.0, 129.1, 124.2, 79.2, 43.5, 21.6; HRMS (ESI) m/z calcd for 

C13H11NNaO5 [(M+Na)+]: 284.0529, found: 284.0523. 

1,3-Dioxoisoindolin-2-yl 1-methylcyclopentane-1-carboxylate (S15) 

 

Following the General procedure A with 1-methylcyclopentane-1-carboxylic acid 

(256 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 

mL) at rt for 0.5 h afforded 447 mg (82%) of the title compound after purification by 

column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.90 – 7.85 (m, 2H), 7.80 – 7.75 (m, 2H), 2.40 – 2.33 

(m, 2H), 1.85 – 1.73 (m, 4H), 1.70 – 1.63 (m, 2H), 1.47 (s, 3H); 13C NMR (101 MHz, 

CDCl3): δ 174.8, 162.4, 134.8, 129.3, 124.0, 48.5, 38.4, 25.4, 24.8; HRMS (ESI) m/z 

calcd for C15H15NNaO4 [(M+Na)+]: 296.0893, found: 296.0887. 

1,3-Dioxoisoindolin-2-yl 1-methylcyclopent-3-ene-1-carboxylate (S16) 
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Following the General procedure A with 1-methylcyclopent-3-ene-1-carboxylic acid 

(252 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 

mL) at rt for 0.5 h afforded 439 mg (81%) of the title compound after purification by 

column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.89 – 7.86 (m, 2H), 7.80 – 7.77 (m, 2H), 5.67 (s, 2H), 

3.19 (d, 2H, J = 14.6 Hz), 2.43 (d, 2H, J = 15.0 Hz), 1.52 (s, 3H); 13C NMR (101 

MHz, CDCl3): δ 174.3, 162.3, 134.9, 129.2, 128.1, 124.1, 46.6, 45.0, 25.9; HRMS 

(ESI) m/z calcd for C15H13NNaO4 [(M+Na)+]: 294.0737, found: 294.0727. 

1,3-Dioxoisoindolin-2-yl 1-methylcyclohexane-1-carboxylate (S17) 

 

Following the General procedure A with 1-methylcyclohexane-1-carboxylic acid 

(284 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 

mL) at rt for 0.5 h afforded 453 mg (79%) of the title compound after purification by 

column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.90 – 7.86 (m, 2H), 7.80 – 7.75 (m, 2H), 2.27 – 2.21 

(m, 2H), 1.70 – 1.60 (m, 4H), 1.43 (s, 3H), 1.42 – 1.27 (m, 4H); 13C NMR (101 MHz, 

CDCl3): δ 173.9, 162.4, 134.8, 129.3, 124.0, 43.4, 35.9, 26.8, 25.7, 23.2; HRMS (ESI) 

m/z calcd for C16H17NNaO4 [(M+Na)+]: 310.1050, found: 310.1060. 

1,3-Dioxoisoindolin-2-yl 4,4-difluoro-1-methylcyclohexane-1-carboxylate (S18) 

 

Following the General procedure A with 
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4,4-difluoro-1-methylcyclohexane-1-carboxylic acid (356 mg, 2.0 mmol) and 

N-hydroxyphthalimide (356 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 0.5 h 

afforded 530 mg (82%) of the title compound after purification by column 

chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.90 – 7.86 (m, 2H), 7.82 – 7.77 (m, 2H), 2.39 – 2.34 

(m, 2H), 2.11 – 2.02 (m, 4H), 1.74 – 1.66 (m, 2H), 1.50 (s, 3H); 13C NMR (101 MHz, 

CDCl3): δ 172.7, 162.2, 135.0, 129.1, 125.3, 124.2, 122.9, 120.5, 76.9, 42.2, 32.4, 

32.3, 31.5, 31.2, 31.0, 26.1. 

1,3-Dioxoisoindolin-2-yl 4-methyltetrahydro-2H-pyran-4-carboxylate (S19) 

 

Following the General procedure A with 4-methyltetrahydro-2H-pyran-4-carboxylic 

acid (288 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 

(10.0 mL) at rt for 0.5 h afforded 491 mg (85%) of the title compound after 

purification by column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: 

white solid. 

1H NMR (400 MHz, CDCl3): δ 7.91 – 7.87 (m, 2H), 7.82 – 7.77 (m, 2H), 3.89 (dt, 2H, 

J = 12.3, 3.9 Hz), 3.67 (ddd, 2H, J = 12.1, 10.8, 2.3 Hz), 2.28 – 2.22 (m, 2H), 1.67 

(ddd, 2H, J = 14.0, 10.9, 4.3 Hz), 1.51 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 173.1, 

162.2, 135.0, 129.2, 124.1, 65.2, 41.2, 35.6, 26.7; HRMS (ESI) m/z calcd for 

C15H15NNaO5 [(M+Na)+]: 312.0842, found: 312.0833. 

1,3-Dioxoisoindolin-2-yl 4-benzyltetrahydro-2H-pyran-4-carboxylate (S20) 

 

Following the General procedure A with 4-benzyltetrahydro-2H-pyran-4-carboxylic 

acid (440 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 
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(10.0 mL) at rt for 1 h afforded 533 mg (73%) of the title compound after purification 

by column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.93 – 7.89 (m, 2H), 7.82 – 7.78 (m, 2H), 7.33 – 7.31 

(m, 4H), 7.29 – 7.24 (m, 1H), 3.93 (ddd, 2H, J = 12.1, 4.0, 2.1 Hz), 3.68 (td, 2H, J = 

12.1, 1.9 Hz), 3.12 (s, 2H), 2.17 (dd, 2H, J = 13.8, 2.0 Hz), 1.76 (ddd, 2H, J = 13.8, 

12.0, 4.6 Hz); 13C NMR (101 MHz, CDCl3): δ 171.7, 162.2, 135.0, 134.9, 130.7, 

129.1, 128.5, 127.3, 124.1, 65.2, 46.6, 46.5, 34.5; HRMS (ESI) m/z calcd for 

C21H19NNaO5 [(M+Na)+]: 388.1155, found: 388.1164. 

1,3-Dioxoisoindolin-2-yl 2,2,5-trimethyl-1,3-dioxane-5-carboxylate (S21) 

 

Following the General procedure A with 2,2,5-trimethyl-1,3-dioxane-5-carboxylic 

acid (348 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 

(10.0 mL) at rt for 0.5 h afforded 516 mg (81%) of the title compound after 

purification by column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: 

white solid. 

1H NMR (400 MHz, CDCl3): δ 7.88 (dd, 2H, J = 5.5, 3.1 Hz), 7.78 (dd, 2H, J = 5.5, 

3.1 Hz), 4.34 (d, 2H, J = 11.9 Hz), 3.79 (d, 2H, J = 11.8 Hz), 1.48 (s, 3H), 1.46 (s, 

3H), 1.45 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 170.8, 161.9, 134.9, 129.1, 124.1, 

98.8, 65.8, 42.1, 24.5, 23.0, 18.5; HRMS (ESI) m/z calcd for C16H17NNaO6 

[(M+Na)+]: 342.0948, found: 342.0954. 

1,3-Dioxoisoindolin-2-yl 4-ethyl-1-tosylpiperidine-4-carboxylate (S22) 

 

Following the General procedure A with 4-ethyl-1-tosylpiperidine-4-carboxylic acid 

(622 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 



S13 
 

mL) at rt for 1 h afforded 693 mg (76%) of the title compound after purification by 

column chromatography (eluent, 5:1:1 hexane: EtOAc:DCM). Physical State: white 

solid. 

1H NMR (400 MHz, CDCl3): δ 7.84 – 7.80 (m, 2H), 7.79 – 7.76 (m, 2H), 7.67 – 7.64 

(m, 2H), 7.34 (d, 2H, J = 8.0 Hz), 3.72 (dt, 2H, J = 12.4, 3.7 Hz), 2.63 (td, 2H, J = 

12.3, 2.5 Hz), 2.45 (s, 3H), 2.35 (d, 2H, J = 13.2 Hz), 1.77 (q, 2H, J = 7.5 Hz), 1.67 

(ddd, 2H, J = 14.0, 12.1, 4.2 Hz), 1.02 (t, 3H, J = 7.6 Hz); 13C NMR (101 MHz, 

CDCl3): δ 171.6, 161.9, 143.7, 134.9, 133.5, 129.9, 129.1, 127.7, 124.1, 45.8, 43.8, 

33.6, 33.1, 21.7, 8.3; HRMS (ESI) m/z calcd for C23H25N2O6S [(M+H)+]: 457.1428, 

found: 457.1439. 

1,3-Dioxoisoindolin-2-yl (3r,5r,7r)-adamantane-1-carboxylate (S23) 

 

Following the General procedure A with (3r,5r,7r)-adamantane-1-carboxylic acid 

(360 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 

mL) at rt for 0.5 h afforded 468 mg (72%) of the title compound after purification by 

column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.87 (dd, 2H, J = 5.5, 3.1 Hz), 7.77 (dd, 2H, J = 5.5, 

3.1 Hz), 2.14 (d, 6H, J = 2.6 Hz), 2.11 – 2.09 (m, 3H), 1.79 – 1.77 (m, 6H); 13C NMR 

(101 MHz, CDCl3): δ 173.4, 162.3, 134.8, 129.3, 124.0, 40.7, 38.6, 36.4, 27.8; HRMS 

(ESI) m/z calcd for C19H19NNaO4 [(M+Na)+]: 348.1206, found: 348.1207. 

1-(1,3-Dioxoisoindolin-2-yl) 4-methyl bicyclo[2.2.2]octane-1,4-dicarboxylate 

(S24) 

 

Following the General procedure A with 
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4-(methoxycarbonyl)bicyclo[2.2.2]octane-1-carboxylic acid (424 mg, 2.0 mmol) and 

N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 0.5 h 

afforded 521 mg (73%) of the title compound after purification by column 

chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.86 (dd, 2H, J = 5.5, 3.1 Hz), 7.76 (dd, 2H, J = 5.5, 

3.1 Hz), 3.66 (s, 3H), 2.07 – 2.03 (m, 6H), 1.90 – 1.86 (m, 6H); 13C NMR (101 MHz, 

CDCl3): δ 177.5, 173.4, 162.1, 134.8, 129.1, 124.0, 52.0, 38.6, 38.5, 27.8, 27.6; 

HRMS (ESI) m/z calcd for C19H19NNaO6 [(M+Na)+]: 380.1105, found: 380.1119. 

1,3-dioxoisoindolin-2-yl 

(1S,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1-carboxylate (S25)  

 

Following the General procedure A with 

(1S,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1-carboxylic acid (364 mg, 2.0 

mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 

0.5 h afforded 451 mg (69%) of the title compound after purification by column 

chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.88 – 7.84 (m, 2H), 7.77 (dd, 2H, J = 5.5, 3.1 Hz), 

2.66 – 2.54 (m, 2H), 2.21 (t, 1H, J = 4.5 Hz), 2.19 – 2.13 (m, 1H), 2.05 (d, 1H, J = 

18.5 Hz), 2.00 – 1.95 (m, 1H), 1.51 (ddd, 1H, J = 13.0, 9.3, 4.0 Hz), 1.26 (s, 3H), 1.23 

(s, 3H); 13C NMR (101 MHz, CDCl3): δ 207.9, 166.3, 161.8, 134.9, 129.0, 124.1, 67.0, 

51.2, 44.5, 44.0, 26.8, 26.4, 21.1, 19.7; HRMS (ESI) m/z calcd for C18H17NNaO5 

[(M+Na)+]: 350.0999, found: 350.1007. 

1,3-Dioxoisoindolin-2-yl (4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a 

-octahydrophenanthrene-1-carboxylate (S26) 
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Following the General procedure A with 

(4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-c

arboxylic acid (600 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in 

CH2Cl2 (10.0 mL) at rt for 0.5 h afforded 534 mg (60%) of the title compound after 

purification by column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: 

white solid. 

1H NMR (400 MHz, CDCl3): δ 7.89 – 7.87 (m, 2H), 7.79 – 7.77 (m, 2H), 7.20 (d, 1H, 

J = 8.2 Hz), 7.03 (d, 1H, J = 8.1 Hz), 6.94 (s, 1H), 3.16 – 3.07 (m, 1H), 2.98 (dd, 1H, 

J = 17.3, 6.5 Hz), 2.85 (p, 1H, J = 6.9 Hz), 2.45 (d, 1H, J = 11.6 Hz), 2.38 (d, 1H, J = 

12.8 Hz), 2.17 – 2.09 (m, 1H), 1.98 – 1.91 (m, 2H), 1.89 -1.80 (m, 3H), 1.63 – 1.55 

(m, 1H), 1.47 (s, 3H), 1.28 (s, 3H), 1.24 (d, 6H, J = 6.8 Hz); 13C NMR (101 MHz, 

CDCl3): δ 174.7, 162.3, 146.5, 146.0, 134.9, 134.8, 129.2, 127.2, 124.3, 124.1, 124.0, 

47.9, 45.2, 37.9, 37.2, 36.4, 33.6, 30.1, 25.4, 24.1, 24.1, 21.9, 18.5, 16.7; HRMS (ESI) 

m/z calcd for C28H31NNaO4 [(M+Na)+]: 468.2145, found: 468.2134. 

1,3-Dioxoisoindolin-2-yl tetrahydro-2H-pyran-4-carboxylate (S27) 

 

Following the General procedure A with tetrahydro-2H-pyran-4-carboxylic acid 

(1.30 g, 10.0 mmol) and N-hydroxyphthalimide (1.79 g, 11 mmol) in CH2Cl2 (25.0 

mL) at rt for 0.5 h afforded 2.15 g (78%) of the title compound after purification by 

column chromatography (eluent, 6:1:1 hexanes:EtOAc:DCM). Physical State: white 

solid. 

1H NMR(400 MHz, CDCl3): δ 7.88 (dd, 2H, J = 5.5, 3.1 Hz), 7.78 (dd, 2H, J = 5.5, 

3.1 Hz), 4.01 (dt, 2H, J = 11.8, 3.8 Hz), 3.52 (ddd, 2H, J = 11.8, 9.9, 3.3 Hz), 3.03 – 
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2.95 (m, 1H), 2.06 – 1.92 (m, 4H); 13C NMR (101 MHz, CDCl3): δ 170.7, 162.1, 

134.9, 129.1, 124.1, 66.7, 37.8, 28.5; HRMS (ESI) m/z calcd for C14H13NNaO5 

[(M+Na)+]: 298.0686, found: 298.0681. 

1,3-Dioxoisoindolin-2-yl isobutyrate (S28) 

 

Following the General procedure A with isobutyric acid (176 mg, 2.0 mmol) and 

N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 0.5 h 

afforded 391 mg (84%) of the title compound after purification by column 

chromatography (eluent, 5:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.87 (dd, 2H, J = 5.5, 3.1 Hz), 7.77 (dd, 2H, J = 5.5, 

3.1 Hz), 2.95 (hept, 1H, J = 7.0 Hz), 1.37 (d, 6H, J = 7.0 Hz); 13C NMR (101 MHz, 

CDCl3): δ 173.2, 162.2, 134.9, 129.2, 124.1, 31.9, 19.0; HRMS (ESI) m/z calcd for 

C12H11NNaO4 [(M+Na)+]: 256.0580, found: 256.0581. 

1,3-Dioxoisoindolin-2-yl 3-methylbutanoate (S29) 

 

Following the General procedure A with 3-methylbutanoic acid (204 mg, 2.0 mmol) 

and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 0.5 h 

afforded 400 mg (81%) of the title compound after purification by column 

chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.89 – 7.85 (m, 2H), 7.80 – 7.76 (m, 2H), 2.54 (d, 2H, 

J = 7.1 Hz), 2.32 – 2.19 (m, 1H), 1.09 (d, 6H, J = 6.7 Hz); 13C NMR (101 MHz, 

CDCl3): δ 169.0, 162.2, 134.9, 129.2, 124.1, 40.0, 26.2, 22.4. 

1,3-Dioxoisoindolin-2-yl 3,3-dimethylbutanoate (S30) 
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Following the General procedure A with 3,3-dimethylbutanoic acid (232 mg, 2.0 

mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 

0.5 h afforded 438 mg (84%) of the title compound after purification by column 

chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.89 – 7.86 (m, 2H), 7.79 – 7.76 (m, 2H), 2.52 (s, 2H), 

1.16 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 168.0, 162.2, 134.9, 129.2, 124.1, 44.8, 

31.4, 29.6; HRMS (ESI) m/z calcd for C14H15NNaO4 [(M+Na)+]: 284.0893, found: 

284.0900. 

1,3-Dioxoisoindolin-2-yl 2,2-dimethylpent-4-enoate (S31) 

 

Following the General procedure A with 2,2-dimethylpent-4-enoic acid (256 mg, 2.0 

mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 

0.5 h afforded 464 mg (85%) of the title compound after purification by column 

chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.89 – 7.86 (m, 2H), 7.79 – 7.76 (m, 2H), 5.96 – 5.85 

(m, 1H), 5.21 – 5.16 (m, 2H), 2.48 (s, 2H), 1.39 (s, 6H); 13C NMR (101 MHz, CDCl3): 

δ 173.7, 162.2, 134.8, 133.1, 129.2, 124.0, 119.4, 44.7, 42.1, 24.9; HRMS (ESI) m/z 

calcd for C15H15NNaO4 [(M+Na)+]: 296.0893, found: 296.0891. 

1,3-Dioxoisoindolin-2-yl 1-allylcyclobutane-1-carboxylate (S32) 

 

Following the General procedure A with 1-allylcyclobutane-1-carboxylic acid (280 
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mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) 

at rt for 0.5 h afforded 444 mg (78%) of the title compound after purification by 

column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.87 (dd, 2H, J = 5.5, 3.1 Hz), 7.78 (dd, 2H, J = 5.5, 

3.1 Hz), 5.89 (ddt, 1H, J = 17.2, 10.2, 7.2 Hz), 5.36 – 5.17 (m, 2H), 2.72 – 2.64 (m, 

4H), 2.16 – 2.09 (m, 2H), 2.07 – 1.99 (m, 2H); 13C NMR (101 MHz, CDCl3): δ 172.7, 

162.3, 134.8, 132.7, 129.2, 124.0, 119.1, 46.0, 41.6, 29.8, 15.8; HRMS (ESI) m/z 

calcd for C16H15NNaO4 [(M+Na)+]: 308.0893, found: 308.0890. 

1,3-Dioxoisoindolin-2-yl 1-allylcyclopentane-1-carboxylate (S33) 

 

Following the General procedure A with 1-allylcyclopentane-1-carboxylic acid (308 

mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) 

at rt for 0.5 h afforded 460 mg (77%) of the title compound after purification by 

column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR (400 MHz, CDCl3): δ 7.87 (dd, 2H, J = 5.5, 3.1 Hz), 7.78 (dd, 2H, J = 5.5, 

3.1 Hz), 5.91 (ddt, 1H, J = 17.3, 10.1, 7.2 Hz), 5.22 – 5.14 (m, 2H), 2.56 (dt, 2H, J = 

7.3, 1.2 Hz), 2.36 – 2.28 (m, 2H), 1.81 – 1.70 (m, 6H); 13C NMR (101 MHz, CDCl3): 

δ 173.7, 162.3, 134.8, 133.8, 129.3, 124.0, 119.0, 53.0, 42.8, 36.1, 25.2; HRMS (ESI) 

m/z calcd for C17H17NNaO4 [(M+Na)+]: 322.1050, found: 322.1045. 

1,3-Dioxoisoindolin-2-yl 1-allyl-4,4-difluorocyclohexane-1-carboxylate (S34) 

 

Following the General procedure A with 

1-allyl-4,4-difluorocyclohexane-1-carboxylic acid (408 mg, 2.0 mmol) and 

N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 (10.0 mL) at rt for 0.5 h 
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afforded 530 mg (76%) of the title compound after purification by column 

chromatography (eluent, 4:1 hexane: EtOAc). Physical State: white solid. 

1H NMR(400 MHz, CDCl3): δ 7.89 (dd, 2H, J = 5.5, 3.1 Hz), 7.80 (dd, 2H, J = 5.5, 

3.1 Hz), 5.88 (ddt, 1H, J = 16.7, 10.1, 7.5 Hz), 5.26 – 5.20 (m, 2H), 2.52 (d, 2H, J = 

7.5 Hz), 2.40 – 2.33 (m, 2H), 2.13 – 2.02 (m, 4H), 1.72 - 1.62 (m, 2H); 13C NMR (101 

MHz, CDCl3): δ 171.5, 162.2, 135.0, 131.6, 129.1, 124.2, 123.0 (t, J = 243.3 Hz), 

120.3, 46.1 (d, J = 1.5 Hz), 44.1 (d, J = 2.1 Hz), 31.1 (t, J = 24.4 Hz), 30.6 (d, J = 9.3 

Hz); HRMS (ESI) m/z calcd for C18H17F2NNaO4 [(M+Na)+]: 372.1018, found: 

372.1020. 

1,3-Dioxoisoindolin-2-yl 4-allyltetrahydro-2H-pyran-4-carboxylate (S35) 

 

Following the General procedure A with 4-allyltetrahydro-2H-pyran-4-carboxylic 

acid (340 mg, 2.0 mmol) and N-hydroxyphthalimide (358 mg, 2.2 mmol) in CH2Cl2 

(10.0 mL) at rt for 0.5 h afforded 479 mg (76%) of the title compound after 

purification by column chromatography (eluent, 4:1 hexane: EtOAc). Physical State: 

white solid. 

1H NMR (400 MHz, CDCl3): δ 7.82 (dd, 2H, J = 5.5, 3.1 Hz), 7.73 (dd, 2H, J = 5.5, 

3.0 Hz), 5.82 (ddt, 1H, J = 16.8, 10.1, 7.5 Hz), 5.19 – 5.13 (m, 2H), 3.85 (ddd, 2H, J = 

12.2, 4.3, 2.7 Hz), 3.60 (td, 2H, J = 11.9, 2.1 Hz), 2.46 (d, 2H, J = 7.5 Hz), 2.16 (dd, 

2H, J = 14.0, 2.4 Hz), 1.62 (ddd, 2H, J = 13.9, 11.5, 4.5 Hz); 13C NMR (101 MHz, 

CDCl3): δ 171.8, 162.2, 135.0, 131.4, 129.2, 124.1, 120.2, 65.2, 45.2, 44.9, 34.1; 

HRMS (ESI) m/z calcd for C17H17NNaO5 [(M+Na)+]: 338.0999, found: 338.0997.
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4. Optimization studies and experimental procedures 

Table S1. Optimization of reaction conditions 

 

Entry Catalyst Ligand Reductant Additive Solvent 
Conversion 

rate (%) 

Yield
a
 

(%) 

1 NiBr2•diglyme L1 TDAE  / DMA 36 < 5 

2 NiBr2•diglyme L1 Zn / DMA >95 16 

3 NiBr2•diglyme L1 Mn / DMA 78 67 

4 NiBr2•diglyme L2 Mn / DMA 78 55 

5 NiBr2•diglyme L3 Mn / DMA 62 39 

6 NiBr2•diglyme L4 Mn / DMA 65 38 

7 NiBr2•diglyme L5 Mn / DMA 82 49 

8 NiBr2•diglyme L6 Mn / DMA 55 46 

9 NiBr2•diglyme L7 Mn / DMA 34 < 5 

10 NiBr2•diglyme L8 Mn / DMA 31 < 5 

11 Ni(cod)2 L1 Mn / DMA 74 39 

12 NiCl2•glyme L1 Mn / DMA 80 57 

13 NiI2 L1 Mn / DMA 81 56 

14 NiBr2•diglyme L1 Mn / MeCN 25 < 5 

15 NiBr2•diglyme L1 Mn / DMF 82 41 

16 NiBr2•diglyme L1 Mn / DMSO 66 34 

17 NiBr2•diglyme L1 Mn LiBr DMA 85 76 (73) 

18 NiBr2•diglyme L1 Mn ZnCl2 DMA 50 15 

19 NiBr2•diglyme L1 Mn MgBr2 DMA 68 36 

20 NiBr2•diglyme L1 Mn TMSCl DMA 77 25 

 
aOtherwise noted: 1a (1.0 equiv., 0.1 mmol), 2 (1.2 equiv., 0.12 mmol), 3 (2.5 equiv., 0.25 mmol), 

Ni catalyst (10 mol%), Ligand (12 mol%), Mn (2.5 equiv.), additive (0.5 equiv.), Solvent (0.3 mL), 

RT, 24 h. Conversion rate and yield were determined by GC analysis. bIsolated yield in the 

parenthesis. RT = room temperature (around 20 oC) 

4.1 General procedures for Ni-catalyzed alkylalkynylation of alkynes 

For tertiary alkyl NHPI ester substrates (General procedure B): In a N2-filled 

glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar was added 

alkyne substrate (1.0 equiv., 0.1 mmol), alkynyl bromide (1.2 equiv., 0.12 mmol), 

NHPI ester (2.5 equiv., 0.25 mmol), NiBr2•diglyme (10 mmol%), Ligand 1 (12 mol%), 
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Mn powder (2.5 equiv., 0.25 mmol) and LiBr (0.5 equiv., 0.05 mmol) (unless 

otherwise noted). The mixture was then dissolved in 0.3 mL dry DMA (unless 

otherwise noted). The vial was tightly capped and removed from the glovebox. The 

mixture was allowed to vigorously stir at room temperature for 24 h. After the 

reaction was complete, the mixture was directly subjected to flash silica gel column 

chromatography to afford the pure product. (*Note: for alkynyl bromide scope, 1.0 

equiv. of LiBr and DMSO were used instead for the preparation of 4y, 4z, 4aa; for 

preparation of 4af, 4ao, 4ap, 4ar, 3.0 equiv. of alkyne and 1.0 equiv. of alkynyl 

bromide were used; for preparation of 4as, 1.5 equiv. of alkynyl bromide and 1.7 equiv. 

of C4F9I were used; for preparation of 4at, 1.5 equiv. of alkynyl bromide and 2.0 equiv. 

of C4F9I were used) 

For secondary & primary alkyl NHPI ester substrates (General procedure C): In 

a N2-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar 

was added alkyne substrate (3.0 equiv., 0.3 mmol), alkynyl bromide (1.0 equiv., 0.1 

mmol), NHPI ester (2.5 equiv., 0.25 mmol), NiBr2•diglyme (10 mmol%), CuTc (10 

mmol%), Ligand 4 (12 mol%) (unless otherwise noted), Mn powder (2.5 equiv., 0.25 

mmol) and LiBr (1.0 equiv., 0.1 mmol).The mixture was then dissolved in 0.3 mL dry 

DMA. The vial was tightly capped and removed from the glovebox. The mixture was 

allowed to vigorously stir at room temperature for 24 h. After the reaction was 

complete, the mixture was directly subjected to flash silica gel column 

chromatography to afford the pure product. (*Note: ligand 1 was used instead for 

preparation of 4aw) 

5. Analytical data of products 

(E)-(3-(4-Ethoxyphenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)triisopropylsilane (4a):  

 

The title compound was prepared from the General procedure B. Purification using 
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flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (28.0 mg, 73% yield). 

1H NMR (500 MHz, CDCl3): δ 7.18 – 7.15 (m, 2H), 6.83 – 6.80 (m, 2H), 6.16 (s, 1H), 

4.03 (q, 2H, J = 7.0 Hz), 1.41 (t, 3H, J = 7.0 Hz), 1.03 – 1.02 (m, 21H), 0.94 (s, 9H); 

13C NMR (101 MHz, CDCl3): δ 158.2, 149.8, 131.4, 130.3, 122.5, 113.8, 111.2, 87.3, 

63.5, 34.6, 31.2, 18.8, 15.1, 11.6; HRMS (APCI) m/z calcd for C25H41OSi [(M+H)+]: 

385.2921, found: 385.2918. 

(E)-(5,5-Dimethyl-3-phenylhex-3-en-1-yn-1-yl)triisopropylsilane (4b):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (22.0 mg, 65% yield). 

1H NMR (400 MHz, CDCl3): δ 7.24 – 7.15 (m, 5H), 6.12 (s, 1H), 0.95 (s, 21H), 0.86 

(s, 9H); 13C NMR (101 MHz, CDCl3): δ 149.8, 139.3, 129.2, 127.9, 127.2, 122.8, 

110.8, 88.0, 34.6, 31.1, 18.8, 11.6; HRMS (APCI) m/z calcd for C23H37Si [(M+H)+]: 

341.2659, found: 341.2658. 

(E)-(5,5-Dimethyl-3-(p-tolyl)hex-3-en-1-yn-1-yl)triisopropylsilane (4c):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (22.6 mg, 64% yield). 

1H NMR (400 MHz, CDCl3): δ 7.15 (d, 2H, J = 8.1 Hz), 7.10 – 7.08 (m, 2H), 6.18 (s, 

1H), 2.34 (s, 3H), 1.03 (s, 21H), 0.93 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 149.8, 

136.8, 136.2, 129.1, 128.5, 122.8, 111.0, 87.4, 34.6, 31.2, 21.4, 18.84, 11.6; HRMS 

(APCI) m/z calcd for C24H39Si [(M+H)+]: 355.2816, found: 355.2812. 
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(E)-(5,5-Dimethyl-3-(4-phenoxyphenyl)hex-3-en-1-yn-1-yl)triisopropylsilane 

(4d):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (25.5 mg, 59% yield). 

1H NMR (400 MHz, CDCl3): δ 7.37 – 7.31 (m, 2H), 7.25 – 7.21 (m, 2H), 7.12 – 7.08 

(m, 1H), 7.03 – 7.00 (m, 2H), 6.96 – 5.92 (m, 2H), 6.19 (s, 1H), 1.04 (s, 21H), 0.96 (s, 

9H); 13C NMR (101 MHz, CDCl3): δ 157.4, 156.4, 150.0, 134.3, 130.6, 129.9, 123.4, 

122.2, 119.0, 118.3, 110.8, 88.0, 34.7, 31.2, 18.8, 11.6; HRMS (APCI) m/z calcd for 

C29H41OSi [(M+H)+]: 433.2921, found: 433.2925. 

(E)-(5,5-Dimethyl-3-(4-(trifluoromethoxy)phenyl)hex-3-en-1-yn-1-yl)triisopropyl

silane (4e): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (26.7 mg, 63% yield). 

1H NMR (400 MHz, CDCl3): δ 7.30 – 7.27 (m, 2H), 7.16 – 7.13 (m, 2H), 6.21 (s, 1H), 

1.02 (s, 21H), 0.93 (s, 9H); 19F NMR (377 MHz, CDCl3): δ -57.9; 13C NMR (101 

MHz, CDCl3): δ 150.5, 148.52 (q, J = 1.6 Hz), 138.0, 130.6, 121.4, 120.7 (q, J =  

256.9 Hz), 120.4, 110.1, 88.8, 34.7, 31.1, 18.8, 11.5; HRMS (APCI) m/z calcd for 

C24H36F3OSi [(M+H)+]: 425.2482, found: 425.2479. 

(E)-(3-([1,1'-Biphenyl]-4-yl)-5,5-dimethylhex-3-en-1-yn-1-yl)triisopropylsilane 

(4f):  
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The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (27.9 mg, 67% yield). 

1H NMR (400 MHz, CDCl3): δ 7.65 – 7.62 (m, 2H), 7.56 – 7.53 (m, 2H), 7.46 – 7.42 

(m, 2H), 7.36 – 7.32 (m, 3H), 6.23 (s, 1H), 1.05 (s, 21H), 0.98 (s, 9H); 13C NMR (101 

MHz, CDCl3): δ 150.2, 141.0, 139.9, 138.3, 129.7, 128.9, 127.4, 127.2, 126.5, 122.5, 

110.7, 88.0, 34.7, 31.2, 18.9, 11.6; HRMS (APCI) m/z calcd for C29H41Si [(M+H)+]: 

417.2972, found: 417.2982. 

(E)-4-(5,5-Dimethyl-1-(triisopropylsilyl)hex-3-en-1-yn-3-yl)-N,N-dimethylaniline 

(4g): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 10:1 hexane:EtOAc) 

gave the pure product as a colorless oil (21.8 mg, 57% yield). 

1H NMR (400 MHz, CDCl3): δ 7.16 – 7.12 (m, 2H), 6.68 (d, 2H, J = 8.2 Hz), 6.14 (s, 

1H), 2.96 (s, 6H), 1.04 – 1.02 (m, 21H), 0.96 (s, 9H); 13C NMR (126 MHz, CDCl3): δ 

149.4, 130.1, 127.0, 122.9, 111.9, 111.9, 111., 86.5, 40.9, 31.2, 30.2, 18.9, 11.6; 

HRMS (APCI) m/z calcd for C25H42NSi [(M+H)+]: 384.3081, found: 384.3071. 

tert-Butyl 

(E)-(4-(5,5-dimethyl-1-(triisopropylsilyl)hex-3-en-1-yn-3-yl)phenyl)carbamate 

(4h):  

 



S25 
 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 5:1 hexane:EtOAc) 

gave the pure product as a colorless oil (23.7 mg, 52% yield). 

1H NMR (400 MHz, CDCl3): δ 7.29 (d, 2H, J = 8.6 Hz), 7.20 – 7.17 (m, 2H), 6.49 (br, 

1H), 6.17 (s, 1H), 1.51 (s, 9H), 1.02 (s, 21H), 0.93 (s, 9H); 13C NMR (101 MHz, 

CDCl3): δ 152.9, 150.0, 137.5, 133.9, 129.9, 122.3, 117.8, 110.8, 87.6, 80.7, 34.6, 

31.2, 28.5, 18.8, 11.5; HRMS (APCI) m/z calcd for C28H46NO2Si [(M+H)+]: 456.3292, 

found: 456.3279. 

(E)-(3-(4-Fluorophenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)triisopropylsilane (4i): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (22.2 mg, 62% yield). 

1H NMR (400 MHz, CDCl3): δ 7.24 – 7.20 (m, 2H), 7.01 – 6.95 (m, 2H), 6.19 (s, 1H), 

1.02 (s, 21H), 0.93 (s, 9H) ppm; 19F NMR (377 MHz, CDCl3): δ -115.4; 13C NMR 

(101 MHz, CDCl3): δ 162.2 (d, J = 245.6 Hz), 150.2, 135.2 (d, J = 3.6 Hz), 130.8 (d, J 

= 8.0 Hz), 121.8, 114.9 (d, J = 21.3 Hz), 110.5, 88.3, 34.7, 31.1, 18.8, 11.5; HRMS 

(APCI) m/z calcd for C23H36FSi [(M+H)+]: 359.2565, found: 359.2570. 

(E)-(3-(4-Bromophenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)triisopropylsilane (4j):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (18.8 mg, 45% yield). 

1H NMR (400 MHz, CDCl3): δ 7.44 – 7.41 (m, 2H), 7.16 – 7.12 (m, 2H), 6.20 (s, 1H), 

1.02 (s, 21H), 0.93 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 150.4, 138.3, 131.1, 130.9, 
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121.6, 121.3, 110.0, 88.6, 34.7, 31.1, 18.8, 11.5; HRMS (APCI) m/z calcd for 

C23H36BrSi [(M+H)+]: 419.1764, found: 419.1750. 

(E)-4-(5,5-Dimethyl-1-(triisopropylsilyl)hex-3-en-1-yn-3-yl)benzaldehyde (4k):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 20:1 hexane:EtOAc) 

gave the pure product as a colorless oil (14.7 mg, 40% yield). 

1H NMR (400 MHz, CDCl3): δ 10.01 (s, 1H), 7.83 (d, 2H, J = 8.3 Hz), 7.45 (d, 2H, J 

= 8.1 Hz), 6.25 (s, 1H), 1.01 (s, 21H), 0.93 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 

192.1, 150.7, 146.1, 135.4, 130.0, 129.5, 121.6, 109.4, 89.6, 34.8, 31.1, 18.8, 11.5; 

HRMS (APCI) m/z calcd for C24H37OSi [(M+H)+]: 369.2608, found: 369.2602. 

(E)-Triisopropyl(3-(3-methoxyphenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)silane (4l):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (22.9 mg, 62% yield). 

1H NMR (400 MHz, CDCl3): δ 7.22 – 7.17 (m, 1H), 6.87 – 6.78 (m, 3H), 6.18 (s, 1H), 

3.80 (s, 3H), 1.03 (s, 21H), 0.95 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 159.17, 

149.87, 140.56, 128.82, 122.62, 121.91, 114.64, 113.09, 110.59, 87.95, 55.37, 34.65, 

31.06, 18.83, 11.55; HRMS (APCI) m/z calcd for C24H39OSi [(M+H)+]: 371.2765, 

found: 371.2763. 

(E)-(3-(3,5-Dimethoxyphenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)triisopropylsilane 

(4m): 
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The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 50:1 hexane:EtOAc) 

gave the pure product as a colorless oil (29.2 mg, 73% yield). 

1H NMR (400 MHz, CDCl3): δ 6.44 (d, 2H, J = 2.3 Hz), 6.37 (t, 1H, J = 2.3 Hz), 6.15 

(s, 1H), 3.78 (s, 6H), 1.04 (s, 21H), 0.97 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 

160.3, 149.8, 141.1, 122.6, 110.4, 107.5, 99.7, 87.9, 55.5, 34.7, 31.0, 18.8, 11.6; 

HRMS (APCI) m/z calcd for C25H41O2Si [(M+H)+]: 401.2870, found: 401.2861. 

(E)-(3-(3,4-Dichlorophenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)triisopropylsilane 

(4n):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (27.7 mg, 68% yield). 

1H NMR (400 MHz, CDCl3): δ 7.37 (dd, 2H, J = 5.1, 3.1 Hz), 7.11 (dd, 1H, J = 8.3, 

2.0 Hz), 6.21 (s, 1H), 1.03 (s, 21H), 0.95 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 

151.0, 139.3, 132.0, 131.4, 131.2, 130.0, 128.7, 120.4, 109.5, 89.2, 34.8, 31.1, 18.8, 

11.5; HRMS (APCI) m/z calcd for C23H35Cl2Si [(M+H)+]: 409.1880, found: 

409.1882. 

(E)-(5,5-Dimethyl-3-(2,4,5-trimethylphenyl)hex-3-en-1-yn-1-yl)triisopropylsilane 

(4o):  
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The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (17.6 mg, 46% yield). 

1H NMR (400 MHz, CDCl3): δ 6.88 (d, 2H, J = 9.0 Hz), 6.16 (s, 1H), 2.26 (s, 3H), 

2.21 (s, 3H), 2.20 (s, 3H), 1.02 (s, 21H), 0.88 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 

149.9, 135.6, 135.4, 133.1, 133.0, 131.1, 130.9, 122.1, 110.1, 86.8, 34.6, 30.6, 19.6, 

19.4, 19.3, 18.8, 11.6; HRMS (APCI) m/z calcd for C26H43Si [(M+H)+]: 383.3129, 

found: 383.3135. 

(E)-(3-(2-Fluorophenyl)-5,5-dimethylhex-3-en-1-yn-1-yl)triisopropylsilane (4p):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (25.1 mg, 70% yield). 

1H NMR (400 MHz, CDCl3): δ 7.29 – 7.22 (m, 2H), 7.11 – 7.01 (m, 2H), 6.30 (s, 1H), 

1.03 (s, 21H), 0.94 (s, 9H); 19F NMR (377 MHz, CDCl3): δ -113.8; 13C NMR (101 

MHz, CDCl3): δ 159.6 (d, J=245.8 Hz), 151.8, 131.4 (d, J = 3.5 Hz), 129.3 (d, J = 8.0 

Hz), 126.8 (d, J = 17.3 Hz), 123.7 (d, J = 3.5 Hz), 115.7, 115.5 (d, J = 22.1 Hz), 109.4, 

88.0, 34.7, 30.3, 18.8, 11.5; HRMS (APCI) m/z calcd for C23H36FSi [(M+H)+]: 

359.2565, found: 359.2559. 

(Z)-(5,5-Dimethyl-3-(thiophen-3-yl)hex-3-en-1-yn-1-yl)triisopropylsilane (4q):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (17.3 mg, 50% yield). 

1H NMR (400 MHz, CDCl3): δ 7.23 (dd, 1H, J = 4.9, 3.0 Hz), 7.11 (dd, 1H, J = 3.0, 

1.3 Hz), 7.02 (dd, 1H, J = 4.9, 1.3 Hz), 6.22 (s, 1H), 1.04 (s, 21H), 0.98 (s, 9H); 13C 
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NMR (101 MHz, CDCl3): δ 151.2, 138.6, 129.2, 124.6, 123.3, 117.7, 110.2, 87.3, 

34.4, 30.9, 18.8, 11.5; HRMS (EI) m/z calcd for C21H34SSi [M]+: 346.2145, found: 

346.2146. 

(Z)-5-(5,5-Dimethyl-1-(triisopropylsilyl)hex-3-en-1-yn-3-yl)-1-methyl-1H-imidazo

le (4r): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 5:1 hexane:EtOAc) 

gave the pure product as a colorless oil (17.9 mg, 52% yield). 

1H NMR (400 MHz, CDCl3): δ 7.43 (s, 1H), 6.87 (s, 1H), 6.44 (s, 1H), 3.59 (s, 3H), 

1.02 (s, 21H), 0.95 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 156.8, 137.7, 128.8, 127.8, 

110.6, 107.6, 88.3, 34.6, 31.7, 30.6, 18.8, 11.4; HRMS (APCI) m/z calcd for 

C21H37N2Si [(M+H)+]: 345.2721, found: 345.2724. 

(E)-Triisopropyl(3-(6-methoxynaphthalen-2-yl)-5,5-dimethylhex-3-en-1-yn-1-yl)si

lane (4s):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (34.0 mg, 81% yield). 

1H NMR (400 MHz, CDCl3): δ 7.72 – 7.65 (m, 3H), 7.39 (dd, 1H, J = 8.4, 1.7 Hz), 

7.16 – 7.14 (m, 2H), 6.27 (s, 1H), 3.92 (s, 3H), 1.03 (s, 21H), 0.95 (s, 9H); 13C NMR 

(101 MHz, CDCl3): δ 157.9, 150.2, 134.5, 133.8, 129.7, 128.6, 128.2, 127.8, 126.3, 

122.8, 119.0, 110.8, 105.8, 88.0, 55.5, 34.7, 31.2, 18.8, 11.5; HRMS (APCI) m/z 

calcd for C28H41OSi [(M+H)+]: 421.2921, found: 421.2918. 

(E)-(5,5-Dimethyl-3-(phenanthren-9-yl)hex-3-en-1-yn-1-yl)triisopropylsilane (4t):  
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The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (27.3 mg, 62% yield). 

1H NMR (400 MHz, CDCl3): δ 8.72 – 8.68 (m, 2H), 8.20 – 8.18 (m, 1H), 7.88 (dd, 

1H, J = 7.7, 1.6 Hz), 7.68 – 7.58 (m, 5H), 6.50 (s, 1H), 0.97 – 0.94 (m, 21H), 0.90 (s, 

9H); 13C NMR (101 MHz, CDCl3): δ 152.0, 135.3, 131.6, 131.1, 130.5, 130.4, 128.8, 

127.5, 127.4, 126.8, 126.7, 126.63, 126.60, 122.8, 122.7, 120.8, 110.1, 88.5, 35.0, 

30.6, 18.77, 18.75, 11.5; HRMS (APCI) m/z calcd for C31H41Si [(M+H)+]: 441.2972, 

found: 441.2974. 

(2R,5S)-N-(4-((E)-5,5-Dimethyl-1-(triisopropylsilyl)hex-3-en-1-yn-3-yl)phenyl)-3,

3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxamide 4,4-dioxide 

(4u): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 5:1 hexane:EtOAc) 

gave the pure product as a colorless oil (30.2 mg, 53% yield). 

1H NMR (400 MHz, CDCl3): δ 8.20 (s, 1H), 7.47 (d, 2H, J = 8.6 Hz), 7.26 (d, 2H, J = 

8.5 Hz), 6.19 (s, 1H), 4.69 (t, 1H, J = 3.5 Hz), 4.33 (s, 1H), 3.59 (d, 2H, J = 3.4 Hz), 

1.74 (s, 3H), 1.53 (s, 3H), 1.02 (s, 21H), 0.93 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 

172.5, 164.4, 150.4, 136.6, 135.3, 130.0, 121.8, 119.6, 110.3, 88.2, 64.7, 64.1, 60.7, 

38.6, 34.7, 31.1, 19.8, 18.8, 18.6, 11.5; HRMS (APCI) m/z calcd for C31H47N2O4SSi 

[(M+H)+]: 571.3020, found: 571.3023. 
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(8R,9S,13S,14S)-3-((E)-5,5-Dimethyl-1-(triisopropylsilyl)hex-3-en-1-yn-3-yl)-13-

methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-o

ne (4v): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 10:1 hexane:EtOAc) 

gave the pure product as a colorless oil (25.8 mg, 50% yield). 

1H NMR (500 MHz, CDCl3): δ 7.18 (d, 1H, J = 8.0 Hz), 7.04 (dd, 1H, J = 8.0, 1.9 Hz), 

7.00 (s, 1H), 6.17 (s, 1H), 2.90 – 2.87 (m, 2H), 2.51 (dd, 1H, J = 19.0, 8.6 Hz), 2.44 – 

2.40 (m, 1H), 2.31 (td, 1H, J = 10.8, 4.2 Hz), 2.18 – 2.09 (m, 1H), 2.08 – 1.95 (m, 3H), 

1.67 -1.61 (m, 2H), 1.58 – 1.42 (m, 4H), 1.04 (s, 21H), 0.95 (s, 9H), 0.93 (s, 3H); 13C 

NMR (126 MHz, CDCl3): δ 221.2, 149.8, 138.6, 136.4, 135.7, 129.8, 126.7, 124.6, 

122.8, 111.1, 87.1, 50.8, 48.2, 44.5, 38.3, 36.1, 34.6, 31.8, 31.2, 29.5, 26.8, 25.8, 21.8, 

18.9, 14.1, 11.6; HRMS (APCI) m/z calcd for C35H53OSi [(M+H)+]: 517.3860, found: 

517.3856. 

(E)-2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(4-(5,5-dimeth

yl-1-(triisopropylsilyl)hex-3-en-1-yn-3-yl)phenyl)acetamide (4w):  

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 5:1 hexane:EtOAc) 

gave the pure product as a colorless oil (44.4 mg, 64% yield). 
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1H NMR (400 MHz, CDCl3): δ 7.70 – 7.67 (m, 2H), 7.51 – 7.48 (m, 2H), 7.34 – 7.32 

(m, 2H), 7.31 (br, 1H), 7.18 (d, 2H, J = 8.6 Hz), 6.96 (d, 1H, J = 2.5 Hz), 6.87 (d, 1H, 

J = 9.3 Hz), 6.72 (dd, 1H, J = 9.1, 2.5 Hz), 6.17 (s, 1H), 3.81 (s, 3H), 3.80 (s, 2H), 

2.46 (s, 3H), 1.01 (s, 21H), 0.91 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 168.5, 168.2, 

156.6, 150.2, 139.9, 136.9, 136.5, 135.6, 133.7, 131.4, 131.2, 130.3, 129.8, 129.5, 

122.1, 119.4, 115.4, 112.7, 112.5, 110.5, 100.9, 87.8, 56.0, 34.6, 33.6, 31.1, 18.8, 13.5, 

11.5; HRMS (APCI) m/z calcd for C42H52ClN2O3Si [(M+H)+]: 695.3430, found: 

695.3433. 

(E)-(3-(4-Ethoxyphenyl)-5,5-dimethylhex-3-en-1-yn-1-yl-4-d)triisopropylsilane 

(4x): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (23.5 mg, 61% yield). 

1H NMR (400 MHz, CDCl3): δ 7.18 – 7.15 (m, 2H), 6.83 – 6.79 (m, 2H), 6.16 (s, 

0.06H) 4.03 (q, 2H, J = 7.0 Hz), 1.41 (t, 3H, J = 7.0 Hz), 1.03 (s, 21H), 0.94 (s, 9H); 

13C NMR (101 MHz, CDCl3): δ 158.2, 149.8, 131.4, 130.3, 122.4, 113.8, 111.1, 87.3, 

63.5, 34.5, 31.1, 18.8, 15.1, 11.6; HRMS (APCI) m/z calcd for C25H40DOSi [(M+H)+]: 

386.2984, found: 386.2983. 

(E)-1-(5,5-Dimethyl-1-phenylhex-3-en-1-yn-3-yl)-4-ethoxybenzene (4y): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (16.1 mg, 53% yield, E:Z 95:5). 
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1H NMR (400 MHz, CDCl3): δ 7.29 – 7.25 (m, 2H), 7.18 – 7.10 (m, 5H), 6.78 – 6.74 

(m, 2H), 6.15 (s, 1H), 3.94 (q, 2H, J = 7.0 Hz), 1.32 (t, 3H, J = 7.0 Hz), 0.87 (s, 9H); 

13C NMR (101 MHz, CDCl3): δ 158.4, 150.1, 131.6, 131.1, 130.4, 128.3, 127.9, 123.9, 

122.0, 114.0, 93.2, 87.0, 63.6, 34.8, 31.2, 15.1; HRMS (APCI) m/z calcd for C22H25O 

[(M+H)+]: 305.1900, found: 305.1904. 

(E)-1-(5,5-Dimethyl-3-phenylhex-3-en-1-yn-1-yl)-4-methoxybenzene (4z): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (14.2 mg, 49% yield, E:Z 95:5). 

1H NMR (400 MHz, CDCl3): δ 7.33 – 7.29 (m, 7H), 6.81 – 6.77 (m, 2H), 6.24 (s, 1H), 

3.79 (s, 3H), 0.95 (s, 9H); 13C NMR (126 MHz, CDCl3): δ 159.4, 149.4, 139.3, 133.0, 

129.3, 128.1, 127.4, 122.5, 116.0, 114.0, 91.5, 87.4, 55.4, 34.7, 31.2; HRMS (EI) m/z 

calcd for C21H22O [M]+: 290.1665, found: 290.1663. 

(E)-1-(6,6-Dimethyl-1-phenoxyhept-4-en-2-yn-4-yl)-4-ethoxybenzene (4aa): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 50:1 hexane:EtOAc) 

gave the pure product as a colorless oil (15.4 mg, 46% yield, E:Z 94:6). 

1H NMR (400 MHz, CDCl3): δ 7.31 – 7.25 (m, 2H), 7.15 – 7.11 (m, 2H), 6.99 – 6.94 

(m, 3H), 6.85 – 6.81 (m, 2H), 6.17 (s, 1H), 4.75 (s, 2H), 4.03 (q, 2H, J = 7.0 Hz), 1.42 

(t, 3H, J = 7.0 Hz), 0.92 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 158.4, 158.1, 151.0, 

130.7, 130.3, 129.6, 121.4, 121.1, 115.2, 114.0, 90.7, 81.4, 63.6, 57.0, 34.7, 31.0, 15.0; 

HRMS (APCI) m/z calcd for C23H27O2 [(M+H)+]: 335.2006, found: 335.2004. 
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(E)-(3-(4-Ethoxyphenyl)-5,5-dimethylhept-3-en-1-yn-1-yl)triisopropylsilane 

(4ab): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (24.3 mg, 61% yield). 

1H NMR (400 MHz, CDCl3): δ 7.18 – 7.14 (m, 2H), 6.82 – 6.79 (m, 2H), 6.07 (s, 1H), 

4.03 (q, 2H, J = 7.0 Hz), 1.41 (t, 3H, J = 7.0 Hz), 1.29 (q, 2H, J = 7.5 Hz), 1.03 (s, 

21H), 0.85 (s, 6H), 0.81 (t, 3H, J = 7.4 Hz); 13C NMR (101 MHz, CDCl3): δ 158.1, 

148.9, 131.5, 130.2, 123.2, 113.7, 111.3, 87.1, 63.5, 37.9, 36.9, 28.3, 18.8, 15.1, 11.6, 

9.4; HRMS (APCI) m/z calcd for C26H43OSi [(M+H)+]: 399.3078, found: 399.3079. 

(E)-tert-Butyl((4-(4-ethoxyphenyl)-2,2-dimethyl-6-(triisopropylsilyl)hex-3-en-5-y

n-1-yl)oxy)dimethylsilane (4ac): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (32.9 mg, 64% yield). 

1H NMR (400 MHz, CDCl3): δ 7.20 – 7.16 (m, 2H), 6.83 – 6.79 (m, 2H), 6.19 (s, 1H), 

4.03 (q, 2H, J = 7.0 Hz), 3.26 (s, 2H), 1.41 (t, 3H, J = 7.0 Hz), 1.03 (s, 21H), 0.89 (s, 

9H), 0.84 (s, 6H), 0.02 (s, 6H); 13C NMR (101 MHz, CDCl3): δ 158.2, 146.7, 131.5, 

130.3, 123.7, 113.7, 111.1, 87.2, 72.7, 63.5, 40.0, 26.1, 25.2, 18.8, 18.5, 15.1, 11.5, 

-5.3; HRMS (APCI) m/z calcd for C31H55O2Si2 [(M+H)+]: 515.3735, found: 

515.3730. 

(E)-6-(2-(4-Ethoxyphenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)-2,2,3,3,6,9,9,10

,10-nonamethyl-4,8-dioxa-3,9-disilaundecane (4ad): 
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The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (45.0 mg, 70% yield). 

1H NMR (400 MHz, CDCl3): δ 7.20 – 7.16 (m, 2H), 6.82 – 6.79 (m, 2H), 6.22 (s, 1H), 

4.03 (q, 2H, J = 7.0 Hz), 3.36 (d, 4H, J = 1.6 Hz), 1.41 (t, 3H, J = 7.0 Hz), 1.02 (s, 

21H), 0.87 (s, 18H), 0.67 (s, 3H), -0.00 (s, 6H), -0.01 (s, 6H); 13C NMR (101 MHz, 

CDCl3): δ 158.3, 143.9, 131.6, 130.3, 124.9, 113.8, 111.1, 87.3, 66.9, 63.6, 45.2, 26.1, 

19.3, 18.8, 18.5, 15.1, 11.5, -5.30, -5.31; HRMS (APCI) m/z calcd for C37H69O3Si3 

[(M+H)+]: 645.4549, found: 645.4544. 

(E)-(8-(2,5-Dimethylphenoxy)-3-(4-ethoxyphenyl)-5,5-dimethyloct-3-en-1-yn-1-yl

)triisopropylsilane (4ae): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (24.5 mg, 46% yield). 

1H NMR (400 MHz, CDCl3): δ 7.20 – 7.16 (m, 2H), 7.01 (d, 1H, J = 7.5 Hz), 6.83 – 

6.80 (m, 2H), 6.66 (dd, 1H, J = 7.5, 1.6 Hz), 6.67 -6.64 (m, 1H), 6.12 (s, 1H), 4.02 (q, 

2H, J = 7.0 Hz), 3.81 (t, 2H, J = 6.4 Hz), 2.32 (s, 3H), 2.19 (s, 3H), 1.79 – 1.72 (m, 

2H), 1.45 – 1.40 (m, 5H), 1.04 (s, 21H), 0.94 (s, 6H); 13C NMR (101 MHz, CDCl3): δ 

158.2, 157.3, 148.4, 136.6, 131.4, 130.4, 130.2, 123.8, 123.5, 120.8, 113.8, 112.2, 

111.1, 87.5, 68.5, 63.5, 40.6, 37.5, 29.0, 25.3, 21.6, 18.8, 16.0, 15.0, 11.6; HRMS 

(APCI) m/z calcd for C35H53O2Si [(M+H)+]: 533.3809, found: 533.3805. 
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(E)-Triisopropyl(4-(3-methyloxetan-3-yl)-3-phenylbut-3-en-1-yn-1-yl)silane (4af): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 50:1 hexane:EtOAc) 

gave the pure product as a colorless oil (10.6 mg, 30% yield). 

1H NMR (400 MHz, CDCl3): δ = 7.34 – 7.27 (m, 3H), 7.26 – 7.23 (m, 2H), 6.16 (s, 

1H), 4.38 (d, 2H, J = 5.6 Hz), 4.04 (d, 2H, J = 5.9 Hz), 1.66 (s, 3H), 1.08 (s, 21H); 13C 

NMR (101 MHz, CDCl3): δ 142.0, 137.6, 128.4, 128.2, 128.1, 123.8, 108.8, 89.4, 

81.8, 41.8, 26.8, 18.9, 11.5; HRMS (APCI) m/z calcd for C23H35OSi [(M+H)+]: 

355.2452, found: 355.2451. 

(E)-(3-(4-Ethoxyphenyl)-4-(1-methylcyclopentyl)but-3-en-1-yn-1-yl)triisopropylsi

lane (4ag): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (22.5 mg, 55% yield). 

1H NMR (400 MHz, CDCl3): δ 7.23 – 7.19 (m, 2H), 6.83 – 6.80 (m, 2H), 6.30 (s, 1H), 

4.03 (q, 2H, J = 7.0 Hz), 1.57 – 1.55 (m, 2H), 1.54 – 1.51 (m, 4H), 1.42 (t, 3H, J = 7.0 

Hz), 1.34 – 1.31 (m, 2H), 1.04 (s, 21H), 0.98 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 

158.2, 149.4, 131.5, 130.3, 122.5, 113.7, 111.2, 87.0, 63.5, 45.5, 40.9, 26.9, 23.9, 18.9, 

15.1, 11.6; HRMS (APCI) m/z calcd for C27H43OSi [(M+H)+]: 411.3078, found: 

411.3081. 

(E)-(3-(4-Ethoxyphenyl)-4-(1-methylcyclopent-3-en-1-yl)but-3-en-1-yn-1-yl)triiso

propylsilane (4ah): 
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The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (19.2 mg, 47% yield). 

1H NMR (400 MHz, CDCl3): δ 7.23 – 7.19 (m, 2H), 6.84 – 6.80 (m, 2H), 6.38 (s, 1H), 

5.49 (s, 2H), 4.04 (q, 2H, J = 7.0 Hz), 2.42 – 2.36 (m, 2H), 2.04 – 1.98 (m, 2H), 1.42 

(t, 3H, J = 7.0 Hz), 1.11 (s, 3H), 1.05 (s, 21H); 13C NMR (101 MHz, CDCl3) δ 158.3, 

148.5, 131.2, 130.4, 128.7, 122.4, 113.8, 111.0, 87.2, 63.5, 47.7, 44.1, 29.7, 18.9, 15.1, 

11.6; HRMS (APCI) m/z calcd for C27H41OSi [(M+H)+]: 409.2921, found: 409.2923. 

(E)-(3-(4-Ethoxyphenyl)-4-(1-methylcyclohexyl)but-3-en-1-yn-1-yl)triisopropylsil

ane (4ai): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (31.4 mg, 74% yield). 

1H NMR (400 MHz, CDCl3): δ 7.19 – 7.16 (m, 2H), 6.82 – 6.80 (m, 2H), 6.09 (s, 1H), 

4.03 (q, 2H, J = 7.0 Hz), 1.45 – 1.39 (m, 6H), 1.37 – 1.31 (m, 4H), 1.26 – 1.08 (m, 3H) 

1.03 (s, 21H), 0.97 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 158.2, 149.0, 131.7, 130.1, 

123.6, 113.8, 111.5, 86.8, 63.5, 39.2, 38.0, 28.9, 26.2, 22.9, 18.8, 15.1, 11.6; HRMS 

(APCI) m/z calcd for C28H45OSi [(M+H)+]: 425.3234, found: 425.3241. 

(E)-(4-(4,4-Difluoro-1-methylcyclohexyl)-3-(4-ethoxyphenyl)but-3-en-1-yn-1-yl)tr

iisopropylsilane (4aj): 
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The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (40.9 mg, 89% yield). 

1H NMR (400 MHz, CDCl3): δ 7.20 – 7.16 (m, 2H), 6.85 – 6.81 (m, 2H), 6.03 (s, 1H), 

4.04 (q, 2H, J = 7.0 Hz), 1.80 – 1.69 (m, 4H), 1.60 – 1.53 (m, 2H), 1.42 (t, 3H, J = 7.0 

Hz), 1.35 – 1.26 (m, 2H), 1.10 (s, 3H), 1.04 (s, 21H); 13C NMR (101 MHz, CDCl3): δ 

158.5, 145.2, 130.7, 129.8, 125.7, 11.5. 123.7 (t, J = 240.7 Hz), 114.1, 110.5, 88.3, 

63.6, 37.1, 34.9 (d, J = 9.1 Hz), 31.0 (t, J = 23.9 Hz), 28.6, 18.8, 15.0; HRMS (APCI) 

m/z calcd for C28H43F2OSi [(M+H)+]: 461.3046, found: 461.3036. 

(E)-(3-(4-Ethoxyphenyl)-4-(4-methyltetrahydro-2H-pyran-4-yl)but-3-en-1-yn-1-y

l)triisopropylsilane (4ak): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 50:1 hexane:EtOAc) 

gave the pure product as a colorless oil (32.4 mg, 76% yield). 

1H NMR (400 MHz, CDCl3): δ 7.17 – 7.13 (m, 2H), 6.83 – 6.80 (m, 2H), 6.07 (s, 1H), 

4.02 (q, 2H, J = 7.0 Hz), 3.58 – 3.46 (m, 4H), 1.52 – 1.46 (m, 2H), 1.41 (t, 3H, J = 7.0 

Hz), 1.28 (ddd, 2H, J = 13.4, 9.1, 3.9 Hz), 1.09 (s, 3H), 1.03 (s, 21H); 13C NMR (101 

MHz, CDCl3): δ 158.4, 146.8, 131.2, 129.9, 124.8, 114.0, 110.7, 87.9, 64.7, 63.5, 38.9, 

35.8, 28.5, 18.8, 15.0, 11.5; HRMS (APCI) m/z calcd for C27H43O2Si [(M+H)+]: 

427.3027, found: 427.3022. 

(E)-(4-(4-Benzyltetrahydro-2H-pyran-4-yl)-3-(4-ethoxyphenyl)but-3-en-1-yn-1-yl

)triisopropylsilane (4al): 

 

The title compound was prepared from the General procedure B. Purification using 
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flash silica gel column chromatography without workup (eluent: 50:1 hexane:EtOAc) 

gave the pure product as a colorless oil (20.6 mg, 41% yield). 

1H NMR (400 MHz, CDCl3): δ 7.32 – 7.27 (m, 3H), 7.19 – 7.17 (m, 2H), 6.86 – 6.83 

(m, 2H), 6.75 – 6.71 (m, 2H), 5.86 (s, 1H), 4.01 (q, 2H, J = 7.0 Hz), 3.57 (dt, 2H, J = 

11.8, 3.7 Hz), 3.40 (ddd, 2H, J = 11.7, 9.3, 3.9 Hz), 2.76 (s, 2H), 1.42 – 1.38 (m, 7H), 

1.04 (s, 21H); 13C NMR (101 MHz, CDCl3): δ 158.4, 144.9, 137.3, 131.0, 130.9, 

129.6, 128.1, 126.6, 125.8, 113.9, 110.8, 88.0, 64.8, 63.5, 49.4, 41.2, 36.7, 18.8, 15.0, 

11.5; HRMS (APCI) m/z calcd for C33H47O2Si [(M+H)+]: 503.3340, found: 503.3330. 

(E)-(3-(4-Ethoxyphenyl)-4-(2,2,5-trimethyl-1,3-dioxan-5-yl)but-3-en-1-yn-1-yl)tri

isopropylsilane (4am): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 20:1 hexane:EtOAc) 

gave the pure product as a colorless oil (32.8 mg, 72% yield). 

1H NMR (400 MHz, CDCl3): δ 7.17 – 7.13 (m, 2H), 6.83 – 6.79 (m, 2H), 5.95 (s, 1H), 

4.01 (q, 2H, J = 7.0 Hz), 3.68 (d, 2H, J = 11.5 Hz), 3.32 (d, 2H, J = 11.7 Hz), 1.41 (t, 

3H, J = 7.0 Hz), 1.34 (s, 6H), 1.10 (s, 3H), 1.03 (s, 21H); 13C NMR (101 MHz, 

CDCl3): δ 158.6, 141.5, 131.0, 129.9, 126.4, 114.1, 109.9, 97.9, 89.4, 69.2, 63.5, 36.9, 

27.0, 21.5, 20.8, 18.8, 15.0, 11.5; HRMS (APCI) m/z calcd for C28H45O3Si [(M+H)+]: 

457.3132, found: 457.3128. 

(E)-4-Ethyl-4-(2-phenyl-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)-1-tosylpiperidine 

(4an): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 10:1 hexane:EtOAc) 
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gave the pure product as a colorless oil (33.5 mg, 61% yield). 

1H NMR (400 MHz, CDCl3): δ 7.63 – 7.61 (m, 2H), 7.35 (d, 2H, J = 8.0 Hz), 7.29 – 

7.25 (m, 3H), 7.09 – 7.06 (m, 2H), 5.80 (s, 1H), 3.20 (dt, 2H, J = 11.8, 4.0 Hz), 2.53 – 

2.47 (m, 2H), 2.46 (s, 3H), 1.56 – 1.51 (m, 2H), 1.38 – 1.27 (m, 4H), 0.99 (s, 21H), 

0.88 (t, 3H, J = 7.5 Hz); 13C NMR (101 MHz, CDCl3): δ 144.2, 143.5, 138.8, 133.5, 

129.7, 128.4, 128.2, 127.9, 127.8, 126.3, 110.1, 88.6, 43.1, 39.6, 35.2, 34.5, 21.7, 18.7, 

11.4, 8.5; HRMS (APCI) m/z calcd for C33H48NO2SSi [(M+H)+]: 550.3170, found: 

550.3178. 

((E)-4-((1s,3s)-Adamantan-1-yl)-3-phenylbut-3-en-1-yn-1-yl)triisopropylsilane 

(4ao): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 200:1 hexane:EtOAc) 

gave the pure product as a colorless oil (20.9 mg, 50% yield). 

1H NMR (400 MHz, CDCl3): δ 7.28 – 7.23 (m, 5H), 5.96 (s, 1H), 1.83 (p, 3H, J = 3.1 

Hz), 1.61 – 1.57 (m, 3H), 1.54 – 1.50 (m, 9H), 1.02 (s, 21H); 13C NMR (101 MHz, 

CDCl3): δ 149.9, 139.4, 129.1, 127.5, 126.9, 122.4, 110.9, 87.8, 42.7, 37.0, 36.6, 28.4, 

18.6, 11.4; HRMS (APCI) m/z calcd for C29H43Si [(M+H)+]: 419.3129, found: 

419.3116. 

Methyl 

(E)-4-(2-phenyl-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)bicyclo[2.2.2]octane-1-car

boxylate (4ap): 

 

The title compound was prepared from the General procedure B. Purification using 
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flash silica gel column chromatography without workup (eluent: 20:1 hexane:EtOAc) 

gave the pure product as a colorless oil (24.8 mg, 55% yield). 

1H NMR (400 MHz, CDCl3): δ 7.31 – 7.25 (m, 3H), 7.23 – 7.21 (m, 2H), 6.02 (s, 1H), 

3.58 (s, 3H), 1.67 – 1.63 (m, 6H), 1.48 – 1.44 (m, 6H), 1.01 (s, 21H); 13C NMR (101 

MHz, CDCl3): δ 178.4, 147.6, 139.3, 129.2, 127.9, 127.3, 123.8, 110.6, 88.6, 51.8, 

38.7, 34.7, 31.4, 28.4, 18.8, 11.5; HRMS (APCI) m/z calcd for C29H43O2Si [(M+H)+]: 

451.3027, found: 451.3013. 

(S)-1-(2-(4-Ethoxyphenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)-7,7-dimethylbi

cyclo[2.2.1]heptan-2-one (4aq): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 20:1 hexane:EtOAc) 

gave the pure product as a colorless oil (19.0 mg, 41% yield). 

1H NMR (400 MHz, CDCl3): δ 7.37 – 7.33 (m, 2H), 6.79 – 6.75 (m, 2H), 5.91 (s, 1H), 

4.01 (q, 2H, J = 7.0 Hz), 2.44 (ddd, 1H, J = 18.3, 4.9, 3.0 Hz), 2.01 (t, 1H, J = 4.5 Hz), 

1.83 (d, 1H, J = 18.3 Hz), 1.77 – 1.69 (m, 1H), 1.58 (s, 3H), 1.40 (t, 3H, J = 7.0 Hz), 

1.33 – 1.24 (m, 1H), 1.22 – 1.14 (m, 2H), 1.05 (s, 21H), 0.90 (s, 3H); 13C NMR (101 

MHz, CDCl3): δ 216.1, 158.7, 132.3, 131.1, 130.4, 130.3, 113.6, 110.1, 89.4, 65.1 

(58.6); 63.5; 49.7 (44.4); 45.6 (44.0); 43.7 (42.4); 23.0 (27.8); 27.1 (27.4); 20.0 (21.9); 

20.9 (20.5) 18.8; 15.0; 11.5; HRMS (APCI) m/z calcd for C30H45O2Si [(M+H)+]: 

465.3183, found: 465.3182. 

Triisopropyl((E)-4-((1R,4aR,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-

octahydrophenanthren-1-yl)-3-phenylbut-3-en-1-yn-1-yl)silane (4ar): 
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The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (31.2 mg, 58% yield). 

1H NMR (400 MHz, CDCl3): δ 7.29 – 7.23 (m, 5H), 7.13 (d, 1H, J = 8.2 Hz), 6.98 (dd, 

1H, J = 8.2, 2.1 Hz), 6.90 (d, 1H, J = 2.0 Hz), 6.04 (s, 1H), 2.94 – 2.90 (m, 2H), 2.86 

– 2.79 (m, 1H), 2.25 – 2.21 (m, 1H), 1.93 – 1.86 (m, 1H), 1.82 – 1.74 (m, 1H), 1.64 – 

1.59 (m, 2H), 1.49 – 1.33 (m, 4H), 1.23 (d, 6H, J = 6.9 Hz), 1.13 (s, 3H), 1.02 (s, 

21H), 0.74 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 152.3, 147.6, 145.8, 139.5, 135.0, 

129.2, 127.9, 127.1, 127.0, 124.2, 124.0, 123.4, 111.3, 88.0, 50.0, 42.6, 40.1, 38.4, 

37.4, 33.6, 30.3, 25.3, 24.2, 24.2, 21.1, 19.3, 18.9, 18.8, 11.6; HRMS (APCI) m/z 

calcd for C38H55Si [(M+H)+]: 539.4068, found: 539.4064. 

(E)-(3-(4-Ethoxyphenyl)-5,5,6,6,7,7,8,8,8-nonafluorooct-3-en-1-yn-1-yl)triisoprop

ylsilane (4as): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (28.9 mg, 53% yield). 

1H NMR (400 MHz, CDCl3): δ 7.39 (d, 2H, J = 8.9 Hz), 6.88 – 6.84 (m, 2H), 6.04 (t, 

1H, J = 15.5 Hz), 4.05 (q, 2H, J = 7.0 Hz), 1.42 (t, 3H, J = 7.0 Hz), 1.09 - 1.07 (m, 

21H); 19F NMR (377 MHz, CDCl3): δ -81.03 (t, 3F, J = 9.5 Hz), -103.94 - -103.86 (m, 

2F), -123.84 - -123.76 (m, 2F), -125.8 - -125.7 (m, 2F); 13C NMR(101 MHz, CDCl3): 

δ 159.9, 137.1, 130.2 (t, J = 3.2 Hz), 127.8, 118.8 (t, J = 20.4 Hz), 114.0, 106.9, 97.5, 
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63.6, 18.8, 15.0, 11.4; HRMS (APCI) m/z calcd for C25H32F9OSi [(M+H)+]: 547.2073, 

found: 547.2071. 

(E)-Triisopropyl(5,5,6,6,7,7,8,8,8-nonafluoro-3-propyloct-3-en-1-yn-1-yl)silane 

(4at): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (16.8 mg, 36% yield). 

1H NMR (400 MHz, CDCl3): δ 5.83 (t, 1H, J = 15.7 Hz), 2.37 – 2.33 (m, 2H), 1.66 

(hept, 2H, J = 7.4 Hz), 1.09 (s, 21H), 0.95 (t, 3H, J = 7.4 Hz); 19F NMR (377 MHz, 

CDCl3): δ -81.0 (t, 3F, J = 9.6 Hz), -105.5 - -105.4 (m, 2F), -124.1 - -124.0 (m, 2F), 

-125.8 – -125.7 (m, 2F); 13C NMR (126 MHz, CDCl3): δ 139.2 (d, J = 6.7 Hz), 121.0 

(t, J = 23.3 Hz), 105.9, 96.3, 34.4, 21.7, 18.7, 13.6, 11.4; HRMS (EI) m/z calcd for 

C20H29F9Si [M]+: 468.1889, found: 468.1882. 

(E)-4-(2,4-Diphenylbut-1-en-3-yn-1-yl)tetrahydro-2H-pyran (4au): 

 

The title compound was prepared from the General procedure C. Purification using 

flash silica gel column chromatography without workup (eluent: 50:1 hexane:EtOAc) 

gave the pure product as a colorless oil (11.5 mg, 40% yield, E:Z 83:17). 

1H NMR (400 MHz, CDCl3): δ 7.44 – 7.39 (m, 5H), 7.37 – 7.28 (m, 5H), 6.09 (d, 1H, 

J = 10.2 Hz), 3.94 (dt, 2H, J = 11.4, 3.4 Hz), 3.34 (ddd, 2H, J = 11.6, 7.8, 5.6 Hz), 

2.67 – 2.57 (m, 1H), 1.67 – 1.59 (m, 4H); 13C NMR (101 MHz, CDCl3): δ 143.6 

(137.8), 131.7, 128.7, 128.6, 128.4, 128.2, 127.8, 126.2, 123.6, 123.4, 91.3, 88.2, 67.3 

(67.8), 35.5 (37.8), 32.6 (32.2); HRMS (EI) m/z calcd for C21H20O [M]+: 288.1509, 

found: 288.1503. 
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(E)-(5-Methylhex-3-en-1-yne-1,3-diyl)dibenzene (4av): 

 

The title compound was prepared from the General procedure C. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (10.5 mg, 43% yield, E:Z 95:5). 

1H NMR (400 MHz, CDCl3): δ 7.45 – 7.37 (m, 6H), 7.33 – 7.28 (m, 4H), 6.10 (d, 1H, 

J = 10.5 Hz), 2.76 – 2.64 (m, 1H), 1.05 (d, 6H, J = 6.6 Hz); 13C NMR (101 MHz, 

CDCl3): δ 147.5, 138.1, 131.7, 128.8, 128.4, 128.1, 127.6, 123.8, 121.6, 91.6, 87.5, 

28.6, 23.0; HRMS (EI) m/z calcd for C19H18 [M]+: 246.1403, found: 246.1402. 

(E)-(6-Methylhept-3-en-1-yne-1,3-diyl)dibenzene (4aw): 

 

The title compound was prepared from the General procedure C. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 

pure product as a colorless oil (8.3 mg, 32% yield, E:Z 90:10). 

1H NMR (400 MHz, CDCl3): δ 7.45 – 7.41 (m, 3H), 7.40 – 7.34 (m, 3H), 7.32 – 7.27 

(m, 4H), 6.32 (t, 1H, J = 7.6 Hz), 2.16 (dd, 2H, J = 7.6, 6.8 Hz), 1.78 – 1.68 (m, 1H), 

0.92 (d, 6H, J = 6.6 Hz); 13C NMR (101 MHz, CDCl3): δ 139.8, 138.0, 131.7, 129.1, 

128.4, 128.3, 128.0, 127.5, 124.2, 123.8, 91.8, 87.4, 38.7, 29.1, 22.6; HRMS (EI) m/z 

calcd for C20H20 [M]+: 260.1560, found: 260.1561. 

(E)-(6,6-Dimethylhept-3-en-1-yne-1,3-diyl)dibenzene (4ax): 

 

The title compound was prepared from the General procedure C. Purification using 

flash silica gel column chromatography without workup (eluent: hexane) gave the 
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pure product as a colorless oil (13.4 mg, 49% yield, E:Z 93:7). 

1H NMR(400 MHz, CDCl3): δ 7.46 – 7.36 (m, 6H), 7.32 – 7.27 (m, 4H), 6.39 (t, 1H, J 

= 7.7 Hz), 2.16 (d, 2H, J = 7.8 Hz), 0.92 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 

138.1, 138.0, 131.7, 129.1, 128.4, 128.3, 128.0, 127.5, 124.8, 123.8, 91.9, 87.4, 43.3, 

31.7, 29.6; HRMS (EI) m/z calcd for C21H22 [M]+: 274.1716, found: 274.1716. 

1,4-Bis(triisopropylsilyl)buta-1,3-diyne (7): 

 

1H NMR (400 MHz, CDCl3) δ 1.09 (s, 42H); 13C NMR (101 MHz, CDCl3) δ 90.4, 

81.8, 18.8, 11.5; HRMS (EI) m/z calcd for C22H42Si2 [M]+: 362.2820, found: 

362.2815. 

(Z)-1-(3,3-Dimethylbut-1-en-1-yl)-4-ethoxybenzene (9): 

 

1H NMR (400 MHz, CDCl3) δ 7.09 – 7.07 (m, 2H), 6.82 – 6.79 (m, 2H), 6.34 (d, J = 

12.5 Hz, 1H), 5.55 (d, J = 12.5 Hz, 1H), 4.02 (q, J = 7.0 Hz, 2H), 1.41 (t, J = 7.0 Hz, 

3H), 0.98 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 157.6, 142.7, 131.7, 130.2, 127.0, 

113.7, 63.5, 31.4, 29.9, 15.1; HRMS (EI) m/z calcd for C14H20O [M]+: 204.1509, found: 

204.1512. 

tert-Butyl (4-(3,3-dimethyl-5-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclopent-1-en-1 

-yl)phenyl)carbamate (11a): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 5:1 hexane:EtOAc) 

gave the pure product as a colorless oil (25.5 mg, 53% yield). 
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1H NMR (400 MHz, CDCl3): δ 7.23 – 7.17 (m, 4H), 6.40 (br, 1H), 5.65 (d, 1H, J = 

1.7 Hz), 3.36 – 3.29 (m, 1H), 2.48 (dd, 1H, J = 17.0, 3.6 Hz), 2.14 (dd, 1H, J = 17.0, 

9.0 Hz), 2.01 (dd, 1H, J = 13.1, 8.5 Hz), 1.80 (dd, 1H, J = 13.1, 5.6 Hz), 1.45 (s, 9H), 

1.11 (s, 3H), 1.03 (s, 3H), 1.01 – 0.95 (m, 21H); 13C NMR (101 MHz, CDCl3): δ 

152.9, 141.8, 138.2, 137.3, 131.4, 127.2, 118.5, 107.8, 81.3, 80.7, 44.9, 44.7, 44.2, 

30.0, 29.6, 28.5, 25.5, 18.8, 18.8, 11.5; DEPT 90 (101 MHz, CDCl3): δ 138.0, 127.0, 

118.4, 44.5, 18.7, 11.3; HRMS (APCI) m/z calcd for C30H48NO2Si [(M+H)+]: 

482.3449, found: 482.3452. 

(3-(7-(4-Ethoxyphenyl)spiro[3.4]oct-7-en-6-yl)prop-1-yn-1-yl)triisopropylsilane 

(11b): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (21.9 mg, 52% yield). 

1H NMR (400 MHz, CDCl3): δ 7.31 – 7.28 (m, 2H), 6.85 – 6.82 (m, 2H), 6.05 (d, 1H, 

J = 1.3 Hz), 4.03 (q, 2H, J = 7.0 Hz), 3.28 (dddd, 1H, J = 13.2, 7.8, 3.8, 1.3 Hz), 2.53 

(dd, 1H, J = 17.0, 3.6 Hz), 2.32 – 2.21 (m, 2H), 2.15 – 2.05 (m, 4H), 2.05 – 1.97 (m, 

1H), 1.93 – 1.84 (m, 2H), 1.41 (t, 3H, J = 7.0 Hz), 1.08 – 1.00 (m, 21H); 13C NMR 

(101 MHz, CDCl3): δ 158.3, 143.0, 134.4, 128.5, 127.5, 114.6, 108.2, 81.1, 63.6, 51.5, 

44.9, 44.7, 35.9, 35.2, 25.6, 18.9, 18.9, 16.9, 15.0, 11.5; DEPT 90 (101 MHz, CDCl3): 

δ 134.2, 127.4, 114.4, 44.7, 18.7, 11.3; HRMS (APCI) m/z calcd for C28H43OSi 

[(M+H)+]: 423.3078, found: 423.3069. 

(3-(3-(4-Ethoxyphenyl)spiro[4.4]non-3-en-2-yl)prop-1-yn-1-yl)triisopropylsilane 

(11c): 
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The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (27.9 mg, 64% yield). 

1H NMR (400 MHz, CDCl3): δ 7.30 – 7.26 (m, 2H), 6.85 – 6.82 (m, 2H), 5.79 (d, 1H, 

J = 1.4 Hz), 4.03 (q, 2H, J = 7.0 Hz), 3.39 – 3.32 (m, 1H), 2.57 (dd, 1H, J = 17.0, 3.7 

Hz), 2.23 – 2.12 (m, 2H), 1.97 (dd, 1H, J = 13.1, 4.6 Hz), 1.70 – 1.66 (m, 4H), 1.63 – 

1.50 (m, 4H), 1.41 (t, 3H, J = 7.0 Hz), 1.08 – 1.00 (m, 21H); 13C NMR (101 MHz, 

CDCl3) δ 158.2, 142.4, 135.2, 128.9, 127.6, 114.5, 108.2, 81.2, 63.6, 55.4, 44.7, 44.0, 

40.5, 40.3, 25.7, 25.0, 24.7, 18.9, 18.8, 15.0, 11.5; DEPT 90 (101 MHz, CDCl3): δ 

135.0, 127.4, 114.4, 44.6, 18.7, 11.3; HRMS (APCI) m/z calcd for C29H45OSi 

[(M+H)+]: 437.3234, found: 437.3238. 

(3-(3-(4-Ethoxyphenyl)-8,8-difluorospiro[4.5]dec-3-en-2-yl)prop-1-yn-1-yl)triisop

ropylsilane (11d): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (41.3 mg, 85% yield). 

1H NMR (400 MHz, CDCl3): δ 7.29 – 7.25 (m, 2H), 6.87 – 6.83 (m, 2H), 5.81 (d, 1H, 

J = 1.6 Hz), 4.04 (q, 2H, J = 7.0 Hz), 3.46 – 3.39 (m, 1H), 2.59 (dd, 1H, J = 17.1, 3.7 

Hz), 2.29 – 2.14 (m, 2H), 2.05 – 1.88 (m, 5H), 1.83 – 1.67 (m, 3H), 1.62 (t, 1H, J = 

6.1 Hz), 1.42 (t, 3H, J = 7.0 Hz), 1.08 – 0.99 (m, 21H); 13C NMR (101 MHz, CDCl3): 
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δ 158.5, 143.9, 132.9, 128.4, 127.7, 123.64 (t, J = 240.7 Hz), 114.6, 107.4, 81.8, 63.6, 

47.1, 44.0, 40.5, 35.1 (t, J = 4.8 Hz), 34.6 (t, J = 4.7 Hz), 31.6 (t, J = 23.7 Hz), 31.5 (t, 

J = 24.1 Hz), 25.7, 18.82, 18.80, 15.0, 11.5; DEPT 90 (101 MHz, CDCl3): δ 132.8, 

127.5, 114.4, 43.9, 18.6, 18.6, 11.3; HRMS (APCI) m/z calcd for C30H45F2OSi 

[(M+H)+]: 487.3202, found: 487.3206. 

(3-(3-(4-Ethoxyphenyl)-8-oxaspiro[4.5]dec-3-en-2-yl)prop-1-yn-1-yl)triisopropyls

ilane (11e): 

 

The title compound was prepared from the General procedure B. Purification using 

flash silica gel column chromatography without workup (eluent: 100:1 hexane:EtOAc) 

gave the pure product as a colorless oil (37.0 mg, 82% yield). 

1H NMR (400 MHz, CDCl3): δ 7.29 -7.26 (m, 2H), 6.86 – 6.83 (m, 2H), 5.84 (d, 1H, 

J = 1.6 Hz), 4.03 (q, 2H, J = 7.0 Hz), 3.87 – 3.77 (m, 2H), 3.64 (ddt, 2H, J = 12.0, 9.1, 

3.2 Hz), 3.44 – 3.37 (m, 1H), 2.59 (dd, 1H, J = 17.0, 3.7 Hz), 2.25 – 2.19 (m, 2H), 

1.98 (dd, 1H, J = 13.4, 5.2 Hz), 1.80 – 1.73 (m, 1H), 1.71 – 1.65 (m, 1H), 1.61 – 1.56 

(m, 1H), 1.49 – 1.45 (m, 1H), 1.41 (t, 3H, J = 7.0 Hz), 1.07 – 1.03 (m, 21H); 13C 

NMR (101 MHz, CDCl3): δ 158.4, 143.5, 133.9, 128.5, 127.7, 114.6, 107.6, 81.7, 

65.6, 65.5, 63.6, 45.9, 44.0, 41.2, 39.0, 38.4, 25.9, 18.8, 18.8, 15.0, 11.5; DEPT 90 

(101 MHz, CDCl3): δ 133.8, 127.5, 114.4, 43.8, 18.7, 18.6, 11.3; HRMS (APCI) m/z 

calcd for C29H45O2Si [(M+H)+]: 453.3183, found: 453.3172. 

6. Chemical transformations of 1,3-enyne products 

(Z)-(5,5-Dimethylhex-3-en-1-yn-3-yl)benzene (12): 

 

Procedure for synthesis of 12[6]: To a solution of 4b (0.2 mmol, 68 mg, 1.0 equiv.) in 



S49 
 

dry THF (1 mL) was added TBAF solution (1 mmol, 1M in THF, 1 mL) dropwise 

under a nitrogen atmosphere. The reaction mixture was allowed to stir for 4 h at room 

temperature. The reaction was quenched by adding H2O (5 mL) and the mixture was 

extracted with Et2O (3*5 mL). The combined organic layers were dried over 

anhydrous Na2SO4, filtered and evaporated under vacuum. The residue was purified 

by flash column chromatography through silica gel using hexane as eluent to give 12 

(28 mg, 75%) as a colorless oil. 

1H NMR (500 MHz, CDCl3): δ 7.34 – 7.26 (m, 5H), 6.27 (s, 1H), 2.88 (d, J = 0.6 Hz, 

1H), 0.94 (s, 9H); 13C NMR (126 MHz, CDCl3): δ 151.3, 138.6, 129.2, 128.2, 127.6, 

121.2, 87.1, 75.2, 34.8, 31.0; HRMS (EI) m/z calcd for C14H16 [M]+: 184.1247, found: 

184.1245. 

(Z)-(5,5-Dimethylhexa-1,3-dien-3-yl)benzene (13): 

 

Procedure for synthesis of 13[7]: To a 4 mL vial was charged with Lindlar catalyst 

(0.005 mmol, 10.6 mg), 12 (0.1 mmol, 21 µL) and cyclohexane (2 mL). The reaction 

mixture was stirred at room temperature for 76 min under a H2 atmosphere using a 

balloon. Then the volatiles were removed and the residue was purified by flash 

chromatography on silica gel using hexane as eluent to give 13 (9.6 mg, 52%) as 

colorless oil.  

1H NMR (400 MHz, CDCl3): δ 7.34 – 7.25 (m, 3H), 7.12 – 7.09 (m, 2H), 6.52 (ddd, J 

= 17.2, 10.4, 0.8 Hz, 1H), 5.71 (d, J = 0.8 Hz, 1H), 4.93 (ddd, J = 10.4, 1.5, 0.7 Hz, 

1H), 4.42 (ddd, J = 17.2, 1.5, 0.6 Hz, 1H), 0.89 (s, 9H); 13C NMR (101 MHz, CDCl3): 

δ 144.3, 143.7, 139.2, 138.6, 130.3, 127.8, 126.8, 114.1, 33.9, 31.4; HRMS (EI) m/z 

calcd for C14H18 [M]+: 186.1403, found: 186.1405. 

(E)-5,5-Dimethyl-3-phenylhex-3-en-2-one (14): 



S50 
 

 

Procedure for synthesis of 14[8]: A 4 mL vial was charged with gold(III) chloride 

hydrate (0.005 mmol, 1.7 mg), methanol (0.3 mL), 12 (0.1 mmol, 21 µL, 1.0 equiv.) 

and H2O (60 µL) under a nitrogen atmosphere. The reaction mixture was heated to 

60 °C for 5 h. After removing the volatiles, the residue was purified by flash column 

chromatography (hexane: ethyl acetate 30:1) to give 14 (15.9 mg, 79%) as colorless 

oil. 

1H NMR (400 MHz, CD2Cl2): δ 7.37 – 7.31 (m, 3H), 7.12 – 7.09 (m, 2H), 6.85 (s, 

1H), 2.19 (s, 3H), 0.93 (s, 9H); 13C NMR (101 MHz, CD2Cl2): δ 200.1, 152.6, 140.9, 

137.9, 130.7, 128.2, 127.7, 34.7, 30.7, 27.8; HRMS (EI) m/z calcd for C14H18O [M]+: 

202.1352, found: 202.1349. 

(E)-1-Benzyl-4-(3,3-dimethyl-1-phenylbut-1-en-1-yl)-1H-1,2,3-triazole (15): 

 

Procedure for synthesis of 15[9]: To a 4 mL vial was charged with CuI (0.04 mmol, 

7.6 mg), THF (0.4 mL), 12 (0.1 mmol, 18.4 mg, 1.0 equiv.) and (azidomethyl)benzene 

(0.1 mmol, 12.5 µL) in a glovebox, and the vial was then sealed with a screw cap. The 

reaction mixture was taken out of the glovebox and heated to 50 °C for 15 h. After 

removing the volatiles, the residue was purified by flash column chromatography 

(hexane: ethyl acetate = 10:1) to give 15 (22.1 mg, 70%) as colorless solid. 

1H NMR (500 MHz, CDCl3): δ 7.34 – 7.29 (m, 6H), 7.21 – 7.16 (m, 4H), 6.88 (s, 1H), 

6.67 (s, 1H), 5.39 (s, 2H), 0.96 (s, 9H); 13C NMR (126 MHz, CDCl3): δ 152.0, 139.7, 

139.4, 135.1, 129.9, 129.1, 128.6, 128.3, 128.2, 127.8, 127.3, 120.8, 54.0, 34.0, 31.4; 

HRMS (EI) m/z calcd for C21H23N3 [M]+: 317.1886, found: 317.1890. 

2-(tert-Butyl)-3-phenylfuran (16): 
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Procedure for synthesis of 16[10]: To a solution of 12 (0.15 mmol, 1.0 equiv.) in dry 

dichloromethane (0.6 mL) was added 3-chloroperbenzoic acid (3.0 mmol, 52 mg). 

The reaction mixture was stirred at room temperature for 4 hours. After this time, the 

reaction was quenched with 0.2 mL of aqueous 2 M aqueous sodium hydroxide 

solution and diluted with 5 mL H2O. The organic phase was separated and the 

aqueous phase was extracted with dichloromethane (2*5mL). The combined organic 

layers were dried over anhydrous sodium sulphate and the volatile components were 

removed under reduced pressure. The residue was further purified by flash column 

chromatography (hexane as eluent) to give 3-(tert-butyl)-2-ethynyl-2-phenyloxirane 

(20 mg, 67%) as colorless oil. Methanol (0.02 mmol, 0.8 µL), 

chloro(triphenylphosphine)gold(I) (0.005 mmol, 2.5 mg) and silver 

trifluoromethanesulfonate (0.005 mmol, 1.3 mg) were added to a solution of 

3-(tert-butyl)-2-ethynyl-2-phenyloxirane (0.1 mmol, 20 mg, 1.0 equiv.) in dry THF 

(0.4 mL). The resulting mixture was stirred at room temperature for 12 h under an 

argon atmosphere. After this time, volatile components were carefully removed and 

the residue was purified by flash chromatography on silica gel using hexane as eluent 

to give 16 (16 mg, 76%) as colorless oil. 

1H NMR (500 MHz, CDCl3): δ 7.36 – 7.27 (m, 6H), 6.25 (d, J = 1.8 Hz, 1H), 1.22 (s, 

9H); 13C NMR (126 MHz, CDCl3): δ 157.6, 138.7, 136.5, 130.4, 127.9, 126.9, 120.0, 

114.4, 34.3, 30.3; HRMS (EI) m/z calcd for C14H16O [M]+: 200.1196, found: 

200.1195. 

1-((1Z,3Z)-5,5-Dimethyl-3-phenylhexa-1,3-dien-1-yl)-4-methoxybenzene (17): 

 



S52 
 

Procedure for synthesis of 17[7]: To a 4 mL vial was charged with Lindlar catalyst 

(0.001 mmol, 2.1 mg), 4z (0.1 mmol, 29 mg) and cyclohexane (2 mL). The reaction 

mixture was stirred at room temperature for 13 h under a H2 atmosphere using a 

balloon. Then volatile was removed and the residue was purified by flash 

chromatography (ethyl acetate: hexane = 100:1) to give 17 (11.5 mg, 40%) as 

colorless oil.  

1H NMR (400 MHz, CDCl3): δ 7.43 – 7.41 (m, 2H), 7.26 – 7.20 (m, 5H), 6.78 – 6.75 

(m, 2H), 6.22 (d, J = 12.0 Hz, 1H), 5.99 (dd, J = 12.0, 1.3 Hz, 1H), 5.74 (d, J = 1.2 Hz, 

1H), 3.80 (s, 3H), 0.84 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 158.4, 141.7, 141.0, 

135.3, 134.1, 130.2, 130.1, 129.4, 127.9, 127.1, 126.8, 113.4, 55.4, 34.1, 31.1; HRMS 

(EI) m/z calcd for C21H24O [M]+: 292.1822, found: 292.1819. 
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8．NMR spectra 

1H NMR spectra of S1, 96%D 
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1H NMR and 13C NMR spectra of S2 
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1H NMR and 13C NMR spectra of S3 
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S60 
 

1H NMR and 13C NMR spectra of S8 

 

 

 



S61 
 

1H NMR and 13C NMR spectra of S9 

 

 

 



S62 
 

1H NMR and 13C NMR spectra of S10 
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