
Crowd Chaos
Part of having a realistic game environment is having the nonplayer characters and
NPCs act in a believable way. Crowd chaos is all about keeping NPCs busy to create
crowded backgrounds for our games. Perhaps your game is set up in a mall, or a city,
or any other place where lots of NPCs need to wander around and look like they are
doing something. Crowds like these will be the subject of this chapter and the next.

In this chapter, you will learn about:

Working with crowd chaos

How to create crowd type characters in the React and RAIN AI packages

Expanding our knowledge of behavior trees

An overview of crowd chaos
Crowd Chaos is all about giving separate interests to a large number of NPCs, so
they look like they are living their own lives. In its lightest form, this can be something
very simple, such as a whole bunch of NPCs picking random targets, walking to
them, possibly sitting still for a moment, and then starting over. This stands out in
real-time strategy games when buildings are constructed, and you see a construction
worker walking to random points of the structure and waving their arms about.

Every game that needs crowd chaos will typically have a basic wandering base, and
it can be extended as needed. Perhaps the crowd will form lines of more NPCs that
are waiting at a spot. Perhaps the targets have changing values and AIs prefer higher
values. They pick up a random block and put it somewhere else. The base wandering
behavior needed for these and other crowd behaviors is what we will implement in
both React and RAIN AI.

Crowd Chaos

[46]

React AI
For this demo, we will duplicate the path-following behavior demo in React from
Chapter 1, , and then update it to see some emergent behavior develop
from it. We will need to complete the following:

Create a world with some walls

Create target markers in the scene

Create the behavior

Create NPCs and assign the behavior

Setting up a scene with React
To start out with, we will need a basic environment for characters to walk in. Create
a plane, call it Floor, and add some cubes, shaping them into walls. These will need

is all covered in the React tutorial in Chapter 1, .

Next, we need some targets. We'll use a different approach for this from our previous
demos and let GameObjects mark the targets. Create an empty GameObject and
call it Targets. Underneath it, add more empty GameObjects. Give them all a tag,

, which you might need to create. Distribute these targets to
different locations on the screen like this:

The preceding screenshot shows how our basic React scene setup with targets should
look like.

Chapter 4

[47]

Now, we will be based on our earlier

and another to hang around.

Disk | Scripts | React AI | LookBusy.cs.
To get the tags to show up as a dropdown, we've also provided a custom editor,
which is also available at Disk | Scripts | React AI | TagOption.cs. You will need
to put this under for it to work in Unity. TagOptions is a script that
does nothing more than give a drop-down selector for the tag to be used. LookBusy

Here are a couple of the methods inside the script. These are easy to reproduce or
modify on your own:

Crowd Chaos

[48]

to select from, and if we don't have them, the script reports an error. You'll notice
that the error doesn't break on the log of
what you need and where the log was posted from. Next, the script selects a random
position from the list of nodes, and if the position within a character's minimum
distance (and not the same target the character is already on), the script returns
the position. This random position is chosen from the list of nodes no more than a
constant number of times, that is, 25 times. This random choosing method doesn't
guarantee success, but it is a quick and easy way to choose a random target.

Besides picking a random place for a character to walk to, we also need a random
amount of time for the NPC to stay at the location they go to. The
method does this:

The function just makes us wait a few seconds. First, it selects how
long to wait, and then, once this amount of time passes, returns a success. Notice
that we return . This tells the script to wait until the next

doesn't freeze up.)

The function isn't given here as it is nearly identical to the function
we used in Chapter 1, , except that now we are going after the target

.

Chapter 4

[49]

Building behavior trees in React
Now that we have our behavior methods, we can build the behavior tree. Right-click
on your project's folder and navigate to Create | Reactable. Rename it to

. Then, right-click on it and select Edit Reactable:

The preceding is a screenshot of the behavior tree editor completed. Right-click on
Root and navigate to Add | Branch | Sequence. This is so it completes each step
before moving on to the next. Right-click on Sequence and navigate to Add | Leaf |
Action. Do this three times:

1. Scripts |
LookBusy | FindTarget. This is part of the script that we
added earlier.

2. For the second one, do the same but instead navigate to Scripts | LookBusy
| MoveToTarget.

3. For the third one, navigate to Scripts | LookBusy | HangAround.

NpcActivityTarget, as we set in the script. Then, it moves to that target
and hangs around for 2 to 4 seconds.

Crowd Chaos

[]

Setting up wandering characters with React
Finally, we will create the NPCs and assign a behavior. For this, you can use a

front of it so that we can see the direction it is facing. Add the script to
the NPC:

This is how the script options look like.

Minimum Distance is how far away you can be from the target and still be
Short Wait Time and Long Wait Time are time

ranges (in seconds) you hang around for, and NpcActivityTarget is the tag that
the GameObjects have to identify as targets.

Next, add Nav Mesh Agent to the NPC so that it can navigate around the
level. Finally, add the script and set its Reactable property to
LookBusyReactable, which is the behavior tree we created earlier.

This completes all the steps needed to have NPC characters wander around in
a game using React. You should now be able to create as many characters as you
like and have them walk around a level.

RAIN AI
We have already looked at a basic wander behavior for RAIN in Chapter 2, Patrolling,
when creating patrolling AI, but there, we manually created each possible location
for the NPC to go to. In this demo, we will pick random points to wander to from
anywhere in the navigation mesh. The NPCs won't have any interaction, though

in this section:

Set up a world
Build the behavior tree
Add a script to pick new points
Add the NPCs
Learn about the RAIN AI world and behavior tree setup

Chapter 4

[]

First, we'll create a new world. Start with a large plane called , and add some
cubes shaped into walls. You will need to add a navigation mesh and bake it into
the scene. These are the same steps we have performed for RAIN demos in earlier
chapters. The following is an example of how the scene could look:

Next comes the behavior tree. From the RAIN menu, select Behavior Tree Editor.
Create a new tree called . The objective of this AI is broken into three
steps, taken in this order: select a target, walk to it, and then wait a moment. This
is a good case for the RAIN decision node sequenced. Under the root node, we will
right-click and go to Create | Decisions | Sequencer.

As there is no behavior tree node built into RAIN that will choose a random location,

node and navigate to Create | Actions | Custom Action. Set the Repeat property
to Until Success because we want it to continue processing this node until it returns
a success and then move on to the next node. Name the custom action node

. You'll notice that you can put spaces in the name. This is useful as it
shows up in the behavior tree, making it easier to follow:

Crowd Chaos

[]

The next action is to walk to it. This needs two things happening simultaneously,
animation and actual walking, which means that we will use the Parallel decision
node. Right-click on the sequence node and select Create | Decisions | Parallel.
Name it Walk to Target.

Under Walk to Target, right-click and go to Create | Actions | Animate. Name
it . Set the animation state to walk. Also under Walk to Target,
right-click and navigate to Create | Actions | Move. Name it . Set the Move
Speed property to , so it moves 1 meter per second. The Move Target value should
be set to TargetPoint without the quotes. TargetPoint doesn't exist yet; our script
will create it.

The last step that the NPC must perform is generate a wait moment. To give the NPC
more life, we will make sure that it uses an idle animation, which also means two
things must happen simultaneously. Right-click on the root sequence node (SEQ)
and go to Create | Decisions | Parallel. Name it . Add an animation
action under this and set idle as its Animation State and Stand here as its name.

Also, under the Look Busy node, we will right-click and go to Create | Actions |
Wait for Timer. Name it . Set the Seconds property to 2.

gets our TargetPoint, so it knows where to move.

RAIN AI custom wander scripts
To start the Select Next Target
action in the behavior tree. Under the Class property, set it to Create Custom
Action
shows what a RAIN custom action creation dialog looks like:

Chapter 4

[]

Set the name to and the script to CSharp. This will generate

In this demo, we only need to use the function:

 variable, a location variable
that is set to a different random location, up to 18 meters away. The variable

 path exists or not. These two things are determined in a loop,
which ends as long as two conditions are met. First, the distance has to be greater
than 2, as the movement should be detected by the player and second, we see if the
points found is greater than zero. If it found none, then we would not be able to get
to that location.

Once the variable has a location that works, the next thing it does is use
RAIN's memory system and sets a memory entry, TargetPoint, to the new location.
Remember that we have the Move TargetPoint,
so Move will go to our newly found location. Finally, we return a success.

This completes our behavior and script. The last thing we need to do is give that
behavior to some NPCs and run the game.

Crowd Chaos

[]

Putting NPCs in the RAIN demo
Start by adding another simple NPC character
chapter. We don't need to add any scripts directly to it. Instead, make sure that the
NPC is selected in the hierarchy, and from the RAIN menu, select Create AI.

In the AI GameObject/component that was added, from the Mind tab, set the
Behavior Tree Asset value to RandomWalk, which is found in Assets. Under the
animation tab, click on the Add Existing Animations button.

Now, try the game. A single NPC should be walking around the screen, pausing,
and then walking to another location at random. To create a larger crowd, just
duplicate the NPC GameObject in the scene at several locations.

Summary
We were able to use scripting and behavior trees in both React AI and RAIN to
effectively create a wandering AI. Each AI had strengths and weaknesses, though
the weaknesses were more of a preference.

Behavior tree editors were used in both RAIN and React, and both work in a
similar fashion. In RAIN, you can start editing a tree from the menu, or from the
editor itself. (It had the option to select the behavior directly in the editor.) With
React, you can do this from the Project tab, by right-clicking and choosing to edit
it. React had premade scripts that can do nearly all the actions that were needed,
except that instead of selecting randomly from a list of targets with the tag, it
would select a target expecting only one object with that tag. With RAIN, we
made a custom action node to choose a location to go to.

Both React and RAIN AI are general AI systems that are useful for many different

the next chapter, we will look at different tools with more focus on creating crowd AI.

