
[115]

Flocks and Crowds
Flocks and crowds are other essential concepts we'll be exploring in this book.

amount of realism to your simulation in just a few lines of code. Crowds can be a bit
more complex, but we'll be exploring some of the powerful tools that come bundled
with Unity to get the job done. In this chapter, we'll cover the following topics:

Learning the history of flocks and herds

Understanding the concepts behind flocks

Flocking using the Unity concepts

Flocking using the traditional algorithm

Using realistic crowds

the technology being the swarm of bats in Batman Returns in 1992, for which he won an

and accurate, the algorithm is also very simple to understand and implement.

[116]

Understanding the concepts behind

As with
them to the real-life behaviors they model. As simple as it sounds, these concepts

birds exhibit in nature, where a group of birds follow one another toward a common

on the group. We've explored how singular agents can move and make decisions

large groups of agents moving in unison while modeling unique movement in each

Island. This demo came with Unity in Version 2.0, but has been removed since Unity
3.0. For our project.

the way, you'll notice some differences and similarities, but there are three basic

the algorithm's introduction in the 80s:

Separation: This means to maintain a distance with other neighbors in the
flock to avoid collision. The following diagram illustrates this concept:

Here, the middle boid is shown moving in a direction away from the rest of
the boids, without changing its heading

[117]

Alignment: This means to move in the same direction as the flock, and with
the same velocity. The following figure illustrates this concept:

Here, the boid in the middle is shown changing its heading toward the arrow
to match the heading of the boids around it

Cohesion: This means to maintain a minimum distance with the flock's
center. The following figure illustrates this concept:

Here, the boid to the right of the rest moves in the direction of the arrow to
be within the minimum distance to its nearest group of boids

[118]

Flocking using Unity's samples
In this

individual boid behavior and a main controller to maintain and lead the crowd.

Our scene hierarchy is shown in the following screenshot:

The scene hierarchy

As you can see, we have several boid entities, , under a controller named
. The entities are individual boid objects and

they'll reference to their parent entity to use it as a leader.
The entity will update the next destination point randomly
once it reaches the current destination point.

The prefab is a prefab with just a cube mesh and a script.
We can use any other mesh representation for this prefab to represent something
more interesting, like birds.

[119]

Mimicking individual behavior
Boid is a term, coined by Craig Reynold, that refers to a bird-like object. We'll use

, and this is the

The code in the

[120]

We declare the input values for our algorithm that can be set up and customized
,

and rotation speed, , for our boid. The value is used to
determine how many times we want to update the value based on the

 value. This force creates a randomly increased and decreased velocity

The
also use to keep the boids in range and maintain a distance with

 and properties
are used to maintain a minimum distance between individual boids. These are the

The and values are used to keep a minimum

The object

 and properties to store the neighboring boids' information.

The following is the initialization method for our boid:

[121]

We set the parent of the object of our boid as ; it means that this will be the
controller object to follow generally. Then, we grab all the other boids in the group
and store them in our own variables for later references.

The method starts the method as a co-routine:

The method updates the value throughout the game
with an interval based on . The part returns
a object with random x, y, and z values within a sphere with a radius of
the value. Then, we wait for a certain random amount of time before
resuming the loop to update the value again.

[122]

Now, here's our boid behavior's method that helps our boid entity comply

[123]

The preceding code implements the separation rule. First, we check the distance
between the current boid and the other boids and update the velocity accordingly,
as explained in the comments.

[124]

Finally, we add up all the factors such as , , and
. We also update

our current to with linear interpolation using the
 method. Then, we move our boid based on the new velocity using

the method.

[125]

Next, we create a cube mesh and add this script to it, and make it a
prefab, as shown in the following screenshot:

The Unity flock prefab

[126]

Creating the controller
Now it is time to create the controller class. This class updates its own position so
that the other individual boid objects know where to go. This object is referenced in
the variable in the preceding script.

The code in the

In our method, we check whether our controller object is near the target
destination point. If it is, we update our variable again with
the method we just discussed:

[127]

The
position in a range between the current position and the boundary vectors.

Putting it all together, as shown in the previous scene hierarchy screenshot, you

Flocking using the Unity seagull sample

[128]

Using an alternative implementation
Here's a
we'll create a cube object and place a rigid body on our boids. With Unity's
rigid body physics, we can simplify the translation and steering behavior of
our boid. To prevent our boids from overlapping each other, we'll add a sphere
collider physics component.

We'll have two components in this implementation as well: individual boid behavior
and controller behavior. The controller will be the object that the rest of the boids try
to follow.

The code in the

[129]

The will be created in a moment. In our method, we
calculate the velocity for our boid using the following method and apply
it to its rigid body velocity. Next, we check the current speed of our rigid body
component to verify whether it's in the range of our controller's maximum and
minimum velocity limits. If not, we cap the velocity at the preset range:

[130]

The method implements separation, cohesion, and alignment, and
follows the leader rules of
together with a random weight value. With this script together with rigid
body and sphere collider components, we create a prefab, as shown in the
following screenshot:

The Flock

Implementing the FlockController
The is a simple behavior to generate the boids at runtime and

The code in the

[131]

We declare all algorithm and then start

controller class and parent transform object as we did last time. Then, we add the
created boid object in our function. The variable accepts an entity
to be used as a moving leader. We'll create a sphere entity as a moving target leader

[132]

In our method, we keep updating the average center and velocity of the
values referenced from our boid object and they are used to

adjust the cohesion and alignment properties with the controller.

The Flock controller

[133]

The following is our entity with the script, which we
will create in a moment. The movement script is the same as what we saw in our
previous Unity sample controller's movement script:

The Target entity with the TargetMovement script

Here is how our script works. We pick a random point nearby
for the target to move to. When we get close to that point, we pick a new point.
The boids will then follow the target.

[134]

The code in the

[135]

After we put
in our scene, chasing the target:

Flocking with Craig Reynold's algorithm

Using crowds
Crowd simulations are far less cut and dry. There really isn't any one way to
implement them in a general sense. While not a strict restriction, the term generally
refers to simulating crowds of humanoid agents navigating an area while avoiding

Lord
of the Rings were completely procedurally generated using the crowd simulation

the concept more than others. Real-time strategy games often involve armies of
characters, moving in unison across the screen.

[136]

Implementing a simple crowd simulation
Our implementation will be quick, simple, and effective, and it will focus on using
Unity's NavMesh feature. Thankfully, NavMesh will handle much of the heavy
lifting for us. Our scene has a simple walking surface with a NavMesh baked onto it,
a couple of targets, and two teams of capsules, as shown in the following screenshot:

The classic scenario: red versus blue

In the previous screenshot, we can see that our red and blue targets are opposite to
their teams—red and blue, respectively. The setup is straightforward. Each capsule
has a component attached to it, and when you hit play, each agent
will head towards their target while avoiding each other and the oncoming capsules
from the opposite team. Once they reach their destination, they will gather around
the target.

[137]

While the game is running, you can even select a single capsule or a group of them
in the editor to see their behavior visualized. As long as you have the navigation
window active, you'll be able to see some debugging information about your
NavMesh and the agents on it, as you can see in the following screenshot:

[138]

It's worth checking this out in the editor to really get an idea of how this looks in
motion, but we've labeled a few key elements in the preceding screenshot:

1: This is the destination arrow that points toward the
destination, which for this little guy is . All this arrow cares
about is where the destination is, regardless of the direction the agent
is facing or moving toward.

2: This arrow is the heading arrow. It shows the actual direction
the agent is moving in. The direction of the agent takes into account
several factors, including the position of its neighbors, space on the
NavMesh, and the destination.

3: This debug menu allows you to show a few different things. In our case,
we enabled Show Avoidance and Show Neighbours.

4: Speaking of avoidance, this cluster of squares, ranging from dark to
light and floating over the agents, represents the areas to avoid between
our agent and the destination. The darker squares indicate areas that are
densely populated by other agents or blocked by the environment, while the
lighter-white squares indicate areas that are safe to walk through. Of course,
this is a dynamic display, so watch it change as you play in the editor.

Using the CrowdAgent component
The component is incredibly simple, but gets the job done. As mentioned
earlier, Unity does most of the heavy lifting for us. The following code gives our

 a destination:

[139]

The script requires a component of type , which it assigns to
the variable on . We then set its speed randomly between two
values for some added effect. Lastly, we set its destination to be the position
of the target marker. The target marker is assigned via the inspector, as you
can see in the following screenshot:

The preceding screenshot illustrates a red capsule as it has RedTarget (Transform)
set as its Target.

[140]

Adding some fun obstacles
Without having to do anything else in our code, we can make a few changes to
our scene layout and enable a few components provided by Unity to dramatically
alter the behavior of our agents. In our scene, we've added a few
walls to the environment, creating a maze-like layout for our red and blue teams of
capsules to traverse, as you can see in the following screenshot:

Let the game begin!

The fun part about this example is that because of the randomized speed of each
agent, the results will be totally different each time. As the agents move through
the environment, they'll be blocked by teammates or opposing agents and will be

is not new to us, as we saw avoiding obstacles in Chapter 4, Finding
Your Way, except that we have many, many more agents in this scenario. To add a
bit more fun to the example, we've also added a simple up-down animation to one of
the walls and a component, which looks something like this:

[141]

Nav Mesh Obstacle looks a bit different in Unity 5

Note that our obstacle does not need to be set to Static when we are using this
component. Our obstacle is mostly box-like, so we leave the default Shape setting as
Box (Capsule is another choice). The Size and Center options let us move the outline

which is what we want, so let's leave that alone. The next option Carve is important.
It essentially does exactly what it says; it carves a space out of the NavMesh, as
shown in the following screenshot:

The sane obstacle at two different points of its up-down animation

[142]

The left screenshot shows the space carved out when the obstacle is on the surface,
while the NavMesh is connected in the right screenshot when the obstacle is raised off
the surface. We can leave Time to Stationary and Move Threshold as they are, but
we do want to make sure that Carve Only Stationary is turned off. This is because
our obstacle is moving, and if we didn't tick this box, it would not carve out the space
from the NavMesh, and our agents would be trying to move through the obstacle
whether it was up or down, which is not the behavior we are after in this case.

As the obstacle moves up and down and the mesh is carved out and reconnected,
you'll notice the agents changing their heading. With the navigation debug options
enabled, we can also see a very interesting visualization of everything going on
with our agents at any given moment. It may seem a bit cruel to mess with our poor
agents like this, but we're doing it for science!

The following screenshot gives us a glimpse into the chaos and disorder we're
subjecting our poor agents to:

I'm secretly rooting for the blue team

[143]

Summary

on Unity's Tropical Island Demo project. Next, we implemented it using rigid body
to control the boid's movement and sphere collider to avoid collision with other

shoaling, insects swarming, or land animals herding. You'll only have to implement
different leader movement behaviors such as limiting movement along the y axis for
characters that can't move up and down. For a 2D game, we would just freeze the
y position. For 2D movement along uneven terrain, we would have to modify our
script to not put any forces in the y direction.

We also took a look at crowd simulation and even implemented our own version
Chapter 4,

Finding Your Way. We learned how to visualize our agents' behavior and
decision-making process.

In the next chapter, Behavior Trees, we'll look at the behavior tree pattern and learn to
implement our own version of it from scratch.

