
179

Board Games AI

In this chapter, you will learn a family of algorithms for developing AI for board games:

 Working with the game-tree class

 Introducing Minimax

 Negamaxing

 AB Negamaxing

 Negascouting

 Implementing a tic-tac-toe rival

 Implementing a checkers rival

Introduction
In this chapter, you will learn about a family of algorithms for developing board game

(graph) that spans as we evaluate a state and decide to visit its neighbors. They also take
into account board games for two rivals. But with a little bit of work, some of them can be
extended to more players.

Working with the game-tree class
The game state can be represented in a lot of different ways, but you will learn how to
create extendible classes in order to use the high-level board AI algorithms for different
circumstances.

Board Games AI

180

Getting ready…

polymorphism. This is because we'll be creating generic functions that can be applied to a

specify these functions.

How to do it…
We will build two classes in order to represent game-tree with the help of the following steps:

1. Create the abstract class :

2. Create the pseudo-abstract class :

3.

Implement the virtual function for retrieving the next possible moves:

Chapter 6

181

5. Implement the virtual function for playing a move on the board:

6.

7. Implement the virtual function for retrieving the current player:

8. Implement the virtual function for testing the board's value for a given player:

9. Also, implement the virtual function for testing the board's value for the current player:

How it works…
We have created the stepping stones for the next algorithms. The class works as a
node in order to represent the current game state, and the class represents an edge.
When the function is called, we model the function for getting the edges in order to
reach the neighbors of the current game state.

See also
For more theoretical insights about the techniques in this chapter, please refer to Russel and
Norvig's (adversarial search) and Ian Millington's

 (board games).

Board Games AI

182

Introducing Minimax
Minimax is an algorithm based on the decision to minimize the possible loss for the worst
case (maximum loss). Besides game development and game theory, Minimax is a decision
rule and is also used in statistics, decision theory, and philosophy.

This technique was originally formulated for the two-player zero-sum game theory, meaning

handle more than two players.

Getting ready…
It is important to know the difference between a dynamic member function and a static
member function, as well as recursion. A dynamic member function is bound to the instance
of the class, while the static member function is bound to the class itself. The static method
allows us to call it without instantiating an object. This is great for general-purpose algorithms,
such as the one developed in this recipe.

In the case of recursion, it's not always clear that (unlike iteration) this is an iterative process
that requires a base case (also called the stop condition) and a recursive case (the one to
keep iterating).

How to do it…
We will create the base class for handling all of our main algorithms and implement the

 function as follows:

1. Create the class:

2. Declare the function:

Chapter 6

183

3. Consider the base case:

Set the initial values depending on the player:

5. Loop through all the possible moves and return the best score:

6. Create a new game state from the current move:

7. Start the recursion:

8. Validate the score for the current player:

Board Games AI

184

9. Validate the score for the adversary:

How it works…

selecting the option that maximizes the player's score and assuming the opponent will take
the option for minimizing it, until a terminal (leaf) node is reached.

The move tracking is done using recursion, and the heuristic for selecting or assuming an
option depends on the function.

See also
 The Working with the game-tree class recipe in this chapter

Negamaxing
When we have a zero-sum game with only two players involved, we are able to improve
Minimax, taking advantage of the principle that one player's loss is the other's gain. In this
way, it is able to provide the same results as the Minimax algorithm. However, it does not
track whose move it is.

Getting ready…
It is important to know the difference between a dynamic member function and a static
member function, as well as recursion. A dynamic member function is bound to the instance
of the class, while a static member function is bound to the class itself. The static method
allows us to call it without instantiating an object. This is great for general-purpose algorithms,
such as the one we are developing in this recipe.

In the case of recursion, it's not always clear that (unlike iteration) this is an iterative process
that requires a base case (also called the stop condition) and a recursive case (the one to
keep iterating).

Chapter 6

185

How to do it…
We will add a new function to the class as follows:

1. Create the function:

2. Validate the base case:

3. Set the initial values:

Loop through all the available moves and return the best score:

5. Create a new game state from the current move:

6. Start the recursion:

7. Set the current score and update the best score and move, if necessary:

Board Games AI

186

How it works…
The base algorithm works the same but, as we did before, there are some advantages.
At each step in the recursion, the scores from the previous steps have their sign inverted.
Instead of choosing the best option, the algorithm changes the sign of the score, eliminating
the need to track whose move it is.

There's more…
As Negamax alternates the viewpoints between players at each step, the evaluate function
used is the one with no parameters.

See also
 The Working with the game-tree class recipe

 The Minimax recipe

AB Negamaxing
There is still room for
of the Negamax algorithm is that it examines more nodes than necessary (for example,
board positions). To overcome this problem, we use Negamax with a search strategy
called alpha-beta pruning.

Getting ready…
It is important to know the difference between a dynamic member function and a static
member function, as well as recursion. A dynamic member function is bound to the instance
of the class, while the static member function is bound to the class itself. The static method
allows us to call it without instantiating an object. This is great for general-purpose algorithms,
such as the one we are developing in this recipe.

In the case of recursion, it's not always clear that (unlike iteration) this is an iterative process
that requires a base case (also called the stop condition) and a recursive case (the one to
keep iterating).

Chapter 6

187

How to do it…
We will add a new function to the class as follows:

1. Create the function:

2. Validate the base case:

3. Set the initial values:

Loop through every available move and return the best score:

5. Create a new game state from the current move:

6. Set the values for calling the recursion:

Board Games AI

188

7. Start the recursion:

8. Set the current score and update the best score and move if necessary. Also, stop the
iteration if necessary:

How it works…
Since we know the basic principle of the algorithm, let's concentrate on the search strategy.
There are two values: alpha and beta. The alpha value is the lower score a player can achieve,
thus avoiding considering any move where the opponent has the opportunity to lessen it.
Similarly, the beta value is the upper limit; no matter how tempting the new option is, the
algorithm assumes that the opponent won't give the opportunity to take it.

Given the alternation between each player (minimizing and maximizing), only one value needs
to be checked at each step.

See also
 The Working with the game-tree class recipe

 The Minimax recipe

 The Negamaxing recipe

Negascouting
Including a search strategy also makes room for new challenges. Negascouting is the result
of narrowing the search by improving the pruning heuristic. It is based on a concept called a
search window, which is the interval between the alpha and beta values. So, reducing the
search window increases the chance of a branch being pruned.

Chapter 6

189

Getting ready…
It is important to know the difference between a dynamic member function and a static
member function, as well as recursion. A dynamic member function is bound to the instance
of the class, while the static member function is bound to the class itself. The static method
allows us to call it without instantiating an object. This is great for general-purpose algorithms,
such as the one we are developing in this recipe.

In the case of recursion, it's not always clear that (unlike iteration) this is an iterative process
that requires a base case (also called the stop condition) and a recursive case (the one to
keep iterating).

How to do it…
We will add a new function to the class as follows:

1. Create the function:

2. Validate the base case:

3. Set the initial values:

Loop through every available move and return the best score:

Board Games AI

190

5. Create a new game state from the current move:

6. Set the values for the recursion:

7. Call the recursion:

8. Set the current score and validate it:

9. Validate for pruning:

10. Otherwise, take a look around:

11. Stop the loop if necessary. Otherwise, update the adaptive value:

Chapter 6

191

How it works…
This algorithm works by

it is repeated using a full-width window. As a result, a large number of branches are pruned
and failures are avoided.

See also
 The AB Negamaxing recipe

Implementing a tic-tac-toe rival
In order to make use of the previous recipes, we will devise a way to implement a rival for a
popular game: tic-tac-toe. Not only does it help us extend the base classes, but it also gives us
a way to create rivals for our own board games.

Getting ready…

class we created at the beginning of the chapter:

Board Games AI

192

How to do it…
We will create a new class, deriving it from , override its parent's methods, and create
new ones.

1. Create the class, deriving it from , and add the corresponding
member variables for storing the board's values:

2. Implement the default constructor:

3.

Create a function for evaluating a given position regarding a given player:

Chapter 6

193

5.
given player:

6. Implement a constructor for building new states with values:

7. Override the member function for getting the available moves from the current state:

Board Games AI

194

8. Override the function for retrieving a new state from a given move:

9.

10. Implement the function for evaluating the current state of the current player:

Chapter 6

195

How it works…

they make use of it only at a high level as a data structure. The recipe's bread and butter
come from overriding the virtual functions from the class in order to model the
problem. We use a two-dimensional integer array for storing the players' moves on the board

state regarding its neighbors.

There is more…
The functions for evaluating a board's (state) score have an admissible heuristic, but it's
probably not optimal. It is up to us to revisit this problem and refactor the body of the
aforementioned functions in order to have a better tuned rival.

See also
 The Working with the game-tree class recipe

Implementing a checkers rival
You will learn how to extend the previous recipes with an advanced example. In this case, you
will learn how to model a checkers (draughts) board and its pieces in order to comply with the
necessary functions to be used with our board-AI framework.

This approach uses a chess board (8 x 8) and its respective number of pieces (12). However,
it can be easily parameterized in order to change these values in case we want to have a
differently sized board.

Board Games AI

196

Getting ready…
First, we need to create a new type of movement for this particular case called

:

This data structure stores the piece to be moved, the new and coordinates if the
movement is a successful capture, and the position of the piece to be removed.

How to do it…
We will implement two core classes for modeling the pieces and the board, respectively.
This is a long process, so read each step carefully:

1. and add the following statements:

2. Add the data type:

3. Add the data enum:

Chapter 6

197

Start building the class:

5.

6.

7. If the move is a capture, remove the corresponding piece:

8. Stop the process if the piece is :

Board Games AI

198

9. Change the type of piece if it is and it reaches the opposite border:

10. function for checking if a move is inside the bounds of the board:

11.

12. Start implementing the function for retrieving the moves when the piece's type is :

13. Add the variable for storing the two possible moves:

Chapter 6

199

15.

16. Implement the loop for iterating through the two possible options and return the
available moves. We will implement the body of the loop in the next step:

17. Declare two new variable for computing the next position to be considered:

18. Test the possible option if the move is out of bounds:

19. Continue with the next option if the move is being blocked by a piece of the
same color:

20. Create a new move to be added to the list because we're good-to-go:

21. Create a simple move if the position is available:

22. Otherwise, test whether the piece can be captured and modify the move accordingly:

Board Games AI

200

23. Add the move to the list:

Start to implement the function for retrieving the available moves when the piece's
type is :

25. Declare the variable for holding the possible moves:

26. Create the variables for searching in four directions:

27. Start implementing the loop for checking all the possible moves, and retrieve those
moves. The next step will implement the body of the inner loop:

28. Create the variables for testing the moves and advances:

Chapter 6

201

29. Create a loop for going in that direction until the board's bounds are reached:

30. Get the position's piece reference:

31. If it is a piece of the same color, go no further:

32.

33. Create a simple move if the position is available:

Otherwise, test whether the piece can be captured and modify the move accordingly:

35. Add the move and advance a step towards the current direction:

Board Games AI

202

36. Create a new class called

37. Implement the function:

38. Start implementing the function. It is important to note that this may vary
depending on your game's spatial representation:

39. Throw an error message if the template object doesn't have an attached
 script:

Add iterator variables:

Chapter 6

203

Implement the loop for placing the white pieces:

Implement the loop for placing the black pieces:

depending on its visualization:

Board Games AI

204

Implement the function with no parameters:

Implement the function with a parameter:

Start implementing the general function for evaluation:

Create variables for holding the board's bounds:

Chapter 6

205

50. Iterate throughout the board to look for moves and possible captures:

51. Retrieve the evaluation value:

52. Start developing the function for retrieving the board's available moves:

53.
iteration:

Get the moves from all the available pieces on the board:

Board Games AI

206

55. Return the moves found:

How it works…
The board works in a similar fashion to the previous board, but it has a more complex process
due to the rules of the game. The movements are tied to the pieces' moves, thus creating
a cascading effect that must be handled carefully. Each piece has two types of movement,
depending on its color and type.

As we can see, the high-level rules are the same. It just requires a little bit of patience and
thinking in order to develop good evaluation functions and procedures for retrieving the
board's available moves.

There is more…
The function is far from being perfect. We implemented a heuristic based solely on
the number of available moves and captured opponent pieces, giving room for improvement in
order to avoid movements where a player's piece could be captured in the rival's next move.

Also, we should make our own changes to the function in the

