
91

Decision Making

In this chapter, we will cover the following recipes:

 Choosing through a decision tree

 Combining FSMs and decision trees

 Implementing behavior trees

 Working with fuzzy logic

 Representing states with numerical values: Markov system

 Making decisions with goal-oriented behaviors

Introduction

really messy if we rely only on simple control structures. That's why we will learn different

and robust enough to let us build modular decision-making systems.

The techniques covered in the chapter are mostly related to trees, automata, and matrices.
Also, some topics require a good understanding of how recursion, inheritance, and
polymorphism work, so it is important that we review those topics if that is the case.

Decision Making

92

Choosing through a decision tree
One of the simplest mechanisms for tackling decision-making problems is decision trees,
because they are fast and easy to grasp and implement. As a consequence, it's one of the
most used techniques today; it is extensively used in other character-controlled scopes such
as animations.

Getting ready
This recipe requires a good understanding of recursion and inheritance as we will constantly
be implementing and calling virtual functions throughout the sections.

How to do it...

Overall, we will create a parent class , from which we will derive the
other ones. Finally, we will learn how to implement a couple of standard decision nodes:

1. First, create the parent class, :

2. Create the pseudo-abstract class, , deriving from the parent class,
:

Chapter 3

93

3. :

Implement the virtual function, :

5. :

6. Override the function, :

7. Finally, implement the function:

Decision Making

94

How it works...
Decision nodes choose which path to take, calling the function recursively.
It is worth mentioning that branches must be decisions and leaves must be actions. Also, we
should be careful not to create cycles within the tree.

There's more...
We can create custom decisions and actions starting from the pseudo-abstract classes we
already created. For example, a decision on whether to attack or run away from the player.

The custom Boolean decision:

Chapter 3

95

Another interesting yet easy-to-implement technique is (FSM). They
move us to change the train of thought from what it was in the previous recipe. FSMs are
great when our train of thought is more event-oriented, and we think in terms of holding
behavior until a condition is met changing to another.

Getting ready
This is a technique mostly based on automata behavior, and will lay the grounds for the next
recipe, which is an improved version of the current one.

How to do it...
This recipe breaks down into implementing three classes from the ground up, and everything

1. Implement the class:

2. the class:

Decision Making

96

3. class:

Implement the Awake function:

5.

6.

7.

8. Implement the function for deciding if and which state to enable next:

Chapter 3

97

How it works...
Each state is a script that is enabled or disabled according to the transitions
it comes from; we take advantage of in order not to change the usual train of
thought when developing behaviors, and we use it to check whether it is time to transition
to a different state. It is important to disable every state in the game object apart from the
initial one.

There's more...
In order to illustrate how to develop child classes deriving from , let's take a look
at a couple of examples: one that is aimed at validating a value in a range and the other one
at being a logic comparer between two conditions:

The code for is as follows:

Decision Making

98

The following is an example of code for :

machines
Finite-state machines can be improved in terms of having different layers or hierarchies. The

Getting ready
This recipe is based on top of the previous recipe, so it is important that we grasp and

Chapter 3

99

How to do it...
We will create a state that is capable of holding internal states, in order to develop multi-level
hierarchical state machines:

1. Create the class deriving from :

2. Add the new member variables to control the internal states:

3. Override the initialization function:

How it works...
The high-level state class lets us activate the internal FSMs when it is enabled and recursively
disables its internal states when disabled. The working principle stays the same thanks to the
list of states and the way the parent class resolves the transitioning process.

Decision Making

100

See also
Kindly refer to the recipe,

Combining FSMs and decision trees
Given the previous recipes' ease of implementation and learning, we can combine them to

powerful technique in many different scenarios.

Getting ready

state machine that is capable of creating complex transitions based on decision trees.

How to do it...
This recipe relies on creating a couple of child classes from the one we already know and

1. Create a new action class that holds a reference to a state:

2. Implement a transition class that is able to hold a decision tree:

Chapter 3

101

3. Modify the function in the class to support both transition types:

How it works...
 class lets us deal with the new type of transition. The new

having an action node that doesn't do anything itself, but returns a new state to be activated
after choosing with a decision tree.

See also
Refer to the following recipes:

 Choosing through a decision tree

Decision Making

102

Implementing behavior trees
Behavior trees

some resemblance to FSMs, but instead of states, we think in terms of actions spanned
across a tree structure.

Getting ready
This recipe requires us to understand Coroutines.

How to do it...
Just like decisions trees, we will create three pseudo-abstract classes for handling the process:

1. Create the base class, :

2.

3. Implement the function for creating behaviors:

Chapter 3

103

Implement the general function for starting behaviors:

5. Create the class:

6. Create the base class for actions:

7. Implement the class:

Decision Making

104

8. Implement also the class:

How it works...
Behavior trees work in a similar fashion to decision trees. However, the leaf nodes are called
tasks and there are some branch nodes that are not conditions, but run a set of tasks in one
of two ways; Selector and Sequence. Selectors run a set of tasks and return true when one of
their tasks return true, it can be seen as an OR node. Sequences run a set of tasks and return
true when all of their tasks return true, it can be seen as an AND node.

See also
For more theoretical insights, refer to Ian Millington's book,

Chapter 3

105

Working with fuzzy logic
There are times when we have to deal with gray areas, instead of binary-based values, to make
decisions, and fuzzy logic is a set of mathematical techniques that help us with this task.

Imagine that we're developing an automated driver. A couple of available actions are steering
and speed control, both of which have a range of degrees. Deciding how to take a turn, and
at which speed, is what will make our driver different and possibly smarter. That's the type of
gray area that fuzzy logic helps represent and handle.

Getting ready
This recipe requires a set of states indexed by continuous integer numbers. As this
representation varies from game to game, we handle the raw input from such states, along
with their , in order to have a good general-purpose fuzzy decision maker. Finally,
the decision maker returns a set of fuzzy values representing the degree of membership of
each state.

How to do it...
We will create two base classes and our fuzzy decision maker:

1. Create the parent class, :

2. Implement the class:

Decision Making

106

3. Create the class:

5. Implement the loops for traversing the inputs and populate the initial degree of
membership (DOM) for each state:

6.
functions to set (or update) the degrees of membership:

Chapter 3

107

7. Traverse the rules for setting the output degrees of membership:

8. Finally, return the set of degrees of membership:

How it works...
We make use of the boxing/unboxing technique for handling any input via the object data
type. The process is done with the help of our own membership functions, derived
from the base class that we created in the beginning. Then, we take the minimum degree of

each output state given the maximum output from any of the applicable rules.

There's more...

mode, knowing that its life points (ranging from 0 to 100) are equal to or less than 30.

The following is the code for the example class:

Decision Making

108

It's worth noting that it is a common requirement to have a complete set of rules; one for each
combination of states from each input. This makes the recipe lack in scalability, but it works
well for a smaller number of input variables and a small number of states per variable.

See also
For more theoretical insights regarding (de) and scalability weaknesses, please
refer to Ian Millington's book, .

Representing states with numerical values:
Markov system

Having learned about fuzzy logic, it may do us well to mix some approaches and probably

with values—they have to be before they have a meaning within its scope. A Markov
chain is a mathematical system that allows us to develop a decision-making system that can
be seen as a fuzzy state machine.

Getting ready
This recipe uses the matrix and vector classes that come with Unity to illustrate the theoretical
approach and make a working example, but it can be improved with our own matrix and vector
classes with the proper implementation of the required member functions, such as vector-
matrix multiplication.

How to do it...
1. Create the parent class for handling transitions:

Chapter 3

109

2. Implement the member function:

3.

 function for initialization:

5. Implement the function:

Decision Making

110

6. Look for a triggered transition:

7. If found, compute its matrix into the game state:

8. Otherwise, update the countdown timer and compute the default matrix into the
game state, if necessary:

How it works...

each position corresponding to a single state. The values in the game state change according
to the matrix attached to each transition. When transitions are triggered, the game state
changes, but we also have a countdown timer to handle a default transition and change the
game accordingly. This is useful when we need to reset the game state after a period of time
or just apply a regular transformation.

Chapter 3

111

See also
For more theoretical insights regarding the Markov process' application to game AI, please
refer to Ian Millington's book, .

Making decisions with goal-oriented
behaviors

Goal-oriented behaviors are a set of techniques aimed at giving agents not only a sense of

choose from.

Imagine that we're developing a trooper agent that needs to only reach the endpoint of

handling goals, so the agent develops something similar to free will.

Getting ready
We will learn how to create a goal-based action selector that chooses an action considering
the main goal, avoids unintentional actions with disrupting effects, and takes an action's
duration into account. Just like the previous recipe, this requires the modeling of goals in
terms of numerical values.

How to do it...
Along with the action chooser, we will create base classes for actions and goals:

1. Create the base class for modeling actions:

Decision Making

112

2. Create the parent class with member functions:

3.

 class:

5. Implement the function for handling unintentional actions:

Chapter 3

113

6. Implement the function for choosing an action:

7. Pick the best action based on which one is least compromising:

8. Return the best action:

How it works...
The discontentment functions help avoid unintended actions, depending on how much a
goal's value changes, in terms of an action and the time it takes to be executed. Then, the
function for choosing an action is taken care of by computing the most promising one in terms
of the minimum impact (discontentment).

