Importing and
Configuring Props

Before we start creating new, wonderful and exciting worlds, we need to import

all our assets and get them ready to go. This chapter assumes that you have a basic
understanding of modeling and texturing, and that you are also familiar with
common terms such as UVs, normal maps, alpha channel, and so on. It doesn't
matter which apps you are using for asset creation as long as they support exporting
common file types. That is why you won't find any step-by-step export processes
described for every single program, but only general recommendations and which
things to avoid that are found applicable, regardless of you app choice.

In this chapter, we will look into the following topics:

Object manipulation

Working with components
Importing props into Unity
Contfiguring meshes

Configuring textures

Learning how to use Unity materials
Setting up LODs for various objects

Basics of collision

By the end of this chapter, you should be able to import all your props and prepare
them to be used in the level.

[21]

Importing and Configuring Props

Object manipulation

Learning to use the following tools will allow you to place objects in a Scene window
with ease.

To test out the object manipulation tools, make sure you create one of the available
3D primitives in Unity via GameObject | 3D Object (Cube is recommended).

i+ - =[G

Object manipulation is done via five tools available on the left side of the toolbar:

* Hand tool (used for panning), Move tool, Rotation tool, Scale tool,
and Rect tool can be accessed via the toolbar or by using the hotkeys
Q, W, E, R, T respectively

* To duplicate an object, you can use Ctrl+D or a combination of Ctrl+C and
Ctrl+V to copy and paste

¢ You can undo the last action via the Ctrl+Z combination

Move tool Scale tool Rect tool

Rect tool is a recent addition that made an appearance in the later versions of Unity
4. The circle in the center of the object acts as the Move tool and a quad created with
four dots on the outside works similar to the Scale tool. Dot location will change
position based on the camera angle.

In addition, the toolbar contains tools that allow changing the pivot point of
the object to its center or default pivot (useful if you imported the object with
specific pivot point placement in mind). Objects can also be rotated, scaled, or
moved relative to the Local or Global space. Settings are defaulted to Pivot
translation in Global space

[I Bl Pivot -|“ﬂ|iGIubaIu

[22]

Chapter 2

Snapping
Moving, rotating or scaling objects at equal intervals can be done via snapping.
This is done by holding the Ctrl button.

To set the snapping intervals, go to Edit | Snap settings of the top menu and enter

the following settings:

Snap settings |§|
Mowve X 1

Move fL

Move Z g

Scale {0:1

Rotation 15

[sSnap all Axes | ® | 18 | Z ol

The buttons at the bottom of the Snap settings window allow you to round up
to get rid of decimal values; it's great for if you wish objects to be perfectly aligned
on the grid.

To move objects freely, press and hold Shift and use the Move tool. To move along
the surface with a custom pivot point:

1.

2.
3.
4

Select an object.
Hold V.
Position the pivot point with a mouse.

Hold and drag the left mouse button along the surface.

[23]

Importing and Configuring Props

This is perfect for prop placement. As shown in the following screenshot:

Surface snapping may sound like a lot of fun, but in reality, its results may vary
based on surface and object topology; it's also very tricky to do in Perspective mode.

[Remember: Snapping works only in the Scene window.]

Greyblocking

Knowing this much about Unity, we can utilize our knowledge of creating primitives
by constructing a greyblock of our future level. Using Unity primitives, block out the
level to solidify your knowledge of object manipulation.

[24]

Chapter 2

Components

All objects in the level are GameObjects: entities that don't do much by themselves
but serve as containers for parameters. These parameters are added with the help of
components. If you create an empty GameObject via GameObject | Create Empty
and look at the Inspector window, you will find that it contains one mandatory
component called Transform, which houses properties mandatory for a 3D space
(Position, Rotation, Scale). But that is all there is to it; GameObject is just an abstract
entity that occupies a location in the Scene. In order to transform it to something more
meaningful, more properties, and therefore, more components need to be added.

Adding components
By adding more components, we will add more properties to our GameObjects, so
let's do just that and try to reconstruct a primitive:
1. Create an empty GameObject by going to GameObject | Create Empty in
the top menu.

2. Click Add Component in the Inspector window or Component | Add in the
top menu.

3. Go to Mesh | Mesh Filter.

Assign a Cube model reference to a Mesh property of a component through
the object picker.

5. Add a new component via Mesh | Mesh Renderer.

At this point a purple cube should have appeared in place of your empty GameObject.

YA Transform & %
Position % 33.066 |¥ 8485 | Z|-91.942
Rotation %0 [¥[o Zio l
Selle X1 |val |z |

¥ L./ Cube (Mesh Filter)

Mesh |

¥ . M Mesh Renderer @ %
Cast Shadows | on ™
Receive Shadows [

b Materials
Use Light Probes [
Reflection Probes | Blend Probes il

Anchor Override |None (Transform) | @

[25]

Importing and Configuring Props

The Mesh Filter component allows us to set a mesh to represent the object in the
level. Mesh Renderer adds rendering properties for this mesh, allowing it to be
rendered in the Scene and Game window.

If you see an object rendered purple, it's most likely because it
@’@‘\ doesn't have a material selected for it. We will look into Materials
’ later in this chapter.

Component deactivation

One way to get rid of the GameObjects is by deleting them. However, that's very
inefficient to do during runtime, and sometimes you'll find yourself needing to bring
the removed object back. The best way to do that is by activating/deactivating the
GameObject. To do that, toggle the check box next to the Name field at the top of the
Inspector window. Some components can also be deactivated in a similar manner.
That way, deactivation of the Mesh Renderer attached to our cube will cause it to
disappear in the Scene window.

& Inspector | =

@ Capsule []static -

Tag | Untagged ¢ | Layer | Default 4|

v hﬂ._@“lesh Renderer & =

Cast Shadows | ©n % |
Receive Shadaows

Attached components are dependent on the active status of the GameObject and will
be automatically deactivated if the GameODbject housing them is deactivated.

Component options

Right-clicking on the component or left clicking on the drop-down menu with a
cog icon at the top-right corner of the component will bring up an options menu
as seen here:

[26]

Chapter 2

W o4 Me_s_h Renderer

Cast She Re<ai
Receive |
b Materials Move to Front
Use Ligh Meowve to Back
Rslestn Remove Compenent
Ancho
| Maove Up
) D Move Down
» S| Copy Component

: Paste Component As New
|
| Paste Component Values

@

The most notable options are:

Reset: This returns parameters to their default values

Remove Component: This removes components from the GameObject

Copy Component: This copies the component

and its values

Paste Component As New: This adds the copied component with

copied values

Paste Component Values: This transfers copied values to another
component (only if the component is of the same type)

Objects that share the same components can be edited simultaneously. Selecting
multiple objects will result in the Inspector window showing only shared
components. Parameters will be left as they are if their values are the same for all
selected objects, or they will be substituted with a dash if they don't match. Modifying
a parameter will change it for all of the objects, as shown in the following screenshot:

¥ .~ Transform @ %
Position X — ¥ Z2—
Rotation X 0 Y0 Z|0
Scale XL ¥z 211
¥ ./ Cube (Mesh Filter) ﬁ 1%,
Mesh W <]
¥ | [MMesh Renderer [%,
Cast Shadows lon. %]
Receive Shadows [
» Materials
Use Light Probes [&
Reflection Probes | Elend Probes ™
Anchor Override m fc}
Components ;:-Hat are Oﬂi}‘ on some of_tI:\-e se‘l‘ected‘
ol FLEe G R, J

There are various components available, and we will look into most of them in
future chapters.

[27]

Importing and Configquring Props

Importing props into Unity
Unity handles the importing of assets quite smoothly, and there aren't that

many issues that you will encounter, as long as the actual assets are without
issues themselves.

Supported formats

Firstly, we will talk about 3D formats that are recognized by Unity.

Unity supports a number of common 3D file formats, namely: . FBX, .dae, .dxf,
and .ob7.

Among 3D application files, Unity supports 3Ds Max, Maya, Blender, Cinema4D,
Modo, Lightwave, Cheetah3D, and many more (through conversion). Chances are
that your preferred modeling tool is among them.

Deciding which application to use is completely up to you, as
/o there are a number of pros and cons when dealing with each.

When exporting into common 3D file formats (. obj for example), you will gain the
advantage of:

* Having smaller file sizes.

* Being able to export from 3D apps that aren't supported by Unity.

* Being able to handpick the data you want to export.

However, there are few cons to that approach:

* They are harder to iterate.

* Itis easy to lose track of versions between source and game data.
When using file formats native to your 3D app, you will benefit from the following:

* You will be able to iterate on the assets quickly (editing the imported asset
will cause Unity to reimport it upon committing changes and returning it
to the Editor).

* It's simple (there are no prerequisites to it, just drag and drop the file you
were working on and open it from Unity for quick modification).

[28]

Chapter 2

But there are few things that you will have to keep in mind:

* Alicensed copy of a 3D app is required to open them.
* Along with assets, you may import unnecessary data.
* Files are generally bigger and may slow down Unity.

¢ Less validation will make it harder to troubleshoot errors.

Exporting in a 3D app file format is justified during the prototyping,
a when you are constantly iterating, and all members of your team have
T a licensed version of the app installed.

Imported Object

Modern Desk Scene 3,

I Asset Labels

"Locally created
@ 3ds Max could not be faund,

Exporting from Blender

As mentioned before, Unity supports import from popular 3D apps, and Blender

is no exception. There is one thing that you need to be wary of when importing a
Blender file into Unity; your Blender version has to be 2.45 or higher. The reason for
this is that Unity uses the Blender FBX exporter added to Blender in version 2.45. If
you are using an older version of Blender, you need to manually convert your files to
a common 3D file format before importing.

. This is not just the case with Blender. If your 3D app doesn't have a
“ built-in exporter, Unity will not be able to read the native file format.
s Thatis also the reason why you need to have that 3D software
installed on a computer in order to access imported assets.

[29]

Importing and Configquring Props

Object setup before exporting

In terms of the mesh, there aren't any Unity specific requirements that need to be met
to import successfully.

If the asset that you are importing has multiple components and/or groups, make
sure to set them up properly in a 3D app, as it will have the same hierarchy when
imported into Unity.

Barrel Model.blend

s fr | ® Barrel_Model

.o F . - s Barrel_HighPaly
Barrel_LowPaly
2l Barrel_HighPaly
k2l Barrel_LowPaly
L Default Takgr
5 Barrel_ModelAvarar

You cannot modify an asset or its hierarchy directly in Unity. Say you've imported a
.blend file into Unity and wish to edit it:

1. Double-click on the imported file in the Project window.

2. If you have Blender installed on your computer, Unity will opt to run it.

3. Edit the file and save it.

4. Return to the editor.

Once you've returned to the Editor, you might experience a small lag; that's Unity
reimporting the file you've just edited.

Make sure that there is a pivot point where you want it to be. Remember, in Unity,
the default is a center pivot point, but you can switch it to the one set in the 3D app,
by going into Pivot mode.

Make sure that you remove construction history — Nurbs, Norms, and Subdiv
surfaces must be converted into polygons. During the final export, get rid of your
scene lighting; it will not be exported.

There are a few tips and tricks that you can apply in order to optimize your models,
however, we will touch upon them later, after covering all related material.

[30]

Chapter 2

The importing process

The easiest way to get assets, is simply by dragging and dropping the file into
the Project window. It will create a copy of the file within the Unity directory.
Alternatively, you can go to Assets | Import New Asset... in the top menu and
import it that way.

[_Assets] GameCbject Component Window Help

Create b

Show in Explorer

Open
Delete

Import Mew Asset...
Import Package »

Files will be automatically converted, so you don't have to change anything else.
Your asset is now in Unity and is ready to be used. To start things off, we need to do
the following:

1. Open the Chapter 2 folder of complimentary files.
2. Drag and drop the Import folder into the Chapter 2 folder in the Project tab

of Unity.
I*ﬁ House

vi& Bush
W Bush_model.fbm
¥ 55 Materials
gBush_CoInr
i Bush_Color
b4 Bush_Model
Y& Rock
¥ Materials
Qdefaultl'“'lat
.Rock_CnIor
o Rock_Model
ﬁRock_Normal

Rock_occlusion

Congratulations! You've just imported OBJ and FBX models as well as PNG textures
into Unity.

[31]

Importing and Configuring Props

Configuring meshes

Now that we have our assets in, it's about time we started configuring them in Unity.

Model-meshes options

Selecting asset in Project window will display Import settings in the Inspector
window.

@ Inspector | e

Bush_Model Import Settings [%

| Spen |

m Rig | Animations|
Meshes

Scale Factor B |
File Scale A5

Mesh Compression | Off % |
Read/Write Enabled ¥
Optimize Mesh [

Import BlendShapes (¥
Generate Colliders [
Swap UVs L
Generate Lightmap L[]

Normals B: Tangents

Mormals | Import s |
Tangents | Calculate =]
Smaothing Angle A0

Split Tangents [

Keep Quads L]

Import settings have three tabs available corresponding to Model, Rig, and
Animation settings of the asset. Right now, we will focus on the Model tab and look
into available settings to prepare our asset to be used:

* Scale factor: This scales an asset in comparison to the original model. This
is a great way to adjust a model's scale outside of a 3D modeling app. Using
the Scale Factor parameter over Scale tool is also beneficial as it ensures that
the object will correctly respond to physical interaction within Unity by using
uniform scaling (developers report fixing this in Unity 5).

* Mesh Compression: Unity will attempt to reduce the size of the Mesh.
Compression has four states: Off, Low, Medium, and High. To minimize
your build size, try to use maximum compression until you see any
irregularities appearing on the model.

[32]

Chapter 2

In case you are wondering how compression works, the numerical
accuracy of the mesh is reduced: instead of 32-bit floats, mesh data
will be represented with a fixed number.

Read/Write Enabled: This enables the meshes to be written at runtime.
Enabling this option will allow mesh modifications through code. This is
another optimization option that allows saving memory by turning it off for
all meshes that aren't intended to be scaled or instantiated at runtime with a
non-uniform scale.

Optimize Mesh: This optimizes the order in which triangles will be listed
in the mesh. Check it if you wish to trade loading time for a better runtime
performance and vice versa.

Import BlendShapes: Unity will import blend shapes for the model if this
is enabled.

Generate Colliders: This automatically generates a Mesh Collider for
the model. It is useful for environment geometry. However, it should be
avoided for any dynamic objects that will be moving.

Swap UVs: This swaps primary and secondary UV channels.

Generate Lightmap UVs: This creates a secondary UV channel
for Lightmapping.

Normals & Tangents are very straightforward options: you either Import
info on Normals & Tangents from the source file, allow Unity to Calculate
them for you (Normals are calculated based on the Smoothing Angle slider
that sets how sharp the edge has to be in order to be treated as a Hard Edge)
or choose None to disable them.

Make sure to use the Calculate option on Normals if you need a quick fix for
a model. Unity does a pretty good job of it.

The import option on Tangents is available only for
Lo FBX, Maya, and 3Ds Max files.

Split Tangents: Enable this if Normal Map lighting is broken by seams
on your mesh.

Keep Quads: This preserves quads on model topology for DirectX 11
tessellation.

[33]

Importing and Configuring Props

Double-sided normals

There is one particular problem that you might run into when importing your models
and try to view them in Unity. The problem lies in the fact that Unity, by default,
doesn't support double-sided normals, making one side invisible. This is quite a
regular problem, and there are a couple of ways to approach it. Have a programmer
write a double-sided shader, use duplicate faces or reverse normals on your model in
the 3D app. The latter is a lot easier, and a quicker way to solve this problem.

One-sided normals Duplicated faces

Labels

Now to the most important part of handling assets: Labels.

Labels are used for filtering and search queries. You can assign as many labels
as you want to any asset, imported or internal. To do that:
1. Select the asset in the Project window.
Open the Inspector window.
Click on the Label button in the bottom-right corner of the Preview window.

Type in the label name.

AN

Press Enter to create a new label and assign it to the object.

Now you can use the search field of the project window to find the asset
s with the newly created label as shown in the following screenshot.

[34]

Chapter 2

Bush_Color

K512 sRGERH

Hew

AssetBundle Mane

That's it. Labels are easy to understand. However, getting used to working with
them and figuring out a system that you will use to filter through assets quickly
will take some time.

Prefabs

Let's say you've configured a GameObject and its components, and you now want
to reuse it multiple times throughout the project. Duplication is an option; however,
there is a much better way, in the form of prefabs.

Think about prefabs as templates —they are generally used to create instances of
certain objects and quickly modify them by applying changes made to the templates.

Creating prefabs is easy:

1. Click on the Create button of the Project window.
2. Select Prefab.
3. Drag and drop a primitive created earlier onto the prefab.
Done! Now you can observe how the prefab works. Notice that our original

primitive in the Scene window now gained a new section called Prefab at the
top of the Inspector window with three options available:

GameObject [static ~

L1 SRR g
Tag | Untagged 3 | Layer | Default e

Prefab | Selact | Revert | a&pply |

[35]

Importing and Configuring Props

* Select will select a prefab that this object belongs to in the Project window.

* Revert will reset all changes done to the object and make it identical to
the prefab.

* Apply will update the prefab with changes done to the object.

Try creating more instances of the prefab in the Scene, manipulate the prefab and use
object transform, add and remove components from the prefab and objects, and see
how they affect each other.

You should figure out that all objects are immediately updated whenever the prefab
is changed, but a change done to a single object doesn't affect the prefab itself, unless
changes are committed via the Apply button.

If by any chance you forgot what you've changed in the object,
there is no need to compare it to the prefab to find out; all changes
"~ will be highlighted in the Inspector window.

If you want to reset a particular component of an object from a prefab, you can
do that by right-clicking on the component you wish to reset and select Revert
To Prefab. This will reset that particular component only and leave other
components untouched.

Objects that are connected to their prefabs will also be highlighted in the Hierarchy
window with a blue color.

One thing to be cautious about is dragging and dropping an object onto a non-empty
prefab, which will result in the replacement of all of its instances with the object
you've dropped. This cannot be reverted with the Ctrl+Z command, but you will
receive a warning message from Unity and can still cancel the action; so be wary.

Possibly unwanted Prefab replacement

Are you sure you want to replace the contents of the
prefab with a GameObjects that are not entirely
inherited from it,

Replace anyway Dion't Replace

[36]

Chapter 2

As a rule of thumb, it's a good precaution to set up all the objects to have their own
prefabs, even if you aren't planning to mass modify them. There are two major
reasons to do this:

1. Meshes cannot be modified, nor do they have components attached to them
in the Project window. You can only do that by dragging the mesh into
the Scene, which will automatically create a GameObject that you can then
modify. Or, skip that and create a prefab editable in the Project window.

2. Programmers will have a much easier time working with cooked prefabs
rather than manually assembling the required GameObject via code.

That being said, you should probably go ahead and create prefabs for the
Bush_Model and Rock_Model assets we've recently imported. We'll need
them very soon.

Object parenting

You can group objects by parenting them to other GameObjects, empty or not. In
Unity, it can be done by dragging and dropping the GameObjects on top of each
other in the Project or Hierarchy window.

'Parent

3 Project

Create ~ |

¢ Child
. Child

There is one thing to be aware of: it is important to understand that the
transformation of the child is no longer relative to the global space, but to its parent
object. So whenever the parent object moves, it will move all its children with it. This
is also the case for scale and rotation.

[37]

Importing and Configquring Props

Parenting and prefabs

When it comes to prefabs, parenting is quite simple: You freely modify and add any
children to the parent object in the Hierarchy view and then hit Apply for them to be
saved to the prefab. However, unparenting a child from a GameObject will cause the
parent object to lose connection to the prefab.

Losing prefab
This action will lose the prefab connection. Are you
sure you wish to continue?

Continue Cancel

If you need to use unparenting you will have to lose connection to the
%i%‘\ pretab for that object, unparent, and then drag and drop it back onto
’ the prefab. That will commit changes to all other references as well.

The pivot point

Another important thing to know is how the pivot point of the parent object is
going to react to the addition of child objects. This is where the Pivot tool that we've
discussed earlier comes in handy. In the Center mode, it is located exactly in the
middle of the group. However, switching to the Pivot mode will result in the pivot
point snapping to the original position, where it was back when the parent object
was exported (if it was).

Configuring textures

It's about time we talk about textures and how they can be handled in Unity. We will
start by listing supported formats, discuss useful tips to consider during exporting,
and take a close look at options available upon importing.

[38]

Chapter 2

Supported formats

Unity has a wide range of supported formats for textures; they include PSD, TIFF,
JPG, TGA, PNG, GIF, BMP, IFF, and PICT. Yes, multilayered files are supported,
and you can easily use them without any fear of memory increase or performance
loss. That being said, don't expect to be able to take advantage of a multilayered
format, because Unity will convert the files and flatten all layers. This conversion is
purely internal and your source files will not be altered in any way, allowing you to
continue to iterate on them.

Preparing textures for export

There aren't any specific requirements for textures to be imported into Unity. If the
image format is supported, drag and drop it into the Project window —just like we
did earlier with the Import folder —and you are good to go.

From a performance standpoint, it is strongly recommended that you use the

power of two sized textures (2, 4, 8, 16, 32, 64, 128, 256, 512...). The non power of

two textures (NPOT) can be used in Unity at the cost of extra memory and a small
performance loss. However, if a platform or a GPU doesn't support NPOT textures,
Unity will automatically scale them to the nearest power of 2, causing a dramatic loss
in performance.

[Q You can still use NPOT textures for something like UL]

[39]

Importing and Configuring Props

Settings for various texture types

By selecting one of the imported textures, you will see import options in the
Inspector window.

® Inspector | FyEEE
Rock_Color Import Settings &G %,
[Open |
Texture Type | Advanced ™
Man Pawef of 2 _"'_I_'u_l_le_a.n.a_st s
Mapping | Mone =
Convolution Type | Hane s |
Fixup Edge Seams m
Read/Write Enabled -
Iman: Type | Default N
Alpha from Grayscale []
Bypass sRGB Sampling [_|
Encode as RGBM | Aute s
Sprite Mode | Mone ac]
Generate Mip Maps
In Linear Space -m
Border Mip Maps -
Mip Map Filterimj | Box s |
Fadeout Mip Maps [l
Wrap Mode | Repeat <]
Filter Mode | Bilinear &
Aniso Level — o |
Default @& |0+ & A8
Max Size | 2p48 L]
Format | Autamatic Compressad =

Rock_Color

512x512] mpre 15DXT1 170.7 KB

Bundle Mane

[40]

Chapter 2

* Most of the settings of a texture are decided based on the value selected in
the Texture Type drop-down menu. Here are the available options:

° Texture: This is the most common setting for textures (this is your
default go-to option).

° Normal Map: This turns color channels into a format suitable for
real-time normal mapping.

° Editor GUI and Legacy GUI: This is used for the GUIL

° Sprite (2D and UI): Select this to use the texture as a sprite in a
2D game and UL

Cursor: This is useful for cursor sprites.

° Cubemap: This is used to create Cubemaps.
° Cookie: This is used for light cookies.

° Lightmap: This is used to identify lightmaps.

° Advanced: This reveals all parameters of the texture.
Since the Advanced option gives us all the necessary parameters, we will
stick to it from now on.

* Non Power of 2 will define scaling behavior in case our texture has
non-power-of-two size. Four options are available here:

° None: Texture won't be scaled

o

To nearest: Texture will scale to the nearest power of 2 (130x250 to
128%256)

To larger: Texture will scale to the next larger power of 2 (130x200
to 256x256)

To smaller: Texture will scale to the next smaller power of 2
(130x200 to 128x128)

All the changes will be applied upon import internally. After changing the
parameter, Unity will re-import the texture.

* Mapping specifies layout options for custom Cubemaps and enables
additional options associated with them. We will omit talking about
Cubemaps as they are outside of the introductory scope.

* Read/Write Enabled allows coders to get access to texture data. Be careful
with this one and keep it disabled by default unless it's absolutely required.
This doubles texture memory usage due to the necessity of storing the edited
and original version of the texture. It is only valid for uncompressed and
DXT compressed textures.

[41]

Importing and Configuring Props

* Import Type is a simplified version of a Texture Type parameter. It allows
the texture's purpose to be interpreted properly and opens several options
based on the type selected: Default, Normal Map, or Lightmap.

° Alpha from grayscale is available for the Default texture type.
It creates an alpha channel from the luminance information in
the image.

° Create from grayscale is available for the Normal Map texture type.
It creates a Normal Map from luminance information in the image.

° Bypass RGB sampling is for the Default texture type. It allows
the use of direct color values from the image without gamma
compensation applied by Unity.

° Encode as RGBM does just that. It is useful for the HDR textures.
° Sprite Mode allows you to configure your sprites as a Single image
or a sprite sheet (Multiple).

* Generate Mip Maps allows the creation of smaller versions of the texture to
be used when the texture appears small on the screen.

1.70.7 KB 512%x512" RGB Compressed DXT1" 170.7 KB
Py i

° InLinear Space generates mip maps in linear color space.

Border Mip Maps prevents color from seeping out to the edge
of the lower Mip levels.

[42]

Chapter 2

Mip Map Filtering is used to optimize mip map quality. The Box
parameter makes mip levels gradually smoother, while Kaiser
applies a sharpening algorithm to avoid blurry textures.

Fade Out Mip maps makes mip maps fade to gray with mip level
progression. The Fade Range scroller that appears after enabling
this option defines the first level to start graying out and the last
level when texture completely grays out.

* Wrap Mode defines the behavior of a tileable texture: you can choose to
either, Repeat which will make texture repeat itself, or Clamp, to stretch
edges (used by default for non-tileable textures).

* Filter Mode defines filtering options when the texture is stretched by
transformation. Point will make the texture blocky, Bilinear will make it
blurry, and Trilinear will blur the texture between different mip levels.

Bilinear

* The Aniso Level slider is available for Bilinear and Trilinear filters.
It improves texture quality when viewed at a steep angle. It is most
commonly used for a floor.

Aniso L

Getting your textures into Unity is as easy as it gets, plus you'll have a lot of options
to tune them the way you like in the future. The best, and really the only, way to
avoid being overwhelmed by the variety of options is to use Texture Type to filter
them and base your decision on what's left.

[43]

Importing and Configquring Props

Having textures imported is good and all, but it's not enough to use them with
your GameObjects. For that we need Shaders, but more specifically their
holders: Materials.

What are Materials?

Objects are rendered in Unity with the help of Shaders: chunks of complex code that
can be created in Unity's MonoDevelop. However, there is a much easier way to

work with Shaders, and that's through Materials. Materials allow the adjustment of
properties and assignment of assets to Shaders without any programming knowledge.

Materials in Unity

Upon importing assets earlier, you probably noticed that Unity also created a folder
called Materials in each asset folder. By default, each GameObject should have a
Material assigned to it—if it doesn't it will be rendered pink, just like we've witnessed
at the beginning of this chapter when tried to recreate primitives with components.
During asset import, Unity used the name of the Shader assigned to the assets and
gave it to the newly generated Material, which was automatically assigned to imported
object; however, it didn't assign textures to both of the materials but only to the Bush_
Color. There are three reasons why this could happen to any model:

1. Textures were not assigned to the Shader upon exporting. This is true in
our case; Rock did not have textures assigned to it prior to exporting.

2. The file format was incorrect. That is also true. Rock was exported as OB]
and Bush, which has a color map assigned to its material was exported
as FBX.

3. Unity couldn't find the assigned texture. That is not the case for our models,
but it could often be the reason for others. To avoid that, I would recommend
keeping models and assigned textures in the same folder upon import
(you can always reallocate them afterwards).

Reassigning textures upon import can be a real pain. To avoid that issue, I usually:

1. Assign textures to the model in the 3D app.
Keep assigned textures in the same directory as the mesh file.

Export the model in FBX format.

Ll N

Import the model and textures into Unity together.

[44]

Chapter 2

This is not necessarily the only way to do it—you might not need to assign the
textures in a 3D app in the first place for your pipeline, but this is just something I
can recommend from personal experience.

In order to assign the missing textures to materials, we need to do the following;:
1. Rename imported materials to Rock_Material and Bush_Material in the
Project window.
Select Rock_Material and go to the Inspector window.
Click on the little circle on the left of the Albedo parameter.
Select the Rock_Color texture with the object picker.
Now all GameObjects that share this material will be automatically updated. You

can use the Preview section at the bottom of the Inspector window to see how your
material will look on the object:

© Inspectar | =
Rock_Material & 4
. Shader | Standard - |
'Rendering Mode | Opague 2]
Main Maps
B - albedo 12
& Metallic Cr o |
Smoothness 8, 'T"

'Rock_MateriaI

AssetBundle Mane

[45]

Importing and Configquring Props

This color map will now be automatically assigned to all GameObjects that share
this Material.

1
‘Q You can't assign materials to imported models; however, you can do it for

prefabs and objects in the Scene/Hierarchy window.

Creating Materials

Materials are very useful in a way that they are automatically updated on all
assigned GameODbjects. But at the same time, that is their biggest limitation, as we
cannot create any variation this way. In our case, if we want to make some rocks
darker and others greener, we'll have to create unique materials.

To create new materials, use the Create drop-down menu of the Project window.

Newly created material can be assigned to GameObjects with the Mesh Renderer
component:

1. Selecta GameObject.
2. Go to the Mesh Renderer component of the Inspector window.

3. Assign the material to one of the elements of the Materials array.

v [Mesh Renderer ﬁ i,
Cast Shadows | on $ |
Receive Shadows [

¥ Materials

Size 1
Element 0 Wi Rock_Material o}

Shader types

The most important part of each material is to select the correct shader to render it.
There is an abundance of shaders available for Unity, both built-in and user-created,
available in the Asset Store. You can even write your own using ShaderLab coding
language; however, that will require extensive knowledge of the subject. Thankfully,
with the release of Unity 5, most of them were moved to the backlines for backward
compatibility with project upgrades and were labeled Legacy. All of them were
replaced with a single default Shader dubbed Standard.

[46]

Chapter 2

Material parameters

Standard is a very powerful and versatile material with a lot of customization
options that widen its application range.

Let's take a closer look at the options available for it:

& Inspector .| & -=|
Rock_Material g %,
Shader | Standard . |

Rendering Mode | Dpague i)
Main Maps
[= Albeda C_1#

@ Metallic)

Smoothness s r— 0.5
@ MNormal Map
@ Height Map

@ Qcclusion

@Emission 0
@ Detail Mask
Tiling %1 v
Offset %0 Y0

Secondary Maps
@ Detail Albedo x

@ MNarmal Map 1
Tiling *11 Yol
Offset x.0 Y0
Uy Set | uvo

* Main Maps is a set of primary textures that are utilized by the Material:

* Albedo parameter defines a defuse color produced from the assigned color
map and a surface color defined by the color picker on the right.

* Metallic defines how smooth and reflective the surface is. You can import a
custom texture or use a slider to control how metallic you want your material
to look. This parameter is further enhanced by the Smoothness slider.

* Normal, Height, Occlusion, and Emission are your standard maps for 3D
objects. In this book, we will work with Normal Map and Occlusion Map for
props and characters and we will use the Height map to generate terrain in
the next chapter.

[47]

Importing and Configuring Props

* Detail Mask uses the Alpha channel of the imported texture to create a mask
for Secondary Maps. Secondary Maps allow us to create more details on the
surface by importing in additional Color and Normal maps. Controlling the
areas in which they will overlap is the purpose of the Detail Mask.

* UV Set allows you to toggle multiple UV sets if they are available for
the model.

Main Map Albedo

s

e

" Final'Material

Here is a general idea of how the Detail Mask works
* Tiling allows us to control how many times our texture is going to be
repeated across the x and y axes.
* Offset slides the texture across the x and y axes.
The last two parameters are best suited for tileable textures, like our imported
Rock_Color. Increasing the x and y of the Tiling parameter to 5 will significantly

improve the quality of our rock. Tiling has no effect on performance, nor does it
require more memory to render the texture.

Tiling -

[48]

Chapter 2

However, doing that will also create a problem when we try to apply non-tileable
Occlusion and Normal maps to our model. To solve this dilemma, we will make use
of both map-sets:

1.

6.

Remove the Rock_Color texture from the Main Map Albedo parameter and
assign it to the Detail Albedo of the Secondary Map.

Set the surface color to a dark grey using the Color Picker next to the
Albedo parameter.

Set the Smoothness parameter to 0. 25.

Set the x and y Tiling of the Secondary Map to 5 (Main Map Tiling should
be reverted to 1).

Assign the Rock_Normal texture to the Normal Map parameter of the Main
Map and click the Fix Now button.

Assign the Rock_Occlusion texture to the Occlusion parameter.

With Normal and Occlusion Map assigned, our rock looks much better.

There is but one problem with this approach: secondary maps are much more
expensive than main maps; therefore, Unity developers do not recommend utilizing
Secondary Maps if Main Maps aren't being utilized.

While assigning the Normal Map, you've seen the Fix Now button pop up. This
happens whenever you are trying to plug in textures to the Normal Map channel
that weren't marked as such. Clicking on the Fix Now button automatically changes
the Texture Type of Rock_Normal to the Normal Map in the Import Settings.

[49]

Importing and Configuring Props

Rendering modes

As mentioned previously, the Standard material has four rendering modes that
serve to fill the roles of different materials:

1.

2.

Opaque: This is used for solid or opaque objects. This is the Default go-to
mode for most objects.

Cutout: This uses the Albedo alpha channel as a mask to isolate parts of
the texture.

Transparent: This is used for objects with transparency, such as glass. The
transparency parameter is transformed by the Albedo alpha channel.

Fade: This is very similar to the Transparent mode, with the only difference
being that it also affects the specularity of the object, allowing it to gradually
fade away by controlling the Albedo alpha channel.

To prepare our second model, we are going to rely on the Cutout Rendering mode of
its material:

1.

In the Import settings of the Bush_Color texture, check the Alpha is
Transparency box. This will allow us to utilize the alpha channel to
render leaves.

Change Rendering mode of the Bush_Material to Cutout.

The Exposed Alpha Cutoff slider will allow us to control the amount
of cutout.

[50]

Chapter 2

Using LODs in Unity

LOD stands for Level of Details. This is an extremely useful functionality that
allows you to optimize your game by switching highly detailed objects with those
of a simpler geometry, based on their screen space.

LODs are toggled based on the percentage of game screen that

is being occupied by the object, not just the camera distance,
' as is the case in many other programs.

In Unity, LOD is represented by an LOD Group component.

How to prepare LODs

In order to make LODs work, you need to have the actual models —more precisely,
multiple versions of the same model that scale down in polycount. Here are a few
useful tips to follow when creating LOD models:

* The number of versions is completely up to you as Unity will allow the
creation of as many as you need.

* Keep object silhouettes relatively close so that players won't notice when
models are being swapped.

Setting up LODs in Unity

To demonstrate how LODs work, we are going to utilize meshes that were imported
with external package in the previous chapter. So make sure that you've successfully
imported the package and have the Chapter 2 | Ruin folder in the Project window.
To start up, let's do the following;:

1. Create an empty GameObject via GameObject | Create Empty in the
top menu.
Name it LODParent (not mandatory).
Attach the LOD Group component via AddComponent | Rendering |
LOD Group.

As a rule of thumb, you don't attach the LOD Group component to the actual
GameObjects you will be using as LODs; instead, you attach it to the empty
GameObject.

[51]

Importing and Configuring Props

Let's take a look at the properties that are available for the LOD Group component in
the Inspector view.

v s M LOD Group [%

LoD 1 LGB 2 culled

30% 10%

LODBias of 2.00 active

Recalculate: | Bounds || Lightmap Scale |

The LOD Groups at the top determine the number of LODs that this object has, and
transition thresholds between them. As we've talked before, the switching is based
on screen space and the percentages under the group names that represent the max
point at which that particular LOD Group will be used.

You can create more LOD Groups by:

1. Right-clicking on the LOD Group.
2. Selecting Insert before.

Or, you can delete LOD Groups that you don't need by:

1. Right-clicking on the specific LOD Group.
2. Selecting Delete.

Thresholds are not fixed, and you can adjust them by dragging the LOD Group
border and adjusting it to your preferences.

The camera icon above LOD Groups is a slider that allows you to manually adjust
your camera to see the transition between LOD Groups.

Renderers is a list of models that become visible when LOD Group is active. To see
them, select any LOD Group. You can add models there by clicking the Add button, or
just drag and drop the model you want in there. To remove models, simply click the
minus icon at the bottom-left corner. Another way to assign models to LOD Groups

is to drop them into the LOD Groups directly. Every time you add new models, you
will get a message from Unity about parenting the selected object to the object with the
LOD Group. This is not mandatory; however, it's recommended that you do so.

Reparent GameObjects
Some objects are not children of the LODGroup
GameObject. Do you want to reparent them and add

them to the LODGroup?

‘Yes, Reparent Mo, Use Only Existing Children

[52]

Chapter 2

Bounds allow you to recalculate the bound volume of the object after the addition of
anew LOD level.

Lightmap Scale updates Scale in the Lightmap property of the lightmap whenever
LOD bounds are recalculated.

Drag and drop Ruin prefabs onto the respective LOD Group —all except for the
Culled group. Culled is a point at which your model will be culled by the camera:

1. Ruin_LOD1 to LODO.
2. Ruin_LOD2 to LOD1.
3. Ruin_LOD3 to LOD2.

@8 Project ‘l |

v55 Import Lop o LoD 1 LoD 2 Culled
r 2 L™ N 3 - 1 09
b Bush . . 10089 £0% 30% 10%

YﬁELOD Group [

LODBias of 2.00 active

p Matarle Fade Mode | Mone
i Prefabs Renderers:

¥ Ruin_LOD1
* Ruin_LoDZ
* Ruin_LoD3
b iy Buin_LODs
kG Textures
B4 Ruin_LOD1
b4 Ruin_LOD2Z
L% Ruin_LOD3
P,

‘ Add

Recalculate: [Bounds “ Lightrnap Scale |

| Add Component |

This will place the Ruin GameObjects in place of LODParent and indicate the LOD
Group that is currently being rendered. You can now test the LODs with the camera
slider and see models toggle as you pass the threshold.

LODBias

A lot of people are confused when they use camera slider because models don't
seem to change at their thresholds, but at random spots. If that's the case with you,
don't panic; that only means that it's working as intended and is being affected by
LODBias parameter specified under LOD Groups. LODBias is used to adjust LOD
Group thresholds to the quality settings of the game: the higher number will scale
the amount of screen space required for LOD Group to change.

1. To adjust LODBias, go to Edit | Project settings | Quality settings.

[53]

Importing and Configuring Props

2. Now, select your current quality level and change the LODBias parameter

to 1.
® Inspector l: e
k:.i’ QualitySettings & %
Levels asl0+«aB08
Fastest o s B L s L O B o
Fast MMV E
Simple s v O O . B . . B
Good s v O O . I R T
Beautiful s s O O O R
"antastic ' M Lm

Default YyYYVYYYVYYY

[Add Quality Level |

Other

Blend Weights | 4 Bones L]
V Syne Count | Every \ Blank &)
Lod Bias 2

Maximum LOD Level 0
Particle Raycast Bud 4096

Now you should be good to go, and your GameObject swapping models should be
at their designated places.

That's it for the LODs in Unity. You don't have to use them in your game, but they
will definitely help to improve performance when used properly.

Collider

Collider is a shell that is used to register physical interactions between objects;
however, this will not prevent objects from moving into each other. Colliders are
there to register collision, not to prevent it. To add a collider to an object, we need to
add yet another component called Box Collider under Physics | Box Collider. The
purpose of the collider is to register the collision between itself and objects controlled
by physics and essentially to prevent your character from walking through walls
and falling through the floor. Collider can be transformed manually by clicking Edit
Collider button and dragging its boundaries

¥ iy [MBox Collider @
P <ot collider
Is Trigger- |
Material {None (Physic Materi| @

Center

%0.0195674 | [0.0353756) 2/0.2081356 |
‘Size

%/1.627882 | v [1.356346 | 2/1.41627 |

[54]

Chapter 2

You might have noticed that there are a lot more colliders, but the Box Collider

is the most commonly used one because of its simple geometry. Based on object
topology and collision precision requirements, you might have to use multiple
colliders by adding more collider components. The best results can be achieved by
using Mesh Collider, which will copy the topology of the assigned mesh reference.
But it is also the most performance heavy Collider and might cause issues if
overused on dynamic objects.

Summary

At this point, you should feel capable of manipulating GameObjects, adding
components, importing models and textures, and configuring materials in the
Editor. Hope you've come to appreciate Unity even more after you've witnessed
how simple this engine actually is. If you need more information on how to
handle importing objects from any specific 3D app, you can always reference the
official documentation available at http://docs.unity3d.com/Manual /HOWTO-
importObject.html.

If you wish to learn more about materials and physical-based shading, I would
direct you to the official tutorial at www.youtube.com/watch?v=fD_ho_ofY6A.

In the next chapter, we will look into Unity's built-in Terrain system and how
to use it.

[55]

