
Behavior Trees
When creating AI for game characters, we want them to appear to behave in realistic

as walking, patrolling, attacking, or searching for something, as well as how the
character reacts to different items or events in the game environment. In addition

occur. For example, instead of just following a path, we might want the character to
change behaviors at different times. This chapter will look at the most popular way

behavior trees in the previous chapters, but here, we will go into more detail.

In this chapter, we will learn about:

How behavior trees work

Implementing complex behavior trees

RAIN's behavior trees and the different options that we have to

Setting up more advanced behavior trees with a character that has
multiple objectives

Behavior Trees

[30]

An overview of behavior trees
For
that is, how they will act and react to different things in the game environment. The
traditional and simpler way to do this is to use Finite State Machines (FSMs). In this

states (nodes) and their transitions (edges). A simple example would be an enemy
entity with two states, patrol and attack. The FSM will start in a patrol state, and when
it gets close to a player, it transitions to an attack state. FSMs work for very simple
state setups such as this, but they don't scale well, as the states and transitions have to

enemy character was more realistic and had 10 or even 100 different states, with many

The popular alternative to FSMs is behavior trees. Behavior trees are a different

called tasks, for characters. Each behavior is a node in the tree and can consist of
different sub-behaviors; so, instead of a general graph, a tree is created of different
behaviors, where each behavior is a node on the graph.

At every update for the character, the behavior tree is traversed, starting at the
root node and searching down the tree. The different behavior nodes execute and
return if the task is running, or has completed successfully or failed. If the node is

different behavior nodes.

We will focus on RAIN's behavior tree system in this chapter. We can use a different
behavior tree system or create one from scratch; the basic logic is the same for all
implementations. When using a behavior tree system, the most important thing to
know are the different node types that we can use; so, let's look at RAIN's different
behavior nodes.

RAIN node types
For the RAIN implementation of behavior trees, the behavior nodes are split into two
categories: decisions and actions. Actions tell the AI system to actually do something;
it is where the actual work of the AI is done. The most common action is the one we
saw in the previous chapters, move, which tells the AI system to move a character.
Besides move, here is a list of the current actions RAIN supports:

The Choose patrol path and Choose path waypoints: These nodes help to
move the AI through a network of waypoints.

Chapter 3

[31]

Detect other AI entities and areas marked in a scene. This node
will be covered in Chapter 6, Sensors and Activities.

The Evaluate expression: This node evaluates some logic, using RAIN's
custom logic system. We will be discussing this node more in this chapter.

Animate and Mechanism: These animation nodes manage different
animations playing on the entity. We'll look at this node type more in
Chapter 10, Animation and AI.

Play audio: Plays an audio sound for the entity.

Wait for timer: A timer that will pause for a given number of seconds.

Yield: This node stops executing the behavior tree in the frame. This is
useful for spreading expensive AI computation over several frames.

Custom action: This
with the other nodes.

AI behaviors that are unavailable with the default node
types. We will look at an example of a custom action later in
this chapter. Although creating custom nodes is more work,
don't hesitate to use one if needed; part of making good AI is

Decision nodes, as the name suggests, are used to decide how we traverse the tree.

child nodes should be run:

Sequential: This is the most straightforward decision node; it updates
its children in an order until one of them fails.

Priority: This is an action node that lets you set a priority, both when it's
running and before it starts. A priority node will choose a child to run
based on the different priorities of its children.

Selector: This node keeps running through child nodes until one of them
returns .

Parallel: This states to have its children nodes run at the same time. This is a
common and useful node, and for cases such as a character walking to a goal
and moving and animating the walk cycle, the entity needs to have a move
and animate decision node running at the same time.

Iterator: This is a repeat node; it lets you specify that you want its children

Behavior Trees

[32]

Constraint: This

Custom decision: Like

The behavior tree demo
Now that we know about the different nodes we can use, we'll create a demo that
shows how to use the action and decision nodes. The demo will show how to have
a character perform multiple tasks. We will have an entity, an enemy spaceship,
patrolling an area, but only for a given amount of time; then, the ship will return
to its home base. The steps for this example might seem overly complicated and
we could do a similar AI ourselves without behavior trees with a simple script by
hardcoding the different states. However, remember that behavior trees are easily
extendible and scalable. With this demo, instead of two behaviors, we could take
time to create a more complex character, going up to about 30 behaviors easily, but
extending a script to do that would be pretty complicated and hard to maintain.

use a spaceship model instead of a walking character. You'll need to create a simple
scene with a ship model (the examples have a model you can use) and
an object for the home base. The initial setup should look something like this:

Chapter 3

[33]

Then, add RAIN to the scene, create a waypoint route to patrol the block, create a
navigation mesh, and add an AI to the ship. Remember that the ship model should
not interfere with the navigation mesh creation; you can set it to a different layer,
such as Ignore Raycast, and then in RAIN's navigation mesh menu, deselect this
layer from the Included Layers dropdown:

The scene after performing the given steps

In the AI for the ship, there is no behavior tree yet, so click on the Mind button in the
RAIN menu (the little head icon) and then click on Open Behavior Editor and create
a new behavior tree called :

Behavior Trees

[34]

a basic waypoint route follow system. Under the root node in the behavior tree, we
need to create a waypointpatrol node and a move node, with the waypointpatrol
node set to use our waypoint route and setting its move variable to the move node.
Do this by right-clicking on the root node and navigating to Create | Actions |
Choose Patrol Waypoints. Then, right-click on the new waypointpatrol node and
navigate to Create | Actions | Move. Then, set the waypointpatrol waypoint to
Patrol Route (with quotes), the Move Target Variable
and the Repeat type to Forever. The behavior tree should look like the following:

We'll speed up the ship movement, so select the move node and set the Move Speed
value to .

When we run the demo now, the ship will patrol around the block, similar to our

to a home base after a given number of seconds. However, two things need to be
added to the scene before we make additions to the behavior tree. First, we need to
create a navigation point for the home base so that the RAIN AI system can know
where it is. In Unity, navigate to RAIN | Create Navigation Target. Rename both
the GameObject and the target name in the RAIN menu for it to gameBase, and place
it under our cylinder that visualizes our game base. This creates a new point RAIN
can navigate to:

Chapter 3

[]

For our character logic, as we said we will have the entity patrol for a given number
of seconds, then return to the home base. We'll use a Boolean variable to track
whether the patrolling is done, but instead of just storing the variable in a script, we
will have RAIN's memory system to store it. The memory for a character is what it
remembers or knows. It is a way to store values that will be accessible to the other AI
systems on a character. The possible values for memory are basic primitive variables
such as , , , or , for example, , , , or a
GameObject. We'll use two memory variables for this demo. Select the AI component
of the ship and click on the Memory icon, which looks like a little light bulb, which
you can see in the following screenshot:

Behavior Trees

[36]

donePatrolling,
which will initially be but will become when the 5-second timer runs
out, signaling the ship to return to the base. The second is a GameObject variable that
will store the navigation waypoint for the game base. Create gameBase and set it to
the game base GameObject.

Now that we have a memory set up, we can start modifying our behavior tree. We
already have part of the behavior tree set up that patrols the waypoint route. So, as a
next step, we will only let the ship continue to patrol if our donePatrolling Boolean
variable is . Add a constraint node above the waypointpatrol node. The
recall constraint is the node that uses a logical expression and can evaluate success
or failure. Add the
Constraint node. The Constraint node will look like this:

Chapter 3

[37]

The little e symbol in the Constraint take an expression, a
one-line statement. This is done for simple checks and saves us from writing the code
for a custom action node. Besides the basic Boolean test in this example, many other
simple expressions can be created, for example, if we had an integer for an enemy's
ammo amount, it can do a check to see how much ammo the character has, and if it
is empty, it can stop attacking and instead go get more ammo. We can also have a
check on an entity's health or HP, and if it's too low, a character can run away

If we run the demo now, the ship will behave the same as before, but if we go into
the memory for the character and change donePatrolling to true, the ship will do
nothing when we start the demo:

The check in the preceding screenshot shows the Constraint node in action; however,
go ahead and change the value of donePatrolling back to false.

Behavior Trees

[38]

Our additional logic for the ship's behavior tree is to return home after 5 seconds
of patrolling. While the ship is patrolling, we want a timer running to 5 seconds.
When the timer is complete, the donePatrolling variable will be set to ,
stopping the patrol and the ship will start to move back to the gameBase navigation

Switch
To | Parallel. Then, create a new sequencer node and add it to the root. The tree
should look like this:

With the parallel node at every update, both of its children will be updated, allowing
us to continue patrolling while we have a timer running. We want two things to
happen if donePatrolling is : the ship should continue to patrol and the timer
should start to run. RAIN supports copying and pasting of nodes, so right-click on
the Constraint node and select Copy, then right-click on the sequencer node and
click on Paste. The node will be copied with its children, so delete the newly copied
waypointpatrol and the move node. Then, add a timer action node below the second
Constraint node, and set the time to 5 seconds. Now, the screen should look like this:

Chapter 3

[39]

After the timer node, we need a node that will set the donePatrolling variable to
. We can do this using an expression node and using its Expression value to

set donePatrolling to . We use as shown in the next screenshot:

Behavior Trees

[40]

However, the ability to customize AI nodes is important, so instead of using an
expression node again, we will use a Custom Action node. To create a Custom
Action node, right-click on the lower Constraint node and navigate to Create |
Actions | Custom Action
node editor) to StopPatrolling. For the Class value, choose Create Custom Action.
The following screenshot will guide you through:

Set the name of Custom Action Name to StopPatrolling and leave the script type
to C Sharp. Then, close the behavior tree editor and open the
script from Assets | AI | Actions. The script contains an outline for an action that

Chapter 3

[41]

This contains the three basic methods you would expect to see in an action: one to
call when the action is started, another when it is stopped, and an method
that is called when running the action that returns the state of the action node:
success, failure, or running. With this outline, you can create all kinds of custom
actions, but for now, all you need to do is set the variable in the
memory to . Change the method to the following:

This code does what we need, setting the variable to .
The AI object in this code, just called , is the AI for the character. It contains
access to various AI classes, such as the AI's mind and senses. Here, we access

 and can get the different memory items as well as set values
for them. That is all the action needs to do so that can leave
returning success.

Behavior Trees

[42]

If we run the project now, we should see the ship patrol for 5 seconds, but instead
of moving back to the game base, the ship just stops. The last thing we need to add
is a move node to the home base. Set the move target to "gameBase" (RAIN requires
the quotes), and as we want the ship to return home faster than it patrols, change
the speed to . And since we want the ship to stop as soon as it is near the base,
change the Repeat dropdown to Until Success and set a Close Enough distance to

. This will make the ship go to the gameBase target and stop. The screen should
look as shown:

If we run the demo now, the ship will patrol for 5 seconds and then just stop again.
The issue here is the Sequencer node: it goes through its children returning on the

stopPatrolling node is activated, the constraint nodes will return

this, right-click on the sequencer node and change its type to Selector and rename
it to selector.

Chapter 3

[43]

As you can see in the preceding screenshot, recalling the selector node works

after patrolling is done and the constraint node under the selector returns ,
instead of the tree stopping, the move node can be called. If you run the demo now,
everything should work as expected: the ship will patrol for 5 seconds and then
quickly return to the game base as shown:

Behavior Trees

[44]

If you didn't end up with this result, try not to get frustrated. Setting up behavior
trees is pretty precise, and a misnamed variable or wrong node placement will
cause interruptions.

If things are not working for you, open the RAIN behavior tree editor while the
game is running (or paused). It will highlight the nodes with red for failure, green
for success, and yellow for running:

This is how the RAIN behavior tree editor will display the status of all the nodes.

Summary
In this chapter, we went through the most popular way to set up behaviors

behaviors, deciding the different actions the behaviors will perform and the
transitions between the actions. Then, we set up a character and run the game.
This is the process to create logic for your game characters, deciding what the
behaviors are and the different conditions that can cause them to become active.

In the next chapter, we will look at how to use behavior trees more with character
movement and see how to set up the wander behavior for crowd creation. We will
explore AIs that will control a large collection of NPCs moving in distinctly separate
low-repeating paths.

