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Figure S1: Energy components of CPMD simulation of the malonate ion system showing
conservation of the total energy. Initial velocities were taken from a Maxwell distribution at
500 K. The CPMD time step was chosen as 0.1 fs. The mass weighting scheme described in
§6.3 of the main text was used.
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Figure S2: Comparison of radial distribution functions from BOMD (black) and CPMonitor
(green) simulations of the Fe3(CO)11 system. Simulation details are given in Section 4.2 of
the main text.
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Figure S3: Spectral analysis of density matrix coefficients in the orthogonalized basis. A
CPMD simulation with a time step of 0.01 fs was used to generate the CPMD density
matrix coefficients (red curve). The SCF coefficients were generated by carrying out a full
SCF calculation at each CPMD time step, without using the SCF energy or gradients in the
simulation (black curve). The spectral analysis is able to resolve peaks corresponding to high
frequency oscillations in the CPMD MO coefficients (green dotted lines). These coefficients
were generated from a simulation of the Fe3(CO)11 system.
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Abstract

Born-Oppenheimer molecular dynamics (BOMD) is a promising simulation method

for exploring the possible reaction pathways of a chemical system, but one significant

challenge is the increased difficulty of converging the self-consistent field (SCF) calcu-

lation that often accompanies the breaking and forming of chemical bonds. To address

this challenge, we developed an enhancement to the BOMD simulation method called

the Car-Parrinello monitor (CPMonitor) that uses Car-Parrinello molecular dynamics

(CPMD) to recover from SCF convergence failures. CPMonitor works by detecting

SCF convergence failures in BOMD and switching to a CPMD Hamiltonian to prop-

agate through the region of configuration space where the SCF calculation is unable

to converge, then switching back to BOMD when good convergence behavior is re-

established. We present a series of simulation studies that use CPMonitor, including

detailed studies of the thermodynamic and dynamical properties of simple systems, as

well as ab initio nanoreactor simulations containing transition metal atoms that were

previously not possible to simulate using standard BOMD methods. Our studies show
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that CPMonitor can make BOMD simulations robust to SCF convergence difficulties

and improve simulation performance and stability in reaction discovery applications.

1 Introduction

The applications of molecular dynamics (MD) simulations to evaluate properties and discover

phenomena are widespread in theoretical chemistry. Born-Oppenheimer molecular dynamics

(BOMD) is a MD simulation carried out on an ab initio potential energy surface (PES),

characterized by evaluation of the electronic ground state and energy at every time step

(“on-the-fly”).1–3 The first BOMD simulation using an ab initio PES was first reported

in 1978 by Leforestier,4 and used the Hartree-Fock approximation (HF) and the STO-3G

basis to describe the gas phase reaction H− + CH4 −−→ CH4 + H−.5 This work built on

prior research that carried out MD simulations on semiempirical potential surfaces6 and

analytic potential surfaces constructed by interpolation from grids of ab initio calculations.7

Since then, BOMD has expanded into a great number of applications including simulation

of thermodynamic properties,8 spectra,9,10 and reactivity.11–13

In contrast to most empirical potentials, ab initio potential surfaces are able to correctly

describe the formation and dissociation of many types of chemical bonds. BOMD can provide

insight into chemical reaction mechanisms independently of mechanistic hypotheses because

individual reaction events can occur naturally by integrating the equations of motion. Re-

cently, dynamics-based methods for discovering reaction pathways have developed alongside

automated enumeration methods for exploring hypothetical reaction coordinates, providing

promising alternatives to relying on chemical intuition for mechanistic insights.12–21 How-

ever, because BOMD requires evaluation of the ab initio potential energy surface at each

time step, it is computationally expensive and the time scales of many interesting reaction

events remain out of the reach of unbiased simulations. Thus, the most productive applica-

tions of BOMD to discover reaction events have often involved simulating extreme conditions
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where reactivity occurs more rapidly, or the artificial introduction of extreme conditions to

discover the reaction events that may be possible at ambient conditions.

One major challenge facing reactive BOMD simulations is that the self-consistent field

(SCF) equations required to solve for the ab initio PES can fail to converge. The SCF

procedure is required to solve for the molecular orbitals and ground state energy in HF and

density functional theory (DFT), both of which are commonly used in BOMD simulations.

One principal cause of convergence failures is the closing of the energy gap between occupied

and virtual molecular orbital energy levels, which is more likely to occur in regions of configu-

ration space characterized by broken bonds.22 Thus, SCF convergence failures are more likely

in BOMD simulations at extreme conditions compared to simulations at ambient conditions

or equilibrium structures. Additionally, there is a question of whether SCF methods are ap-

propriate for describing systems that fail to converge because the correct electronic state may

contain significant multireference character. Although this question is important, we think

that making BOMD simulations robust against SCF convergence failures is worth pursuing

because they are often used to provide initial mechanistic hypotheses without needing to be

highly accurate - in other words, a pathway discovered using a SCF-level simulation may be

refined at a higher, possibly multireference level of theory.23 Furthermore, these studies can

provide more insights into the size and nature of errors incurred by making single-reference

approximations in different systems exhibiting multireference character.24

Convergence behavior can often be improved using alternative convergence algorithms, as

the default algorithm in most codes - the direct inversion in the iterative subspace (DIIS)25 -

has a failure mode in which the iterations can oscillate between multiple partially converged

solutions.26 Alternative algorithms such as geometric direct minimization (GDM),27 energy

DIIS (EDIIS),28 augmented DIIS (ADIIS),29 and optimal damping (ODA)30 aim to converge

toward a solution more reliably at the cost of increasing the average number of iterations

needed to reach the convergence threshold, and are often used as backup algorithms in case

DIIS fails to converge. In addition, the large occupied-virtual rotations caused by a vanish-
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ing HOMO-LUMO gap can be mitigated using level shifting,31 which involves increasing the

diagonal entries of the Fock matrix corresponding to virtual orbital indices by a shift param-

eter prior to diagonalization. Fractional occupation methods, also called electron smearing,

may also be used to aid convergence and have proved their effectiveness in density functional

calculations of metallic systems, which have no band gap.32 This approach involves partially

populating the orbitals according to a predetermined distribution around the Fermi level

corresponding to a temperature parameter, which may be annealed down to 0 K when the

iterations approach convergence. Accelerating SCF convergence is also important in interac-

tive ab initio MD applications, which require rapidly updated forces on the order of 60 Hz in

real time. Newly developed methods such as density matrix extrapolation33 and surrogate

functions for the electronic energy34 are highly useful when convergence is slower than the

needed frequency for user interactivity.

Although there exist many strategies for treating difficult cases of SCF convergence, the

applications of reactive BOMD and their associated convergence behaviors are also highly

varied, making it difficult to resolve all convergence problems with a single strategy. The

performance of widely used convergence algorithms, and the proper values of adjustable

parameters for level shifting and fractional occupation, often depend on the system and con-

figuration being considered.32,35 A single simulation trajectory could sample regions of con-

figuration space that differ widely in the types of chemical species and electronic structures,

which may require different choices of algorithms and parameters to ensure convergence.

Even if convergence issues could be resolved for a given configuration by making the appro-

priate choices of methods and parameters, it requires time-consuming manual intervention

that limits the usefulness of these reactive simulations in practice. Therefore, there still

exists a need for general methods to treat SCF convergence difficulties in reactive BOMD

simulations.

In this paper, we introduce such a simulation method, called the Car-Parrinello monitor

(CPMonitor), which augments the capabilities of standard BOMD simulations by using
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Car-Parrinello MD (CPMD) to propagate through regions of configuration space where SCF

convergence failures appear. Car-Parrinello MD is a well-established simulation method first

described in Ref. 36, which differs from BOMD in that the electronic variables are treated as

dynamical degrees of freedom in an extended Lagrangian formalism, complete with fictitious

electronic masses and velocities. The majority of CPMD applications have been in periodic

DFT simulations of extended systems,37–41 and formulations of CPMD for atom-centered

basis sets have also been developed42–45 that use either the molecular orbital coefficients or

the density matrix in the orthogonalized orbital basis as the dynamical variables. Generally

speaking, CPMD simulations do not require converging the SCF equations at each time step,

but they require the use of a reduced time step (typically 0.1 fs vs. 1.0 fs) and the simulated

properties may differ from BOMD, depending on the choice of the fictitious electron mass

parameter.46,47 CPMD is also closely related to the extended-Lagrangian BOMD approaches

by Niklasson and coworkers,48–50 where an auxiliary density matrix close to the ground-state

density is propagated in time and used as an initial guess to the SCF procedure, improving

the time-reversibility characteristics of the BOMD simulation.

A BOMD simulation equipped with CPMonitor is capable of switching between a normal

mode that uses BOMD, or a recovery mode that uses CPMD. Upon the detection of SCF

convergence failure in BOMD, the CPMD recovery mode is initialized from a previously saved

point in the trajectory and used to propagate the trajectory until normal SCF convergence

behavior is restored. In this paper, we first introduce and discuss the concepts and logic of

CPMonitor. We then present a series of three simulation studies where CPMonitor is applied

in increasingly complex and difficult systems. The first two systems provide a detailed

analysis of what happens when CPMonitor switches between BOMD and CPMD modes,

and the third system shows how CPMonitor can enable new applications of ab initio MD

in reaction discovery that were not previously possible. Thus, we think that CPMonitor

is a valuable addition to ab initio MD simulation methods, especially in applications that

simulate extreme conditions and in reaction discovery contexts. The appendix describes
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some details of our CPMD implementation including some new developments that improve

CPMD performance.

2 Methods

2.1 Born-Oppenheimer molecular dynamics

Born-Oppenheimer MD (BOMD) is widely used to carry out AIMD simulations of molecular

systems employing Gaussian basis sets. In this paper, we use BOMD as a reference point

and only deviate from it when poor SCF convergence makes it impossible or impractical

to take BOMD time steps. A brief overview of BOMD is provided here for comparing

and constrasting the dynamical variables and equations of motion with CPMD, which is

important for introducing CPMonitor.

The dynamical variables of BOMD are the 3N nuclear degrees of freedom r with corre-

sponding masses m and velocities v. In a NVE microcanonical ensemble BOMD simulation,

the total energy of the system EBOMD is conserved:

EBOMD(r,v) = ESCF(r) +
1

2

3Natom∑
i=1

miv
2
i (1)

We assume the Born-Oppenheimer potential energy of the system ESCF is obtained by

variational minimization of a single Slater determinant, commonly carried out by the self-

consistent field (SCF) procedure as:

E(r,P′) = Tr

[
P′
(

H′0(r) +
1

2
G′(r,P′)

)]
+ VNN(r)

P′SCF(r) = argmin
P′

E(r,P′); ESCF(r) = E(r,P′SCF(r))

(2)

where P′ is the density matrix, VNN the nuclear repulsion energy, and H′0 and G′ are the one-

electron and two-electron parts of the Fock matrix F′ respectively. The primes indicate we are
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in the nonorthogonal AO basis. This variational procedure encompasses Hartree-Fock as well

as hybrid and range-separated Kohn-Sham DFT functionals. The minimization of Eq. 2 with

respect to P′ is further subject to the idempotency constraint on the density matrix in the

orthogonalized AO basis, i.e. PP = P. The orthogonal and nonorthogonal bases are related

as P = UP′UT for the density matrix and H0 = U−TH′0U
−1 for one-electron operators,

where the orthogonalization matrix U is related to the overlap matrix S′ as S′ = UTU. In

practice, applying the calculus of variations to the constrained minimization problem leads

to the nonlinear eigenvalue equations for the Hartree-Fock or Kohn-Sham orbitals that are

implemented in most codes.

Convergence is reached when an error metric, such as the norm or maximum element of

the DIIS error vector e = F′P′S′−S′P′F′ (S′ is the overlap matrix), falls below a threshold.

Following SCF convergence, the nuclear gradient of the SCF energy may be computed for use

in MD simulation. Owing to the variational nature of ESCF, the analytic gradient does not

require solving for the orbital response and may be obtained at relatively low cost equivalent

to only one or a few SCF cycles.

The classical equations of motion for the dynamical variables are given by Newton’s laws

relating acceleration a to the classical force f , given by the negative total derivative (nuclear

gradient) of the potential energy:

mir̈i = miai = fi = −dESCF

dri
(3)

The velocity Verlet algorithm is a standard method for integrating the equations of motion.

Starting with known r,v, a at time t, the positions are propagated forward in time by one

time step δt as

r+ = r + v · δt+
a

2
· δt2 (4)

The SCF calculation performed at the updated positions r+ provides the updated accelera-
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tions a+, then the velocities are updated as

v+ = v +
1

2
(a + a+) · δt =

r+ − r

δt
+

a+ · δt
2

(5)

The coordinates may be written to a trajectory file for every new step, or at regularly

spaced intervals. A restart or checkpoint file containing highly precise positions, velocities

and accelerations allows the simulation to run to completion if interrupted.

Because a BOMD simulation trajectory can be terminated prematurely by SCF conver-

gence failure, a transferable method to automatically deal with convergence failures is needed

to reliably propagate simulation trajectories to their intended length. In previous work, we

implemented a simple composite SCF algorithm that invokes ADIIS automatically when the

standard DIIS fails to converge; this algorithm enabled us to carry out ab initio nanore-

actor simulations using restricted and unrestricted HF that sampled hundresds of chemical

species and reaction mechanisms.13 However, attempts to incorporate transition metal atoms

into the simulation, or the use of semilocal or hybrid density functionals such as BP86 and

B3LYP, were still stymied by SCF convergence failures. We attributed the increased occur-

rence of convergence failures to the smaller HOMO-LUMO gaps in these systems.51 These

convergence challenges inspired the idea of using CPMD to propagate through the regions

of configuration space that contain convergence failures.

2.2 Car-Parrinello molecular dynamics

In Car-Parrinello molecular dynamics (CPMD),36 both the nuclear and electronic degrees of

freedom are treated as dynamical variables. Our implementation of CPMD largely follows

the work of Schlegel and coworkers43,44,52 with some modifications that are summarized in the

Appendix. This implementation chooses the density matrix elements in the orthogonal AO

basis as the dynamical electronic variables. For brevity we will present the basic equations

assuming a restricted HF/KS wavefunction and uniform electron mass. Generalizations
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to unrestricted wavefunctions and non-uniform masses are mostly straightforward and are

implemented into our code.

The equations of motion are derived from the Lagrangian given by:

L =
3Natom∑
i=1

1

2
miv

2
i +

1

2
µTr[WW]− E(r,P)− Tr[Λ(PP−P)] (6)

where the four terms represent the nuclear kinetic energy, the fictitious electronic kinetic

energy, the potential energy of the nuclei and electrons, and the Lagrange multiplier term

that ensures the density matrix is idempotent, i.e. PP = P. Here µ is the fictitious electron

mass, usually between 0.01 and 0.5 amu, W the velocities of density matrix coefficients, and

Λ the matrix of Lagrange multipliers. The conserved quantity in CPMD simulations is given

by:

ECPMD(r,v,P,W) =
3Natom∑
i=1

1

2
miv

2
i +

1

2
µTr[WW] + E(r,P) (7)

The equations of motion for dynamical variables are obtained via the Euler-Lagrange

equations. For the nuclear positions and density matrix elements, we have:

mir̈i = miai = fi = − ∂E(r,P)

∂ri

∣∣∣∣
P

(8)

µP̈ = µB = −
(
∂E(r,P)

∂P

∣∣∣∣
r

+ ΛP + PΛ−Λ

)
(9)

where the density matrix acceleration is denoted as B.

Following the velocity Verlet integration scheme, the nuclear dynamical variables at the

next time step r+, v+ are given by Eqs. 4-5, using the classical force from Eq. 8. The

electronic dynamical variables at the next time step are given by:

P+ = P + W · δt+
B

2
· δt2 (10)
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W+ =
P+ −P

δt
+

B+ · δt
2

(11)

where B+ is obtained by passing P+, r+ into Eq. 9. Further discussions of how P+ and W+

are computed are given in the Appendix, which includes a conjugate gradient algorithm for

more rapid convergence of P+.

2.3 CPMonitor

In this section, we will discuss the workflow of CPMonitor, as illustrated in Figure 1. All

parameters that control the behavior of the method are described in Table 1. When the

SCF calculations continue to converge successfully in normal BOMD steps, CPMonitor is

said to be in normal mode (colored as green in Figure 1). The BOMD steps will also be

called “macro-iterations”, in contrast with the “micro-iterations” in CPMD as discussed

later. Compared with a standard BOMD simulation, the difference is only when the tra-

jectory frame is written to disk. Instead of writing the current coordinates immediately to

disk as a new trajectory frame, the CPMonitor writes the coordinates of a previous frame

corresponding to time t − nS · δt, while storing all newer frames in memory in case of SCF

convergence failure in the future. A frame stored in memory consists of the coordinates

r(t), velocities v(t), accelerations a(t) and density matrices P(t), which contains all the in-

formation needed to reset the BOMD simulation to the stored frame and initiate CPMD if

necessary.

If the SCF calculation fails to converge during a BOMD step, an error message will be

sent to CPMonitor. Upon receiving the error message, CPMonitor will write the coordinates

of the stored frame to disk as usual. However, since a new frame is not available due to

convergence failure, CPMonitor will use the stored frame to reset the simulation system

(e.g. coordinate and velocities) and thus enters the recovery mode (colored as red). At the

start of the recovery mode, the simulation time is set back to the stored frame, i.e. t−nS ·δt,

and the time step is set to δτ = δt/nC , where nC is the number of “micro-iterations”. To
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initialize CPMD, an initial value of the density matrix velocity W is generated by carrying

out a small even number of micro-iterations (nG) using BOMD and estimating the time

derivative using finite difference on the stored density matrices. The CPMD simulation is

then initialized to the time point corresponding to where the finite difference derivative is

taken. We use a central difference stencil, so CPMD is initiated at time t = nS ·δt+nG/2 ·δτ .
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Figure 1: Flowchart illustrating main concepts of CPMonitor. Top row: CPMonitor running
in normal mode (green) is the same as normal BOMD except the trajectory is written with a
delay of nS frames. Middle row: At the start of recovery mode (red), the simulation time is
set back by nS frames, the density matrix velocity is initialized, and the simulation continues
with a reduced time step. Lower row: Watch mode (purple semicircle) is activated when
CPMonitor is in recovery mode and the current time coincides with a BOMD time step.
A SCF calculation is started and successful convergence increments a counter. When the
number of consecutive successful SCF calculations exceeds a threshold, CPMonitor reverts
to normal mode.
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Table 1: Table of adjustable parameters for CPMonitor and recommended values.

Name Definition Recommended

δt > 0.0 Simulation time step (fs) 1.0

nS ≥ 0
Time steps between current frame in Normal mode

and starting point of Recovery mode
2

nG ≥ 2
Even number of BOMD microiterations for initializing

CPMD density matrix velocity via finite difference
2

nC ≥ 2
Subdivisions of the BOMD time step to be
used in recovery mode (micro-iterations)

10

nW > nS
Equivalent number of macro-iterations in

Recovery mode needed to activate Watch mode
3

nK ≥ 1
Consecutive SCF successes in Watch mode

needed to revert to Normal mode
3

The goal of the recovery mode is to use CPMD to get across the region where BOMD fails

due to SCF convergence failure. It is important for CPMonitor to keep track of the number of

micro-iterations NCPMD and the simulation time. Whenever NCPMD is an integer multiple of

nC , the CPMD simulation time is an integer multiple of the BOMD time step, i.e. nC CPMD

steps is equivalent to a macro-iteration. When this happens, CPMonitor will write and save

the current simulation frame, such that the trajectory frames correspond to equally spaced

and monotonically increasing simulation times, regardless of whether BOMD or CPMD is

used. In addition, if NCPMD ≥ nWnC , the CPMonitor will enter watch mode (colored as

purple) that considers when the simulation should go back from CPMD to BOMD. nW > nS

is a parameter that sets the minimum CPMD simulation length.

The main criterion for switching back to BOMD is that after a certain number of CPMD

steps, the system should have exited the region where SCF is hard to converge. Based on this

idea, CPMonitor in watch mode will run SCF calculations at CPMD time steps corresponding

to the macro-iterations, i.e. where NCPMD is multiple of nC . A counter is incremented in

CPMonitor for a successful SCF calculation and reset to zero for a convergence failure.
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If successful SCF convergence is recorded for nK consecutive macro-iterations, CPMonitor

will terminate the CPMD, and return to the normal mode that runs BOMD. Otherwise,

CPMonitor will continue the CPMD trajectory normally regardless of the SCF convergence

result, remaining in the watch mode that carries out an additional SCF calculation at CPMD

time steps corresponding to macro-iterations. The minimum number of CPMD steps needed

to recover from a single SCF convergence failure is thus (nW + nK) ∗ nC , or 60 CPMD steps

using the recommended parameters.

The parameter nS controls the distance between the current BOMD frame and the written

trajectory frame / recovery point. Because the recovery mode requires nG BOMD micro-

iterations to initialize the density matrix velocity, it is important that SCF convergence

failures are not encountered near the recovery point itself. The smallest possible value of

nS = 0 implies that no additional frames are stored and the recovery mode starts from the

immediately preceding BOMD frame. Choosing a larger value of nS helps to ensure the

CPMD simulation can successfully start by increasing the distance from the convergence

failure, but it also increases the number of CPMD steps needed to recover before BOMD

can resume. In practice we found that setting nS = 2 was sufficient for all applications.

When CPMD is initialized, there is a discontinuous change in the total energy due to

the addition of the fictitious electronic kinetic energy term in the Hamiltonian, 1
2
µTr[WW].

Similarly, when the recovery mode is complete and CPMD reverts to BOMD, this fictitious

term is removed. Thus, one cycle of recovery mode (i.e. BOMD-CPMD-BOMD) leads to

a change in the total energy because of energy transfer between the fictitious electronic

kinetic energy and the other terms during the CPMD phase. The fictitious term usually

increases during the first steps of CPMD following the initialization of W, thus the total

energy change of one recovery cycle is negative. In order to approximately preserve energy

conservation during our simulation, the energy transferred to the fictitious term is applied

the nuclear kinetic energy at the end of recovery mode as a velocity rescaling. The amount

of energy transfer is calculated by taking the difference in the BOMD total energy ESCF(r)+
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∑3Natom

i=1 miv
2
i between the starting and ending time points of recovery mode .

CPMonitor requires that nS + 1 frames are stored in memory in order to recover success-

fully from SCF convergence failures. This condition is met as long as the BOMD simulation

is able to successfully complete at least nS frames from the initial condition. It is also pos-

sible that a SCF convergence failure occurs shortly after clearing the recovery mode, such

that fewer than nS frames have elapsed since resuming the BOMD simulation. In this case,

the recovery point falls within a CPMD time segment and the existing W is used without

needing to initialize it from BOMD micro-iterations.

3 Computational Details

We implemented the Car-Parrinello MD and CPMonitor methods into a development ver-

sion of the TeraChem quantum chemistry package.53–55 The implementation supports both

restricted and unrestricted HF and KS wavefunctions, generalized mass matrices for prop-

agating the orthogonalized AOs, as well as the use of pseudopotentials.56,57 The matrix U

was calculated using symmetric Löwdin orthonormalization. We also developed an improved

procedure for calculating P+,W+ and a new mass-weighting scheme, described in detail in

the Appendix. TeraChem accelerates the MD simulations by carrying out the Fock builds

on graphics processing units (GPUs) using a mixed-precision model that computes smaller

integrals with reduced precision.58 All other calculations specific to CPMD and CPMonitor,

such as the calculation of P+ and W+, are performed on the CPU. The correctness of our

CPMD implementation is verified by testing energy conservation as shown in Supporting

Figure S1. The CPMD and CPMonitor codes are written as separate modules that hook

into the main MD loop and SCF routines, thus they do not require making any significant

modifications to the original MD / SCF codes.
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4 Results and Discussion

This section contains three simulation studies that use CPMonitor on systems of increas-

ing complexity. The first study compares the thermodynamic properties of the CPMonitor

simulation with “pure” BOMD and CPMD simulations. The simulated system consists of a

single malonate anion and does not exhibit any SCF convergence difficulties, thus CPMon-

itor’s recovery mode is artificially invoked at random intervals. The second study involves

an iron carbonyl cluster that contains an actual convergence failure. Here we compare the

trajectories from CPMonitor vs. a reference trajectory that uses BOMD with advanced

convergence strategies and level shifting as a way to provide insight into how CPMonitor

affects the simulation trajectory. The third study is a “nanoreactor” simulation contain-

ing an iron complex with a large number of small molecules, with an oscillating boundary

condition that artificially induces large numbers of reaction events. The CPMonitor simu-

lation demonstrated improved simulation speeds by reducing wall times by a factor of 3-4

compared to BOMD with level shifting. Moreover, CPMonitor improved robustness against

SCF convergence difficulties, as the conventional BOMD simulation was terminated due to

SCF convergence failure even when advanced convergence strategies and level shifting were

used. Taken together, these studies show that CPMonitor provides improved performance

and reliability of BOMD in reaction discovery applications.

4.1 Malonate ion

4.1.1 Validation of thermodynamic properties

We investigated how CPMonitor might affect the thermodynamic ensemble of a system by

calculating free energy profiles of a proton transfer reaction in a singly deprotonated malonate

ion. In the gas phase, this system contains an intramolecular hydrogen bond with a small

free energy barrier to proton transfer that is accessible from running unbiased simulations at

elevated temperature. The system was modeled using the restricted Hartree-Fock / 6-31G*
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level of theory and dynamics was simulated using a Langevin integrator with the temperature

set to 500 K. The simulation temperature was chosen in order to sample a significant number

of proton transfer events; low temperatures are unable to sample energies near the reaction

barrier whereas overly high temperatures tend to dissociate the intramolecular hydrogen

bond.

Three simulations were carried out; first, a reference BOMD simulation used a time step of

1.0 fs, and the CPMD simulation used a time step of 0.1 fs. Both simulations used a Langevin

thermostat with a collision interval of 100 time steps for temperature control. CPMonitor

used the same time step settings as the BOMD and CPMD simulations described above.

This system does not have any pathological behavior in terms of SCF convergence, thus the

CPMonitor recovery mode was artificially activated using a random number generator with

a probability of 10% per MD step. As a result, the CPMonitor trajectory contains significant

portions of both BOMD and CPMD simulation steps, amounting to 60% and 40% of the

total simulation time respectively.

Δ

d(H–O1) – d(H–O2)

d(H–O1)
d(H–O2)BOMD 200 ps

CPMD 200 ps
CPMonitor 365 ps

Malonate Anion, T = 500 K, RHF/6-31G*

Figure 2: Free energy profile of malonate ion along the hydrogen transfer coordinate.
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Figure 2 shows the comparison of free energy profiles obtained using the BOMD, CPMD,

and CPMonitor methods. All three simulations were at least 200 ps in length. The number

of transition events recorded for the three simulations were 102, 21, and 152 respectively.

The CPMonitor free energy profile closely follows the BOMD profile with a difference of

< 0.2 kcal/mol everywhere; this is a positive indicator that introducing many short segments

of Car-Parrinello simulation - about 6 fs per segment - does not significantly modify the

thermodynamic ensemble. On the other hand, the pure CPMD simulation does show some

differences with the BOMD and CPMonitor simulations. The free energy barrier for proton

transfer is higher by ≈ 0.5 kcal/mol (also reflected in the reduced number of transfer events),

and the sides of the profile have a reduced slope. The CPMD free energy profile also has

a greater amount of statistical error due to the slightly different heights of the two free

energy basins, possibly owing to the reduced number of transfer events. Evidently, CPMD

has a non-negligible effect on the thermodynamic properties of the system, perhaps owing

to energy transfer to the fictitious electronic degrees of freedom. Over the 200 ps of total

CPMD simulation time, the fictitious kinetic energy increases to ≈1.5 a.u. at a rate of

approximately 0.01 a.u. per picosecond (10000 time steps). The rate of fictitious kinetic

energy increase is consistent with previous studies,44 however, our much longer simulation

times show that the total fictitious kinetic energy can build up to significant quantities.

Although around 40% of the CPMonitor trajectory is spent in CPMD, the fictitious kinetic

energy never accumulates in excess of 0.003 a.u. due to the very short lengths of CPMD

trajectory segments. We think this is the fundamental reason why the CPMonitor results

are able to reproduce BOMD more closely than pure CPMD.

4.1.2 Validation of dynamical properties

The primary application of CPMonitor is in reaction discovery applications, which may

involve the use of thermostats and nonequilibrium boundary conditions that disrupt energy

conservation. However, it is still important to carefully study the effect of CPMonitor on
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dynamical properties in energy-conserving settings, because dynamical properties can have

consequential effects on simulation results even when obscured by thermostats and other

perturbations. Here we carried out simulations of malonate ion using the same methods

described above, but no thermostat was used and the simulations are in the NVE ensemble.

The BOMD simulations used a 0.5 fs time step, and the CPMonitor simulations used BOMD

and CPMD time steps of 0.5 fs and 0.05 fs respectively. Velocities were initialized from a

750 K Maxwell-Boltzmann distribution, and each simulation was propagated for 200,000

BOMD steps (100.0 ps simulation time). Fictitious SCF convergence failures in CPMonitor

were induced with a 1% probability per BOMD time step, corresponding to ≈1900 cycles

of entering recovery mode and reverting to BOMD. Ten semi-independent runs were carried

out for each of the BOMD and CPMD simulations; this was done by sampling structures

from the first simulation at 10 ps intervals and initiating 9 new simulations using newly

randomized velocities that were each propagated for 100 ps.
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Power spectral density, malonate ion, NVE, RHF/6-31G*

Figure 3: Power spectral density of malonate ion computed from energy-conserving trajecto-
ries, 100 ps in length, with initial velocities from a 750 K Maxwell-Boltzmann distribution.
Error bars (transparency) indicate one standard error computed from 10 semi-independent
runs.
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Figure 3 shows the power spectral density of the energy-conserving simulations, calcu-

lated as the amplitude of the Fourier-transformed velocity autocorrelation function. The

comparison of CPMonitor vs. BOMD spectra shows that there is no significant difference

in the peak frequencies, and the differences in amplitudes are mostly within the statistical

error. The most notable difference between the spectra is that CPMonitor has ≈20% low-

ered amplitude vs. BOMD for the high-frequency C-H and O-H vibrational peaks in the

3100-3300 cm1 range. This is a minor perturbation considering each CPMonitor underwent

an average of 1900 cycles of recovery mode, each of which involved a discontinuous change

in the atomistic forces and rescaling of the velocities. We think this constitutes positive ev-

idence that CPMonitor does not introduce major artifacts into the dynamical properties of

the system, lending further confidence that it may be used in reaction discovery applications.

4.2 Iron carbonyl cluster

Our second simulation study used an iron carbonyl cluster Fe3(CO)11 as an example system

that can encounter SCF convergence difficulties during MD simulations. This cluster is a

simplified model of iron-carbonyl clusters that may be capable of energy conversion catalysis;

for example, [Fe4N(CO)12]
− is a known electrocatalyst for CO2 reduction to formate.59,60

These simulations used the BP86 GGA density functional and an all-electron double-zeta

basis set, following the work of Ref. 61 that characterized several local energy minima of

this system. We compared the results of a BOMD run and a CPMonitor run which used

the same set of initial energy-minimized coordinates. A single set of initial velocities was

drawn randomly from the Maxwell-Boltzmann distribution and used for both runs. The

convergence threshold in the maximum value of the DIIS error vector ε was set to 10−4,

which corresponds to energy changes on the order of 10−6 in the final SCF cycle. The

BOMD simulation used the DIIS+A convergence algorithm, which works as follows:

1. If ε > 10−3 after 50 total DIIS iterations, ADIIS is activated until the error drops below

10−3, then DIIS is reactivated.
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2. If ε > 10−4 after 250 total DIIS iterations, ADIIS is activated until SCF convergence

is achieved or the limit on the number of SCF cycles is reached (105 cycles).

The total simulation lengths of the BOMD and CPMonitor runs were 8479 and 10000 steps

respectively (8.479 ps and 10.0 ps). The BOMD simulation was terminated due to a SCF

convergence failure whereas the CPMonitor simulation ran to completion. The CPMonitor

simulation used a standard DIIS convergence algorithm and the CPMD recovery mode was

activated when the number of SCF cycles exceeded 100. Using these settings, the CPMonitor

spent 262 fs of the simulation in recovery mode (about 2.6% of the whole trajectory). The

ADIIS algorithm was activated a total of 1242 times in the BOMD simulation, and was not

able to converge in the final simulation step even though a very high limit of 105 SCF cycles

was provided. In the final simulation step that caused the simulation to terminate, the DIIS

error fluctuated in the range of 0.0003 − 0.3 without any discernible trend, indicating the

convergence failure was not recoverable using DIIS+A alone. In terms of performance, the

CPMonitor required 58 s of wall time per 1 fs of simulation time, whereas DIIS+A required

56 s of wall time (excluding the last step of DIIS+A containing the SCF convergence failure);

this indicates that both methods have comparable overall performance.

Supporting Figure S2 compares the radial distribution functions of the Fe-C, Fe-Fe and

C-C atom pairs in the CPMonitor and BOMD simulations of this system. The closely

overlapping distributions indicate that the simulation trajectories are similar along these

reduced coordinates. On the other hand, we expect any small difference between the trajec-

tories grow exponentially due to Lyapunov instability. Thus, it is helpful to compare BOMD

and CPMonitor simulations at the point where they initially diverge.

Figure 4 illustrates such a case where two short simulations were started from a few

time steps preceding the SCF convergence failure in the original BOMD simulation. In one

simulation, a new BOMD simulation was carried out with a level shift of 1.6 a.u. added,

which enabled the SCF calculations to propagate through the challenging region but also

increased the number of iterations by a factor of 10. The other simulation used CPMonitor
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Figure 4: Comparison of CPMonitor simulation trajectory and reference BOMD trajectory
with level-shifting. Top panel: HOMO and LUMO energy levels of the reference trajectory,
showing the closing of the energy gap at t = 8480 fs. Middle panel: Difference in nuclear
gradient between the CPMonitor and reference trajectory (blue, CPMonitor in normal mode;
red, CPMonitor in recovery mode). The norm of the nuclear gradient of the reference tra-
jectory (black) is shown for comparison. Bottom panel: RMSD of atomic positions between
the CPMonitor and reference trajectory (blue, CPMonitor in normal mode; red, CPMonitor
in recovery mode.)

which propagated through the same challenging region using recovery mode. We evaluated

the difference in the nuclear gradients between the two trajectories at the same time point
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and found that it was on the order of 0.2-0.3 eV/Å, one order of magnitude smaller than the

norm of the gradient itself. In particular, the gradient differences between CPMonitor and

BOMD are similar in size during and after recovery mode, where the gradient differences

after recovery mode are solely due to the differences in nuclear configurations. The RMSD

between the trajectories after existing recovery mode is around 0.002 Å, which provides

some assurance that one recovery cycle of CPMonitor only has a minor impact on the

simulation trajectory. Although the BOMD and CPMonitor trajectories are still going to

diverge exponentially, we think the two simulation methods should still yield similar results

when used in reaction discovery applications, as we will study in the next system.

4.3 Nanoreactor simulation with transition metal complex

Our third model system is intended to measure computational performance and demonstrate

the usefulness of CPMonitor in reactive molecular dynamics simulations. The system was

set up by modifying the initial configuration of an ab initio nanoreactor simulation reported

in Ref. 13. The initial coordinates consisted of the following small molecules distributed in

a spherical region with a 14 Å radius: 16 H2, 14 H2O, 14 CH4, 14 NH3, 14 CO. A single

[Fe(H2O)6]
2+ complex was placed in the center of the sphere, which set the net charge of the

system to +2 with a spin multiplicity of 5. The transition metal complex was not included in

our previous studies, and introduces the possibility of observing transition metal-catalyzed

reaction pathways. These simulations used the B3LYP hybrid functional, the LANL2DZ

basis set / ECP combination for Fe, and the 3-21G basis set for all other elements, whereas

previous nanoreactor simulations used Hartree-Fock theory and avoided transition metals in

the system to facilitate SCF convergence. Thus, the current system is intended to show that

CPMonitor provides additional capabilities to expand the domain of applicability of reactive

ab initio molecular dynamics.

We carried out four simulations of this model system that varied in their SCF conver-

gence strategy. All simulations were started from the same initial conditions containing 247
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atoms, 722 electrons and 1048 atomic basis functions. The MD simulations used a velocity

Verlet integrator with a time step of 1.0 fs and a Langevin thermostat with an equilibrium

temperature of 1000 K and collision interval of 300 time steps. The initial guess for each

BOMD step was set using the converged solution of the previous step and used directly to

initiate SCF cycles without any density matrix purification or mixing of orbital occupations.

A spherically symmetric one-body potential was added to all atoms the system (except Fe)

as follows:

V (r, t) =
m

2

[
k(t)ρ(t)2 − κ(t)r2

]
; ρ =


r −R(t) if r > R(t)

0 otherwise

k(t), κ(t), R(t) =


k1, κ1, R1 if t mod (t1 + t2) < t1

k2, κ2, R2 otherwise

(12)

where m is the atomic mass, and the parameters are given as: t1 = t2 = 1000 δt; k1, k2 =

2.0, 1.0 kcal mol−1 amu−1; R1, R2 = 14.0, 9.0 Å; κ1, κ2 = 0.02, 0.0 kcal mol−1 amu−1. The

boundary parameters are set to oscillate between values of k1, κ1, R1 and k2, κ2, R2 with time

intervals of t1 and t2, causing the atoms to be pushed outward and inward with a force

proportional to their mass. The Fe atom is not subject to the boundary potential, and a

harmonic restraint is used instead with a force constant of kF = 2.0 kcal mol−1 ensuring that

it stays near the sphere center. The CPMonitor simulation used a standard DIIS algorithm

with a level shift parameter of 0.1 and a maximum iteration number of 300. For comparison

purposes, three BOMD simulations were carried out that used the DIIS+A convergence

algorithm (described in §4.2) with different choices of level shifting parameter (0.1, 0.5 and

1.0 a.u.).

Table 2 and Figure 5 compare the performance of the CPMonitor and reference BOMD

simulations. As the level shifting parameter is increased in the BOMD simulations, the mean

number of SCF cycles per MD step increases as well. Each of the BOMD simulations was
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terminated after encountering a configuration that did not converge after 105 SCF iterations.

The BOMD simulation that used a level shift parameter of ε = 0.1 had the smallest mean

number of SCF cycles, but the simulation was terminated after only 266 steps. When level

shift parameters of ε = 0.5 and ε = 0.1 were used, improved stability came at the cost

of a higher number of SCF iterations on average, yet both simulations were terminated

after 7278 and 7170 steps respectively. The CPMonitor simulation ran for the full length

of 25000 steps and entered recovery mode 144 times. In more than half of these instances,

the recovery mode was able to return to BOMD within the minimum number of 60 micro-

iterations (6 macro-iterations) and the longest recovery segment was 80 macro-iterations

near the beginning of the simulation starting at step 1298. Overall, 6.2% of the simulation

time was spent in recovery mode, corresponding to 28.9% of the total wall time.

Table 2: Computational cost characteristics of BOMD and CPMonitor trajectories.

Method
Level
Shift

Time
Steps

Number of SCF cycles Time per MD step

Mean Median Max Mean Median Max

BOMD 0.1 266 423 (49) 29 100000 2373 (162) 94 5.8 ×105

BOMD 0.5 7278 83 (69) 34 100000 356 (274) 120 5.9 ×105

BOMD 1.0 7170 98 (84) 32 100000 396 (314) 110 5.9 ×105

CPMonitor 0.1 25000 23 13 301 117 51 6733
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N=7278

N=7170

N=25000

Figure 5: Distribution of the number of SCF cycles per AIMD time step (macro-iteration).
The left column and right column show the same data using linear and log scales on the
y-axis respectively. The kernel density estimates in the left column are guides for the eye.
The circled bars in the right column indicate SCF calculations that did not converge.
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The results show that CPMonitor provides improved performance over BOMD in terms of

both simulation stability and overall speed. Compared to the best-case scenario for BOMD

with level shifting (ε = 0.5), CPMonitor provides a roughly 2.5-3.5× speed increase in terms

of wall clock time per MD step. The improved performance mainly comes from a smaller

number of SCF cycles needed to reach convergence in the BOMD simulation steps due to a

smaller level shifting parameter being used (ε = 0.1). Moreover, because CPMonitor enters

into recovery mode when a SCF convergence error is encountered, the maximum number of

SCF iterations per MD step is fixed, thus there are no time steps where very large numbers

of SCF cycles are needed. By comparison, the BOMD simulations with level shifting often

required in excess of 1000 SCF cycles to converge, which adversely impacts performance and

may lead to termination.

Figure 6: Center: 3-D rendering of a trajectory snapshot from the CPMonitor nanoreactor
simulation. Side panels: Optimized structures of Fe-containing coordination complexes that
were encountered over the course of the simulation trajectory.

We examined the molecular species in the BOMD and CPMonitor trajectories to under-

stand whether the two simulation methods had any differences in their ability to discover
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new chemical species and reactivity. Figure 6 shows a snapshot of the CPMonitor simulation

trajectory and lists the distinct coordination complexes of Fe that occurred throughout the

simulation. More than 20 different coordination complexes of Fe were formed throughout

the 25 ps simulation, as shown by the optimized structures in the side panels. A Mulliken

population analysis shows that the number of unpaired electrons on the iron complex is 4

+- 1 throughout the entire trajectory.
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Figure 7: Organic molecules and radicals that were found in the nanoreactor simulations,
grouped by empirical formula of heavy atoms. Each molecule is color coded by the simulation
trajectories that it occurred in. The Venn diagram counts the number of molecules that were
found in the different possible combinations of simulations.

Figure 7 lists the organic molecules and radicals that were found. A total of 62 organic

molecules were formed in the CPMonitor trajectory, compared to the 14 that were found

in each of the BOMD trajectories (a total of 22 combined). The ratio in the number of

compounds formed (64 : 14 = 4.4 : 1) is close to the ratio of trajectory lengths (25 ps : 7 ps

= 3.6 : 1). The majority of molecules found in the BOMD trajectories were also found in the

CPMonitor trajectory (16 out of 22), which indicates CPMonitor simulations have similar
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reactivity to BOMD. The six species that appeared in BOMD but not in the CPMonitor

trajectory are attributed to incomplete sampling in the simulations.

5 Conclusion

As shown by our simulation studies, CPMonitor can reliably augment BOMD simulations

with the capability to propagate through regions of configuration space that contain difficult

SCF convergence behavior. We expect CPMonitor to be especially useful for AIMD simula-

tions under extreme conditions and in reaction discovery contexts, because these simulations

have especially high probabilities of entering into these computationally challenging regions.

Although this work addresses an important technical problem, there is still the underlying

issue that a large portion of systems and configurations that exhibit poor SCF convergence

behavior are not well-described by single-reference methods. While it is desirable to incor-

porate multi-reference character into these simulations, most multireference methods such

as CASSCF are not yet suitable for AIMD simulations in extreme conditions or reaction dis-

covery settings because they are computationally expensive and require system-dependent

fine-tuning of parameters such as the active space. Even within the realm of single-reference

methods, interactive AIMD studies has demonstrated the tendency for SCF calculations to

converge to unstable solutions or incorrect local minima, which could be corrected by occa-

sional randomized mixing of occupied and virtual orbitals.62 This phenomenon needs to be

more carefully explored in the nanoreactor and other AIMD-based reaction discovery set-

tings, where divergence of the SCF solution away from the global minimum is a significant

possibility.

One promising approach to improve the accuracy of reaction discovery is to first apply

CPMonitor to discover pathways at the SCF level, followed by multireference calculations to

obtain more accurate estimates of reaction energies and barrier heights. The multireference

data could then be deposited into community databases, such as the MolSSI QCArchive, to
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inform the development of future single-reference models that could more accurately approx-

imate the multireference potential energy surface. In terms of applications, we think that

BOMD simulations with CPMonitor can be used to understand reactivity in more complex

systems with open mechanistic questions, such as the computational design of more efficient

transition metal-containing catalysts for energy conversion or investigating the potential role

of minerals in the prebiotic synthesis of the molecules of life.

6 Appendix

6.1 Calculation of P+ and W+

Here we provide additional details for how the quantities in Eqs. 8- 11 are evaluated in order

to numerically integrate the dynamical variables of CPMD. The energy partial derivatives

in Eqs. 8-9 are given by:

∂E(r,P)

∂r

∣∣∣∣
P

= Tr

[
U−T

dH′0
dr

U−1P̃ +
1

2
U−T

∂G′

∂r

∣∣∣∣
P′

U−1P̃

]
− Tr

[
F

(
dU

dr
U−1

)
P̃ + P̃

(
U−T

dUT

dr

)
F

]
+
dVNN

dr
(13)

∂E(r,P)

∂P

∣∣∣∣
r

= 3FP + 3PF− 2FP2 − 2PFP− 2P2F (14)

where P̃ = 3P2 − 2P3 is the McWeeny purification transformation of the density, and the

trace is taken over electronic variables. The orthogonalization matrix derivative dU/dr is

described in Ref. 43.

Instead of finding the Lagrange multipliers explicitly, an iterative formula is used to

ensure P+ is idempotent. We express the density matrix at the next time step as:

P+ =

[
P + W · δt− 1

2µ

∂E(r,P)

∂P

∣∣∣∣
r

· δt2
]
− 1

2µ
(ΛP + PΛ−Λ) · δt2

= P∗+ + ∆

(15)
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where P∗+ is the component of P+ in square brackets that may be calculated directly

from Eq. 13, and ∆ is the term to be solved for that contains the Lagrange multipli-

ers. Equations 16 through 19 describe the iterative procedure to solve for P+ and ∆, and

P+,n ≡ P∗+ + ∆n are their values at iteration n. The objective function being minimized is

the norm-squared of the deviation from idempotency, P2
+ −P+:

Tr[(P2
+ −P+)2] = Tr[P4

+ − 2P3
+ + P2

+]. (16)

The gradient is given by:

Γ ≡
∂[(P2

+ −P+)2]

∂∆
=
∂[(P2

+ −P+)2]

∂P+

= 4P3
+ − 6P2

+ + 2P+ (17)

We also define T ≡ − 1/2 Γ as a steepest descent optimization step scaled by 1/2.

Using the idempotency of the density matrix at the current time step, i.e. P2 = P, an

additional condition on ∆ may be derived as:

Q ≡ I−PP[ΛP + PΛ−Λ]Q = [PΛPQ + P2ΛQ−PΛQ]

= [PΛP(I−P)]

= [PΛ(P2 −P)] = 0

(18)

Thus, ∆ should satisfy P∆Q = 0. This condition is enforced by projection, and the next

iterate is given in terms of the current one as:

∆n+1 = ∆n + (PTnP + QTnQ)

P+,n+1 = P+,n + (PTnP + QTnQ)

(19)

The iterations are terminated when Tr[(P2
+ − P+)2] falls below a threshold; we used the

previously established convergence threshold of 10−12.
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After P+ is found, the density matrix velocities W+ are given by:

W+ =

[
P+ −P

δt
− 1

2µ

∂E(r,P)

∂P

∣∣∣∣
r

· δt
]
− 1

2µ
(ΛP + PΛ−Λ) · δt

= W∗
+ −

1

2µ
(ΛP + PΛ−Λ) · δt

(20)

Here the second term on the RHS is found by setting the time derivative of the idempotency

condition to zero, i.e. W+P+ + P+W+ −W+ = 0. This allows Λ and W+ to be solved for

as:

Λ =
2µ

δt
(2P+W∗

+P+ −W∗
+)

W+ = W∗
+ −P+W∗

+P+ −Q+W∗
+Q+

(21)

In the mass weighted generalization, Eq. 21 requires iterations to converge W+ similar to the

case of Eq. 19 for P+. Thus, the conjugate gradient minimization described below applies

equally well to accelerate the iterations to converge either P+ or W+.

6.2 Conjugate gradient minimization

Here we expand upon the discussion of Ref. 43 and introduce a new conjugate gradient

formula that reaches idempotency more efficiently. The derivation is best explained by

first deriving the scaling factor of 1/2 that appears in Equation 17. To simplify notation,

Equations 22 through 30 will use P to denote the current value of P+,n being optimized.

The following identities are noted for derivatives of powers of P:

∂(P3)pq
∂Prs

= δpr(P
2)sq + PprPsq + (P 2)prδsq

∂(P2)pq
∂Prs

= δprPsq + Pprδqs

∂Ppq

∂Prs

= δprδqs

(22)
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This provides an expression for the second derivative of Tr[(P2 −P)2] as:

Hpqrs ≡
∂2

∂Ppq∂Prs

Tr[(P2 −P)2] =
∂

∂Prs

(4P3 − 6P2 + 2P)pq ≈ 2(PprPqs +QprQqs) (23)

In the last step, we obtain a simplification by assuming that P2 − P ≈ 0, i.e. P is nearly

idempotent. With the second derivative, we may use Taylor series to estimate the step size

in a steepest descent minimization. Setting the search direction x = λΓ where λ is to be

determined, we define the following function of λ :

Tr[((P + x)2 − (P + x))2] = c+ Γ · x +
1

2
x ·H · x

f(λ) ≡ Tr[((P + λΓ)2 − (P + λΓ))2] = c+ λΓ · Γ +
λ2

2
Γ ·H · Γ

(24)

where c ≡ Tr[(P2 − P)2], the idempotency error at the current iteration. To find the value

of λ that minimizes the error, we find the root of ∂f/∂λ as:

∂

∂λ
f(λ) = Γ · Γ + λΓ ·H · Γ = 0

λ∗ =
Γ · Γ

Γ ·H · Γ
.

(25)

We can evaluate the numerator and denominator as:

Γ · Γ = (4P3 − 6P2 + 2P)pq(4P3 − 6P2 + 2P)pq

Γ ·H · Γ ≈ (4P3 − 6P2 + 2P)pq ∗ 2(PprPqs +QprQqs) ∗ (4P3 − 6P2 + 2P)rs

(26)

If we use P2−P ≈ 0 again, we obtain a compact expression for inner products of H with P

raised to any power:

H ·Pn = 2
∑
rs

(PprPqs +QprQqs)(Prs)
n = 2PPnP + QPnQ

= 4Pn+2 − 4Pn+1 + 2Pn = 2Pn(2P2 − 2P + 1) ≈ 2Pn

(27)
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Thus, we have

Γ ·H · Γ ≈ 2Γ · Γ; λ∗ ≈ 1

2
. (28)

The actual steepest descent iterations are modified from −Γ/2 by projections as in Equa-

tion 19.

In the nonlinear conjugate gradient approach, iterations of P after the initial steepest

descent step employ a modified conjugate direction s. The Polak-Ribiere formula is used for

computing the factor β:

sn = xn − βsn−1; β = xn(xn − xn−1)
/
|xn−1|2 . (29)

Next, we need to minimize the error along this search direction. Given the approximate

Hessian in Eq. 23 and the second-order Taylor expansion in Eq. 24, we may express the

optimal step size as:

λ =
Γ · s

s ·H · s
; s ·H · s = 2(sP ·Ps + sQ ·Qs). (30)

Thus, the conjugate gradient algorithm for iterating P+ toward idempotency may be

summarized as:

1. Start with n = 0 and Pn = P∗+ from Equation 15.

2. (Begin Loop) If Tr[(P2
n −Pn)2] < threshold, terminate loop and set P+ = Pn.

3. Compute the gradient Γn = 4P3
n − 6P2

n + 2Pn.

4. Set the projected steepest-descent direction: xn = −(P0ΓnP0 + Q0ΓnQ0).

5. If n = 1: Set search direction sn = xn.

6. If n > 1: Calculate search direction sn using Equation 29.

7. Estimate the step scaling λ using Equation 30.
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8. Apply the step to the density matrix: Pn+1 = Pn + λsn

9. Increment n by 1.

10. Return to step 2. (End Loop)

In our performance tests on the malonate ion system from §4.1, the CG algorithm needed

5.1± 0.04 iterations to converge P and 7.5± 0.04 iterations to converge W to a precision of

10−12. The SD algorithm needed 13.1±0.2 iterations to converge P and 23.0±0.2 iterations

to converge W to the same precision.

6.3 Mass-weighting scheme

The basic principle of mass weighting is to assign larger masses to core orbitals, thereby

forcing their coefficients to oscillate less rapidly and allowing for larger CPMD time steps.

From Eq. 9, the fictitious force on the dynamical density matrix elements is proportional to

the Fock matrix elements, thus we expect the most rapid oscillations to occur for the AOs

that have the largest Fock matrix elements - the core orbitals. On the other hand, we also

expect the core orbital occupations to have smaller variations over time compared to valence

orbitals because they do not participate directly in chemical bonding and intermolecular

interactions. Indeed, power spectral analysis of the time series of density matrix coefficients

indicates the existence of very small, high-frequency oscillations from core orbitals that are

absent from most valence orbitals (Supporting Figure S3).

Our mass-weighting scheme is based on the diagonal elements of the kinetic energy matrix

rather than the full Fock matrix, which we regard as an improvement over the scheme in

Ref.44 The kinetic energy matrix has uniformly positive elements, and contains no two-

electron contributions from chemical bonding that may change as reactions occur in the

simulations; this contrasts with the Fock matrix whose elements vary from < 100 to > 10

a.u. and are subject to larger changes over time. We also found in preliminary tests that

using the Fock matrix elements would sometimes fail to detect some density matrix elements
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with fast frequency components, i.e. some AOs had Fock matrix elements in the valence

orbital range yet they possessed the same high-frequency components as other core orbitals.

Though we could not find an underlying reason, we think it could be due to variations in the

Fock matrix element over time due to changes in chemical bonding or the orthogonalization

matrices.

The mass-weighting scheme used the following procedure:

Ti = max ({Tjk | j, k ∈ [1, NAO] ∧ (j = i ∨ Uij > kU)})

µi = µ0 ∗
(

1 + Ti ∗
T 6
i

T 6
i + k6S

) (31)

In the first line, Ti is calculated as the maximum over row i of the kinetic energy matrix,

and all rows j whose orthogonalized AOs share the same non-orthogonal basis functions as

function i. The latter is determined by applying a threshold kU to the Löwdin symmetrized

orthogonalization matrix U. The second line scales up the mass of core orbitals (i.e. those

with large Ti values) using a switching function. Valence orbitals with Ti < kS are given

masses very close to µ0 whereas core orbitals with Ti > kS are given masses that increase

proportionally with Ti. We used parameter values of kS = 5.0 a.u. and kU = 0.2 throughout

the study.

7 Acknowledgements

LPW acknowledges support from the UC Davis Department of Chemistry, ACS-PRF award

58158-DNI6, and NIH R01 AI130684-03. CCS is grateful for an E. K. Potter Stanford

Graduate Fellowship and support through NSF ACI-1450179. LPW acknowledges Marshall

Hutchings for sharing data and helpful discussions.

36



8 Supporting Information
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