
Animation and AI
Part of having realistic game AI is having characters play animations at times
appropriate to the AI character's state. In this chapter, we will look at animation
and how it is integrated with RAIN, both with Unity's legacy animation system
and Mecanim.

In this chapter, you will learn about the following:

Why animation management is an important part of game AI

Managing animation with behavior trees and Unity's legacy animation

Managing animation by AI with Unity's Mecanim animation system

An overview of animation
When

about game AI years ago, I didn't think animation was really important for game AI
since it wasn't part of creating a virtual mind. But then I attended some AI sessions
at the Game Developers Conference and found out that one of the most discussed
topics in AI was integrating AI with animation systems; this is when I realized it
really is an important part of game AI. This makes sense since game AI is about
modeling real thinking instead of focusing on giving characters the appearance
of thinking, so having the characters play animations that match their state is
important. We can think of animations as just a visual depiction of the current
state of the character.

The method we'll look at for integrating animations with the AI is RAIN's
animation integration with Unity. RAIN has an Animation tab (with an icon

using one of two RAIN animators.

Animation and AI

[116]

RAIN has a BasicAnimator
and a MecaninAnimator option used to set up Mecanim animations. Once these
animations are set up, RAIN has an animate node in its behavior tree system that
can be used to call different animation states. Usually, this is done in conjunction
with a parallel node with the animate node being one of its children. This way the
animation can run at the same time as the other logic is being executed in the tree.

The best way to see this is through demos. For these, we need to have two characters:
a legacy and a Mecanim setup. To do this, our demo project will use two demos that
are made by Unity and can be downloaded for free from the Asset Store. The
Penelope Complete Project v1.1. This contains the Penelope character we will use for
the Unity legacy demo. The other project is Mecanim Example Scenes v1.0 that will
be for the Mecanim setup character, Teddy. Create a new project and import both of
these and the latest RAIN package. Once these are set up, we can start building the
animation demo.

The AI animation demo
 step, create a new scene and add a plane to it with a scale of X equal to 10,

Y equal to 1, and Z
(and if you want, change its material so it's not white). Then, add the penelope model
to your scene that's at . Next, we'll do our basic RAIN
setup and add a navigation mesh by going to RAIN | Create NavMesh. Make sure

Size to 100 and then generate
the mesh. Next, create a waypoint route by going to RAIN | Create Waypoint Route,
rename it , and add a few points in front of the penelope model for
the character to walk. Lastly, add a RAIN AI object by selecting penelope and going
to RAIN | Create AI. Your screen should look similar to the following screenshot:

The scene for the AI animation demo

Chapter 10

[117]

If you need more details on how to set up a scene with a character
patrolling a path, refer to Chapter 2, Patrolling.

Now that we have a scene, let's create a behavior tree for Penelope; we want her
to just walk following the path and stopping at the end. Select Penelope's AI object
and open Behavior Editor. Create a new behavior tree called and
add a patrol route node to the root. Set the route to "PenelopeRoute". We just want
Penelope to walk the route once and then stop, so set the Repeat Never
and the Loop Type One Way. Lastly, set the Move Target Variable
moveTarget and create a child move node that uses moveTarget to move. The tree
should look like the following screenshot:

If you run the demo now, Penelope will travel around the path, but there will be no

to our character.

To on her RAIN menu, select the Animation

animation systems: BasicAnimator and MecanimAnimator. Since the Penelope
character doesn't use Mecanim, leave the animator as basic. The Add Animation
State dropdown will then be automatically populated with the different animation
clips available. Choose the animation states run and idle.

Animation and AI

[118]

Your animation tab should look like the following screenshot:

Here are some of the animation parameters:

State Name: This
use in the animate node in the behavior tree when calling animations.

Animation Clip animation clip associated with
this state.

Fade in Time, Fade Out Time: This
to fade in and out of the animation. This can be useful to create smooth
transitions between animation clips.

Wrap Mode: This provides the wrap mode for the animation. This can be
left to default to use the clip's default settings. Other options are to loop
or to play the animation once and go to the beginning or end of the clip.

Chapter 10

[119]

Using the animate node
Now
step, let's get Penelope running. Right-click on the root node in the
behavior tree and go to Switch To Parallel and then rename the node to .
By being parallel, we can add an animate node and have it update the animation at
the same time as the patrol node is being executed. So add an animate node, rename
it to , and set Animation State to run. Your setting should look like the
following screenshot:

If you run the demo now, you'll see the Penelope character perform the animation
while it's moving. But the timing seems a little off. Change the moving speed of
the move node to 3. Then slow down the animation a little by going back to the
Animation tab and setting the Speed 0.75. If you run the demo now, the
animation is a bit better. But when Penelope gets to the end of the route, the run

called . When it is false, the run animation will play as it does now,
and when is , an idle animation will be played instead.

selector node as the new root. Remember, the selector node is used for the /
logic, so we'll use it to switch between its running state and playing an idle animation.
Add a constraint node under selector and rename it to . Set Constraint
to stopped == false. Then add a new animate node under the selector node, name it

, and set Animation State to idle. This will only start running when
 is true, so we need to add an expression node to run the expression node

after our moving is done. Make a new sequencer node and make it the parent of
waypointpatrol. Then add an expression node under the sequencer node with an
Expression value of stopped = true.

Animation and AI

[120]

This should look like the following screenshot:

To summarize, the selector acts as / using the variable in
the memory, which is automatically created in the tree when we start using it.
Then the run animation is played in parallel while the character is moving, and
when the moving is done, the expression sets stopped = true and the idle animation
is played. If you run the animation now, Penelope will run and then switch to idle
at the end of the path.

However, there is one problem: the transition from the running to the idle state is
very abrupt. If you run the demo, you'll easily notice a visual jump from the running
to the idle state for Penelope at the end of the path. To help with this, you can adjust
the ramping parameters for the animations. Go back to RAIN's Animation tab and
set the Fade Out Time 2. Now, if you run the animation,
Penelope will start to transition out of the running state for two seconds, and although
everything doesn't look perfect, the transition is much smoother than before. Feel free
to play with other ramp settings to get a better effect.

This shows how RAIN works with Unity's legacy animation system; now,
let's look at Mecanim.

Chapter 10

[121]

RAIN and the Mecanim demo
Mecanim is Unity's latest animation system that's able to play animations on
arbitrary characters. We won't go into detail on how Mecanim works and instead
focus just on RAIN's usage.

For this demo, we will use a character already set up for Mecanim from Unity's
sample. If you haven't already done so, download and import Unity's Mecanim
demo, Mecanim Example Scenes v1.0, which is free on the Asset Store. Add the
teddy bear character from to your scene. Then,
in the Animator component for Teddy, set the Controller IdleRunJump
from Controllers. Then, add a RAIN AIRig to Teddy by going to RAIN | Create
AI. We'll have Teddy walk on a different route, so create a new waypoint patrol
route and name it . Your scene should look like this:

In the preceding screenshot, you can see Teddy with a new path set up in
your scene.

Animation tab in
Teddy's RAIN AIRig and select MecanimAnimator. Then, we need to add states
for running and idling. Select Base Layer.Run and Base Layer.Idle from Add
Animation State.

Animation and AI

[122]

Your screen should look like the following:

These are the basic animations added to Teddy. Besides adding the states, we need
to set Mecanim parameters. From the teddy bear object's Animator component,
open Controller for IdleRunJump. The following is the Teddy Mecanim diagram:

Chapter 10

[123]

This shows the different parameters for the Teddy character; we'll only be setting
Speed. Go back to the Animation tab for Teddy to set up Start Parameter under
Base Layer.Run. Set the Parameter Name Speed and leave the Parameter
Type to Float and the Parameter Value 1. Then, do the same for Base
Layer.Idle, except set the Parameter Value 0. The new settings should look
like this:

This sets up the animation. Now we can set up the behavior tree for Teddy.
Create a new behavior tree called WalkTeddy and recreate the behavior tree
from WalkPenelope.

With RAIN, you can copy and paste nodes from one part of a tree
to another and from one tree to a different one.

Animation and AI

[124]

From the animate node's perspective, it doesn't matter whether the animator
is Mecanim or not, so we only need to make a few simple changes. Change the
waypoint patrol node's waypoint route to "TeddyRoute". Then, in the animate run
node, set Animation State to Base Layer.Run and set animation idle's Animation
State Base Layer.Idle. And one important change for Mecanim is to set the
animate node's Repeat Forever. The following screenshot shows the new
behavior tree:

If you run the demo now, you'll see Teddy running along the path and then be in
the idle state at the end, just like Penelope. But there is one problem: Teddy is running
way too fast. The reason is that RAIN is moving the model and the animation system

this, go back to the Animator component of Teddy and uncheck Apply Root Motion.
This will keep the animation system from applying movement and Teddy will now
run at a better rate. Running the demo now, Teddy will run and idle at the end.

Additional Mecanim nodes
Besides using the animate node for
for Mecanim, mostly useful in special cases. The nodes are as follows:

Mecanim IK: This node is used to modify the inverse kinematics on part
of a model

Mecanim State: This node is used to check the animation controller state

Mecanim Parameter: This node is used to change a Mecanim parameter

These are less-used nodes but are good to know.

Chapter 10

[]

Summary
In this chapter, we looked at how to integrate animation with our AI. We saw how
to use RAIN's animate node to change the character animation from its behavior tree
with both Unity's legacy animation system and Mecanim. In the next chapter, we
will go back to discussing character movement across a scene. We will look at more
advanced uses of navigation meshes and how to create them in more detail to give
our characters better movement.

