
207

Learning Techniques

In this chapter, we will explore the world of machine learning through the following topics:

 Predicting actions with an N-Gram predictor

 Improving the predictor: Hierarchical N-Gram

 Learning to use decision trees

 Learning to use reinforcement

.Introduction

However, the recipes that are contained in this chapter will give us a great head start in our
endeavor to learn and apply machine-learning techniques to our games. They are used in

Finally, you are advised to complement the recipes with the reading of more formal books on
the subject, in order to gain theoretical insights that lie beyond the scope of this chapter.

Learning Techniques

208

Predicting actions with an N-Gram predictor
Predicting actions is a great way to give players a challenge by going from random selection
to selection based on past actions. One way to implement learning is by using probabilities in
order to predict what the player will do next, and that's what an N-Gram predictor does.

To predict the next choice, N-Gram predictors hold a record of the probabilities of making a
decision (which is usually a move), given all combinations of choices for the previous n moves.

Getting ready…
This recipe makes use of general types. It is recommended that we have at least a basic
understanding of how they work because it's critical that we use them well.

we'll call it .

The

How to do it…

1.

Chapter 7

209

2. Implement the constructor for initializing the member variables:

3. Implement a static function for converting a set of actions into a string key:

5. Finally, implement the function for computing the prediction of the best action to take:

Learning Techniques

210

How it works…
The predictor registers a set of actions according to the size of the window (the number of
actions to register in order to make predictions) and assigns them a resulting value. For

possible that the fourth one may follow.

The prediction function computes how likely it is for an action to be the one that follows, given
a set of previous actions. The more registered actions, the more accurate the predictor will be
(with some limitations).

There is more…
It is important to consider that the object of type T must override both the
function and Equals function in an admissible way for it to work correctly as an index
in the internal dictionaries.

Improving the predictor: Hierarchical
N-Gram

The N-Gram predictor can be improved by having a handler with several other predictors
ranging from 1 to n, and obtaining the best possible action after comparing the best guess
from each one of them.

Getting ready…
We need to make some adjustments prior to implementing the hierarchical N-Gram predictor.

Add the following member function to the class:

Chapter 7

211

How to do it…
Just like the N-Gram predictor, building the hierarchical version takes a few steps:

1. Create the new class:

2. Implement the constructor for initializing member values:

3.

Learning Techniques

212

Finally, implement the function for computing the prediction:

How it works…
The hierarchical N-Gram predictor works almost exactly like its predecessor, with the
difference being that it holds a set of predictors and computes each main function using

decomposing the set of actions and feeding the children with them.

Learning to use examples could be hard even for humans. For example, given a list of
examples for two sets of values, it's not always easy to see the connection between them. One
way of solving this problem would be to classify one set of values and then give it a try, and

they apply probability and Bayes' theorem with a strong-independence assumption between

Chapter 7

213

Getting ready…

 data structure called :

How to do it…

1. Create the class and its member variables:

2. method for initialization:

3.

Learning Techniques

214

function for computing the Naïve probability:

5. Finally, implement the function for prediction:

Chapter 7

215

How it works…
The function takes the example input values and stores them. This is

 function is the one responsible for
computing the probabilities for the prediction function to work. Finally, the function
is the second

Learning to use decision trees
We already learned
component to our game. Furthermore, we can also build them dynamically through supervised
learning. That's why we're revisiting them in this chapter.

There are several algorithms for building decision trees that are suited for different uses

implementing the ID3 algorithm.

Getting ready…
Despite having built decision trees in a previous chapter, and the fact that they're based on
the same principles as the ones that we will implement now, we will use different data types
for our implementation needs in spite of the learning algorithm.

We will need two data types: one for the decision nodes and one for storing the examples to
be learned.

The code for the data type is as follows:

Learning Techniques

216

The code for the data type is as follows:

How to do it…
We will create the class with several functions for computing the resulting decision tree.

1. Create the class:

2. Start the implementation of the function responsible for splitting the attributes
into sets:

Chapter 7

217

3. Iterate though all the examples received, and extract their value in order to assign
them to a set:

Create the function for computing the entropy for a set of examples:

5. Iterate through all of the examples to compute their action quota:

6. Compute the entropy :

Learning Techniques

218

7. Implement the function for computing the entropy for all the sets of examples. This is
very similar to the preceding one; in fact, it uses it:

8. function for building a decision tree:

9. Declare and initialize all the required members for the task:

10. Iterate through all the attributes in order to get the best set based on the information
gain:

Chapter 7

219

11. Select the root node based on the best split attribute, and rearrange the remaining
attributes for building the rest of the tree:

12. Iterate through all the remaining attributes. calling the function recursively:

How it works…
The class is modular in terms of functionality. It doesn't store any information but is able
to compute and retrieve everything needed for the function that builds the decision tree.

 takes the examples and divides them into sets that are needed for
computing their entropy. is an overloaded function that computes a list of

 works recursively in order to build the decision tree, getting hold of the most

See also
 Chapter 3, Decision Making, the Choosing through a decision tree recipe

Learning to use reinforcement
Imagine that we need to come up with an enemy that needs to select different actions over
time as the player progresses through the game and his or her patterns change, or a game for
training different types of pets that have free will to some extent.

Learning Techniques

220

For these types of tasks, we can use a series of techniques aimed at modeling learning based
on experience. One of these algorithms is Q-learning, which will be implemented in this recipe.

Getting ready…
Before delving into the main algorithm, it is necessary to have certain data structures

1.

2.
we're developing, we are interested in random states considering the current state of
the game:

Chapter 7

221

3.

state and reward:

How to do it…
We will implement
purposes, and the second one is the class that actually holds the Q-learning algorithm:

1. Create the class:

2. Implement the constructor:

Learning Techniques

222

3.
Carefully craft this, considering an action cannot be taken in that particular state:

Implement the function for retrieving the best action to take in a certain state:

5. Implement the function for :

6. Let's move on to the class, which will run the algorithm:

Chapter 7

223

7.

8. Implement the learning function. Be advised that this is split into several steps. Start

9. Validate that the store list is initialized:

10. Get a random state:

11. Return null for the current frame to keep running:

12. Validate against the length of the walk :

13. Get the available actions from the current game state:

Learning Techniques

224

Get an action depending on the value of the randomness of exploration:

15. Calculate the new state for taking the selected action on the current state and the
resulting reward value:

16. Get the value, given the current game, and take action and the best action for the
new state computed before:

17. Apply the Q-learning formula:

18. Store the computed value, giving its parents as indices:

How it works…
In the Q-learning algorithm, the game world is treated as a state machine. It is important to
take note of the meaning of the parameters:

 : This is the learning rate

 : This is the discount rate

 : This is the randomness of exploration

 : This is the length of the walk

Imagine a way to make an enemy or game system emulate the way the brain works. That's
how neural networks operate. They are based on a neuron, we call it , and the
sum of several neurons; its inputs and outputs are what makes a neural network.

In this recipe, we will learn how to build a neural system, starting from , all the
way to joining them in order to create a network.

Chapter 7

225

Getting ready…
We will need a data type for handling raw input; this is called :

How to do it…
We will implement
data type, and the second one is the data type handling the neural network:

1. Implement a class derived from the class that was

2. Implement the constructor for setting the number of inputs:

3.

Learning Techniques

226

Implement the functions for adjusting weights:

5. function for funneling the weights with regard to the type of input:

6. Create the class for handling the set of as a network:

7. Implement the function for transmitting inputs from one end to the other of the
neural network:

Chapter 7

227

8.

9. Traverse the output layer for computing values:

10. Traverse the internal layers, but the input layer:

11. Implement a high-level function for ease of use:

Learning Techniques

228

How it works…

input and the ones internally connected to each other. That's why the basic Perceptron class
derives from the latter category. The function handles the inputs and irrigates
them along the network. Finally, the function for back propagation is the one responsible for
adjusting the weights. This weight adjustment is the emulation of learning.

Creating emergent particles using a
harmony search

Being a musician myself, this recipe is one that is close to my heart. Imagine a group of
musicians with a base theme in mind. But, they've never played with each other, and as the
song changes, they must adapt to the core tones with their instruments and their styles. The
emulation of this adaptation is implemented using an algorithm called harmony search.

Getting ready…

the function.

How to do it…
We will now implement the algorithm in a class:

1. Create the class:

2.

Chapter 7

229

3. list of bounds. This is a , so will represent the lowest bound and y
the highest bound. The number of bounds must be equal to the number of pitches:

5. Implement the initialization function:

6.

7. Iterate through the number of pitches (instruments):

8. Compute the new number of the possible new harmonies, given a random value:

Learning Techniques

230

9. the value in case it needs to be randomized:

10. Retrieve the new vector:

11.

12. Initialize the values:

13.

Return the best list of pitches:

Chapter 7

231

How it works…
The algorithm initializes all the values, given the public inputs and its inner members. It iterates

list of pitches among the set of bounds and the different

