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Behavior Trees
Behavior trees (BTs) have been gaining popularity among game developers very 
steadily. Over the last decade, BTs have become the pattern of choice for many AAA 
studios when it comes to implementing AI for their agents. Games like Halo and 
Gears of War are among the more famous franchises to make extensive use of BTs. 
An abundance of computing power in PCs, gaming consoles, and mobile devices has 
made them a good option for implementing AI in games of all types and scopes.

In this chapter, we will cover the following topics:

The basics of a behavior tree

The benefits of using existing behavior tree solutions

How to implement our own behavior tree framework

How to implement a basic tree using our framework

Learning the basics of behavior trees
It is called a tree because it is a hierarchical, branching system of nodes with a 
common parent, known as the root. As you've surely learned from reading this 
book, by now, behavior trees, too, mimic the real thing they are named after—in this 
case, trees. If we were to visualize a behavior tree, it would look something like the 

A basic tree structure
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Of course, behavior trees can be made up of any number of nodes and children 
nodes. The nodes at the very end of the hierarchy are referred to as leaf nodes, just 
like a tree. Nodes can represent behaviors or tests. Unlike state machines, which rely 

order within the larger hierarchy. A BT begins evaluating from the top (based on 
the preceding visualization) of the tree, then continues through each child, which, 
in turn, runs through each of its children until a condition is met or the leaf node is 
reached. BTs always begin evaluating from the root node.

Understanding different node types
The names of the different types of nodes may vary depending on who you ask, and 
even nodes themselves are sometimes referred to as tasks. While the complexity 
of a tree is dependent entirely upon the needs of the AI, the high-level concepts 
about how BTs work are fairly easy to understand if we look at each component 
individually. The following is true for each node regardless of what type of node 
we're referring to. A node will always return one of the following states:

Success: The condition the node was checking for has been met.

Failure: The condition the node was checking for was not, and will not  
be met.

Running: The validity of the condition the node is checking for has not been 
determined. Think of this as our "please wait" state.

Due to the potential complexity of a BT, most implementations are asynchronous, 
which, at least for Unity, means that evaluating a tree will not block the game from 
continuing other operations. The evaluation process of the various nodes in a BT can 
take several frames, if necessary. If you had to evaluate several trees on any number 
of agents at a time, you can imagine how it would negatively affect the performance 
of the program to have to wait for each of them to return a true or false to the root 
node. This is why the "running" state is important.
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Composite nodes are called so as they have one or more children. Their state is based 
entirely upon the result of evaluating its children, and while its children are being 
evaluated, it will be in a "running" state. There are a couple of composite node types, 

Sequences: The defining characteristic of a sequence is that the entire 
sequence of children needs to complete successfully in order for it to evaluate 
as a success itself. If any of the children at any step of the sequence return 
false, the sequence itself will report a failure. It is important to note that, 
in general, sequences are executed from left to right. The following figures 
show a successful sequence and a failed sequence, respectively:

A successful sequence node

An unsuccessful sequence node

Selectors: By comparison, selectors are much more forgiving parents to their 
children nodes. If any one of the children nodes in a selector sequence returns 
true, the selector says, "eh, good enough!" and returns true immediately, 
without evaluating any more of its children. The only way a selector node 
will return false is if all of its children are evaluated and none of them return 
a success.
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Of course, each composite node type has its use depending on the situation. You can 
think of the different types of sequence nodes as "and" and "or" conditionals.

Understanding decorator nodes
The biggest difference between a composite node and a decorator node is that a 

unnecessary as you would, in theory, be able to get the same functionality by 
containing the condition in the node itself rather than relying on its child, but the 
decorator node is special in that it essentially takes the state returned by the child 
and evaluates the response based on its own parameters. A decorator can even 
specify how its children are evaluated and how often they are. These are some 
common decorator types:

: Think of the inverter as a NOT modifier. It takes the opposite 
of the state returned by its child. For example, if the child returns TRUE, 
the decorator evaluates as FALSE, and vice versa. This is the equivalent of 
having the  operator in front of a Boolean in C#.

Repeater: This repeats the evaluation of the child a specified (or infinite) 
number of times until it evaluates as either TRUE or FALSE as determined  
by the decorator. For example, you may want to wait indefinitely until a 
certain condition is met, such as "having enough energy" before a character 
uses an attack.

Limiter: This simply limits the number of times a node will be evaluated  
to avoid getting an agent stuck in an awkward infinite behavior loop.  
This decorator, in contrast to the repeater, can be used to make sure a 
character only tries to, for example, kick the door open so many times  
before giving up and trying something else.

Some decorator nodes can be used for debugging and testing your trees.  
For example:

Fake state: This always evaluates true or false as specified by the decorator. 
This is very helpful for asserting certain behavior in your agent. You can also 
have the decorator maintain a fake "running" state indefinitely to see how 
other agents around it will behave, for example.

Breakpoint: Just like a breakpoint in code, you can have this node fire  
off logic to notify you via debug logs or other methods that the node has 
been reached.
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These types are not monolithic archetypes that are mutually exclusive. You can 
combine these types of nodes to suit your needs. Just be careful not to combine too 

convenient to use a sequence node instead.

Describing the leaf node
leaf nodes earlier in the chapter to make a point about the 

structure of a BT, but leaf nodes, in reality, can be just about any sort of behavior. 
They are magical in the sense that they can be used to describe any sort of logic your 
agent can have. A leaf node can specify a walk function, shoot command, or kick 
action. It doesn't matter what it does or how you decide to have it evaluate its states, 
it just has to be the last node in its own hierarchy and return any of the three states a 
node can return.

Evaluating the existing solutions
The unity asset store is an excellent resource for developers. Not only are you able 
to purchase art, audio, and other kinds of assets, but it is also populated with a 
large number of plugins and frameworks. Most relevant to our purposes, there are a 
number of behavior tree plugins available on the asset store, ranging from free to a 
few hundred dollars. Most, if not all, provide some sort of GUI to make visualizing 
and arranging a fairly painless experience.

There are many advantages of going with an off-the-shelf solution from the asset 
store. Many of the frameworks include advanced functionality such as runtime (and 
often visual) debugging, robust APIs, serialization, and data-oriented tree support. 
Many even include sample leaf logic nodes to use in your game, minimizing the 
amount of coding you have to do to get up and running.

The previous edition of this book, Unity 4.x Game AI Programming, focused on 
developer AngryAnt's Behave plugin, which is currently available as Behave 2 for 
Unity on the asset store as a paid plugin, which continues to be an excellent choice 
for your behavior tree needs (and so much more). It is a very robust, performant, and 
excellently designed framework.

Some other alternatives are Behavior Machine and Behavior Designer, which offer 
different pricing tiers (Behavior Machine even offers a free edition) and a wide array 
of useful features. Many other options can be found for free around the Web as 

system, the choice of rolling your own or using an existing solution will depend on 
your time, budget, and project.
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Implementing a basic behavior tree 
framework
While a 
node types and variations is outside the scope of this book, we can certainly focus 
on the core principles to get a solid grasp on what the concepts we've covered in this 
chapter look similar to in action. Provided with this chapter is the basic framework 
for a behavior tree. Our example will focus on simple logic to highlight the 
functionality of the tree rather than muddy up the example with complex game logic. 
The goal of our example is to make you feel comfortable with what can seem like an 
intimidating concept in game AI, and give you the necessary tools to build your own 
tree and expand upon the provided code if you do so.

Implementing a base Node class
There is a base functionality that needs to go into every node. Our simple  
framework will have all the nodes derived from a base abstract  class.  
This class will provide said base functionality or at least the signature to expand 
upon that functionality:
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The class is fairly simple. Think of  as a blueprint for all the other node  
types to be built upon. We begin with the  delegate, which is not 

 is 
the state of a node at any given point. As we learned earlier, it will be either , 

, or . The  value is simply a getter for  since  
it is protected and we don't want any other area of the code directly setting  

 inadvertently.

Next, we have an empty constructor, for the sake of being explicit, even though it 
is not being used. Lastly, we have the meat and potatoes of our  class—the 

 method. As we'll see in the classes that implement ,  is 
where the magic happens. It runs the code that determines the state of the node.

Extending nodes to selectors
To create a selector, we simply expand upon the functionality that we described in 
the  class:
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As we learned earlier in the chapter, selectors are composite nodes; this means that 
they have one or more child nodes. These child nodes are stored in the 

 variable. Though it's conceivable that one could extend the functionality 
of this class to allow adding more child nodes after the class has been instantiated, 
we initially provide this list via the constructor.

The next portion of the code is a bit more interesting as it shows us a real 
implementation of the concepts we learned earlier. The  method runs 
through all of its child nodes and evaluates each one individually. As a failure 
doesn't necessarily mean a failure for the entire selector, if one of the children returns 

, we simply continue onto the next one. Inversely, if any child returns 
, then we're all set—we can set this node's state accordingly and return that 

value. If we make it through the entire list of child nodes and none of them have 
returned , then we can essentially determine that the entire selector has 
failed and we assign and return a  state.

Moving on to sequences
Sequences are very similar in their implementation, but as you might have guessed 
by now, the  method behaves differently:
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The  method in a sequence will need to return true for all the child 
nodes, and if any one of them fails during the process, the entire sequence fails, 
which is why we check for 

onto the next child node. If any of the child nodes are determined to be in the 
 state, we report that as the state for the node and then the parent node  

or the logic driving the entire tree can re-evaluate it again.
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Implementing a decorator as an inverter
The structure of  is a bit different, but it derives from , just like the 
rest of the nodes. Let's take a look at the code and spot the differences:
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As you can see, since a decorator only has one child, we don't have , 
but rather a single node variable, . We pass this node in via the constructor 
(essentially requiring it), but there is no reason you couldn't modify this code to 
provide an empty constructor and a method to assign the child node after instantiation.

The  implementation implements the behavior of an inverter that we 
described earlier in the chapter—when the child evaluates as , the inverter 
reports a , and when the child evaluates as , the inverter reports a 

. The  state is reported normally.

Creating a generic action node
Now we arrive at , which is a generic leaf node to pass in some logic 

as long as it derives from . This 

the delegate signature, but is restrictive for this very reason—it only provides one 
delegate signature that doesn't take in any arguments:
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The key for making this node work is the  delegate. For those familiar 
with C++, a delegate in C# can be thought of as a function pointer of sorts. You can 
also think of a delegate as a variable containing (or more accurately, pointing to) a 
function. This allows you to set the function to be called at runtime. The constructor 
requires you to pass in a method matching its signature, and is expecting that 
method to return a  enum. That method can implement any logic you 
want as long as these conditions are meant. Unlike other nodes we've implemented, 
this one doesn't fall through to any state outside of the switch itself, so it defaults to 
a  state. You may choose to default to a  or  state, if you so 
wish, by modifying the default return.

You can easily expand on this class by deriving from it or simply making the 
changes to it that you need. You can also skip this generic action node altogether 

as much code as possible. Just remember to derive from  and implement the 
required code!

Testing our framework
The framework that we just reviewed is nothing more than this. It provides us  
with all the functionality we need to make a tree, but we have to make the actual  
tree ourselves. For the purposes of this book, a somewhat manually constructed  
tree is provided.
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Planning ahead
Before we set up our tree, let's look at what we're trying to accomplish. It is often 
helpful to visualize a tree before implementing it. Our tree will count up from zero 

for that value and report its state accordingly. The following diagram illustrates the 
basic hierarchy for our tree:

For our tests, we will use a three-tier tree, including the root node:

Node 1: This is our root node. It has children, and we want to be able to 
return a success if any of the children is a success, so we'll implement  
it as a selector.

Node 2a: We'll implement this node using an .

Node 2b: We'll use this node to demonstrate how our inverter works.

Node 2c: We'll run the same  from node 2a again, and see how 
that affects our tree's evaluation.

Node 3: Node 3 happens to be the lone node in the third tier of the tree.  
It is the child of the 2b decorator node. This means that if it reports , 
2b will report a , and vice versa.

At this point, we're still a bit vague on the implementation details, but the preceding 
diagram will help us to visualize our tree as we implement it in code. Keep it handy 
for reference as we go through the code.
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Examining our scene setup
We've now looked at the basic structure of our tree, and before we jump in and dig 
into the actual code implementation, let's look at our scene setup. The following 
screenshot shows our hierarchy; the nodes are highlighted for emphasis:

The setup is quite simple. There is a quad with a world-space canvas, which is 
simply to display some information during the test. The nodes highlighted in the 
preceding screenshot will be referenced in the code later, and we'll be using them to 
visualize the status of each individual node. The actual scene looks something like 
the following screenshot:

Our actual layout mimics the diagram we created earlier
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As you can see, we have one node or box representing each one of the nodes that we 
laid out in our planning phase. These are referenced in the actual test code and will 
be changing colors according to the state that is returned.

Exploring the MathTree code
Without further ado, let's have a look at the code driving our test. This is  

:

the colors we'll be assigning to our node boxes to visualize their state. By default, 
 is yellow,  is green, and  is red. This is pretty standard stuff; 

let's move along.
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We then declare our actual nodes. As you can see,  is a selector as we 
mentioned earlier. Notice that we do not assign any of the node variables yet, since 
we have to pass in some data to their constructors.

We then have the references to the boxes we saw in our scene. These are just 
GameObjects that we drag-and-drop into the inspector (we'll have a look at  
that after we inspect the code).

We then have a couple of int values, which will make more sense as we look at the 
logic, so we'll skip over these. Lastly, we have a unity UI Text variable that will 
display some values for us during the test.

Let's get into the initialization of our actual nodes:
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For the sake of organization, we declare our nodes from the bottom of the tree to 
the top of the tree, or the root node. We do this because we cannot instantiate a 
parent without passing in its child nodes, so we have to instantiate the child nodes 

, , and  are action nodes, so we pass in 
delegates (we'll look at these methods next). Then, , being a selector, takes 
in a node as a child, in this case, . After we've declared these tiers, we throw 
all the tier 2 nodes into a list because our tier 1 node, the root node, is a selector that 
requires a list of children to be instantiated.

After we've instantiated all of our nodes, we kick off the process and begin 
evaluating our root node using its  method. The  method 
simply updates the box game objects that we declared earlier with the appropriate 
colors; we'll look at that up ahead in this section:
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There is not a whole lot to discuss here. Do notice that because we set this tree up 
manually, we check each node individually and get its  and set the colors 
using the  and  methods. Let's move on to the meaty part of 
the class:

First, we have , which is the method we passed into our 
decorator's child action node. We're essentially setting ourselves up for a double 
negative here, so try to follow along. This method returns a success if the current 
value is not equal to the target value, and returns false otherwise. The parent inverter 
decorator will then evaluate to the opposite of what this node returns. So, if the value 
is not equal, the inverter node will fail; otherwise, it will succeed. If you're feeling a 
bit lost at this point, don't worry. It will all make sense when we see this in action.

The next method is the  method, which is the method passed into our 
other two action nodes. It does exactly what the name implies—it adds 10 to our 

 variable, then checks if it's equal to our , and 
evaluates as  if so, and , if not.

The last few methods are self-explanatory so we will not go over them.
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Executing the test
Now that we have a pretty good idea of how the code works, let's see it in action. 

the Tree game object from the hierarchy, and its inspector should look similar to this:

The default settings for the component
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As you can see, the state colors and box references have already been assigned  
for you, as well as the  variable. The  variable has  
also been assigned for you via code. Make sure to leave it at (or set it to) 20 before 
you hit play. Play the scene, and you'll see your boxes lit up, as shown in the 
following screenshot:

The boxes lit up, indicating the result of each node's evaluation

As we can see, our root node evaluated to , which is what we intended, but 
let's examine why, one step at a time, starting at tier 2:

Node 2A: We started with  at , so upon adding  to it, it's 
still not equal to our  ( ) and it fails. Thus, it is red.

Node 2B: As it evaluates its child, once again,  and  
 are not equal. This returns . Then, the inverter  

logic kicks in and reverses this response so that it reports  for itself.  
So, we move on to the last node.

Node 2C: Once again, we add  to . It then becomes , 
which is equal to , and evaluates as , so our root 
node is successful as result.

The test is simple, but it illustrates the concepts clearly. Before we consider the test a 
success, let's run it one more time, but change  in the 
inspector, as shown in the following screenshot:

The updated value is highlighted
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A small change to be sure, but it will change how the entire tree evaluates. Play 
the scene again, and we will end up with the set of nodes lit up, as shown in the 
following screenshot:

A clearly different from our first test

As you can see, all but one of the child nodes of our root failed, so it reports  
for itself. Let's look at why:

Node 2A: Nothing really changes here from our original example. Our  
 variable starts at  and ends up at , which is not  

equal to our  of , so it fails.

Node 2B: This evaluates its child once more, and because the child node 
reports , it reports  for itself, and we move on to the  
next node.

Node 2C: Once again, we add  to our  variable, adding 
up to , which, after having changed the  variable, no longer 
evaluates to .

The current implementation of the nodes will have unevaluated nodes default to 
. This is because of our enum order, as you can see in :
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In our enum, 
default value is never changed. If you were to change the  variable to 

, for example, all the nodes would light up to green. This is simply a by-product of 

Our  method updates all the boxes whether they were evaluated or 
not. In this example, node 2A would immediately evaluate as , which, in 
turn, would cause the root node to report , and neither nodes 2B, 2C, nor 3 
would be evaluated at all, having no effect on the evaluation of the tree as a whole.

You are highly encouraged to play with this test. Change the root node 
implementation from a selector to a sequence, for example. By simply changing 

 to  and 
 to 

, you can test a completely different set of functionality.

Summary
In this chapter, we dug in to how a behavior tree works and then we looked at 
each individual type of node that can make up a behavior tree. We also learned 
the different scenarios where some nodes would be more helpful than others. 
After looking at some off-the-shelf solutions available on the Unity asset store, we 
applied this knowledge by implementing our own basic behavior tree framework in 
C# and explored the inner workings. With the knowledge and the tools out of the 
way, we created a sample behavior tree using our framework to test the concepts 
learned throughout the chapter. This knowledge prepares us to harness the power of 
behavior trees in games and take our AI implementations to the next level.

In the next chapter, Chapter 7, Using Fuzzy Logic to Make Your AI Seem Alive, we'll look 
at new ways to add complexity and functionality to the concepts we've learned in 
this chapter, modifying behavior trees, and FSMs, which we covered in Chapter 2, 
Finite State Machines and You, via the concept of fuzzy logic.


