Miscellaneous

In this chapter, you will learn different techniques for:

» Handling random numbers better

» Building an air-hockey rival

» Devising a table-football competitor

» Creating a tennis rival

» Creating mazes procedurally

» Implementing a self-driving car

» Managing race difficulty using a rubber-banding system

Introduction

In this final chapter, we will introduce new techniques, and use algorithms that we have
learned in the previous chapters in order to create new behaviors that don't quite fix in

a definite category. This is a chapter to have fun and get another glimpse of how to mix
different techniques in order to achieve different goals.

Handling random numbers better

Sometimes, we need to create random behaviors that don't differ too much from a pivot point;
this is the case of an aiming behavior. A normalized random behavior will shoot equally along

the x and the y axes over a given distance from the aiming point. However, we would like most
of the bullets to aim closer to the target because that's the expected behavior.

www.it-ebooks.info



Miscellaneous

Most of the random functions out there return normalized values along the range given to
them, and those are the expected results. Nonetheless, this is not completely useful for
certain features in game development, as we just said. We will implement a random function
to be used in our games with normal distribution instead of a normal distribution.

Getting ready

It is important to understand the differences between uniform and normal distribution. In the
following figure, we can see a graphical representation of the behavior we're looking for by
applying normal distribution with the example mentioned in the introductory text.

In the figure on the left-hand side, the uniform distribution spreads through the whole circle,
and it is intended to be used in general random distributions. However, while developing other
techniques, such as gun aiming, the desired random distribution will look more like the image
on the right-hand side.

°
what we have what we want
uniform distribution normal distribution

How to do it...

We will build a simple class as follows:

1. Create the RandomGaussian class:

using UnityEngine;

public class RandomGaussian

{

// next steps

}

www.it-ebooks.info



Chapter 8

2.

4,

Define the RangeAdditive member function that initializes the necessary
member variables:

public static float RangeAdditive (params Vector2[] values)

{

float sum = Of;
int 1i;

float min, max;
// next steps

}

Check whether the number of parameters equals zero. If so, create three new values:
if (values.Length == 0)

{

values = new Vector2[3];
for (i = 0; 1 < values.Length; i++)
values([i] = new Vector2(0f, 1f);

}

Sum all the values:

for (i = 0; i < values.Length; i++)

{
min = values[i] .x;
max = values[i].y;

sum += Random.Range (min, max) ;

}

Return the resulting random number:

return sum;

There's more...

We should always strive for efficiency. That's why there's another way of delivering a similar
result. In this case, we could implement a new member function based on the solution offered
by Rabin and others (refer to the proceeding See also section):

public static ulong seed = 61829450;
public static float Range ()

{

double sum = 0;
for (int 1 = 0; 1 < 3; i++)
{
ulong holdseed = seed;
seed *= seed << 13;

235

www.it-ebooks.info



Miscellaneous

seed "= seed >> 17;

seed "= seed << 5;

long r = (long) (holdseed * seed);

sum += r * (1.0 / Ox7FFFFFFFFFFFFFFF) ;

}

return (float)sum;

}

» For further information on the theory behind the Gaussian random generator and
other advanced generators, please refer to the book Game Al Pro by Steve Rabin,
article number 3

Building an air-hockey rival

Air hockey is probably one of the most popular games enjoyed by players of all ages during the
golden age of arcades, and they are still found everywhere. With the advent of touchscreen
mobile devices, developing an air-hockey game is a fun way to not only test physics engines,
but also to develop intelligent rivals despite the apparently low complexity of the game.

Getting ready

This is a technique based on some of the algorithms that we learned in Chapter 1, Movement,
such as seek, Arrive, and Leave, and the ray casting knowledge that is employed in
several other recipes, such as path smoothing.

It is necessary for the paddle game object to be used by the agent to have the
AgentBehaviour, Seek, and Leave components attached, as it is used by the current
algorithm. Also, it is important to tag the objects used as walls, that is, the ones containing
the box colliders, as seen in the following figure:

Tag: SideWall

rival’s area

— Tag: GoalWall Tag: SideWall =——t—

player’s area

Tag: SideWall

236

www.it-ebooks.info



Finally, it is important to create an enum type for handling the rival's state:

public enum AHRState

{

}

ATTACK,
DEFEND,
IDLE

How to do it...

This is a long class, so it is important to carefully follow these steps:

1.

Create the rival's class:

using UnityEngine;

using System.Collections;

public class AirHockeyRival

{
}

// next steps

MonoBehaviour

Declare the public variables for setting it up and fine-tuning it:

public GameObject puck;

public GameObject paddle;
public string goalWallTag
public string sideWallTag

[Range (1, 10)]
public int maxHits;

Declare the private variables:

float puckWidth;
Renderer puckMesh;
Rigidbody puckBody;
AgentBehaviour agent;
Seek seek;

Leave leave;

AHRState state;

bool hasAttacked;

"GoalWall";
"SideWall";

Chapter 8

Implement the Awake member function for setting up private classes, given the

public ones:

public void Awake ()

{

237

www.it-ebooks.info



Miscellaneous

puckMesh = puck.GetComponent<Renderers () ;
puckBody = puck.GetComponent<Rigidbodys> () ;
agent = paddle.GetComponent<AgentBehaviours () ;
seek = paddle.GetComponent<Seeks> () ;
leave = paddle.GetComponent<Leaves () ;
puckWidth = puckMesh.bounds.extents.z;
state = AHRState.IDLE;
hasAttacked = false;
if (seek.target == null)

seek.target = new GameObject () ;
if (leave.target == null)

leave.target = new GameObject () ;

}

5. Declare the Update member function. The following steps will define its body:

public void Update ()

{

// next steps

}

6. Check the current state and call the proper functions:

switch (state)

{

case AHRState.ATTACK:
Attack () ;
break;

default:

case AHRState.IDLE:
agent.enabled = false;
break;

case AHRState.DEFEND:
Defend () ;
break;

}
7. Call the function for resetting the active state for hitting the puck:
AttackReset () ;

8. Implement the function for setting up the state from external objects:
public void SetState (AHRState newState)

{

state = newState;

238

www.it-ebooks.info



Chapter 8

10.

11.

12.

13.

Implement the function for retrieving the distance from paddle to puck:

private float DistanceToPuck ()
Vector3 puckPos = puck.transform.position;
Vector3 paddlePos = paddle.transform.position;
return Vector3.Distance (puckPos, paddlePos) ;

}

Declare the member function for attacking. The following steps will define its body:
private void Attack ()

{
if (hasAttacked)
return;

// next steps

}

Enable the agent component and calculate the distance to puck:

agent .enabled = true;
float dist = DistanceToPuck() ;

Check whether the puck is out of reach. If so, just follow it:

if (dist > leave.dangerRadius)
Vector3 newPos = puck.transform.position;
newPos.z = paddle.transform.position.z;
seek.target.transform.position = newPos;
seek.enabled = true;

return;

}

Attack the puck if it is within reach:

hasAttacked = true;

seek.enabled = false;

Vector3 paddlePos = paddle.transform.position;
Vector3 puckPos = puck.transform.position;
Vector3 runPos = paddlePos - puckPos;

runPos = runPos.normalized * 0.1f;

runPos += paddle.transform.position;
leave.target.transform.position = runPos;
leave.enabled = true;

239

www.it-ebooks.info



Miscellaneous

14,

15.

16.

17.

18.

240

Implement the function for resetting the parameter for hitting the puck:

private void AttackReset ()
{
float dist = DistanceToPuck() ;
if (hasAttacked && dist < leave.dangerRadius)
return;
hasAttacked = false;
leave.enabled = false;

}

Define the function for defending the goal:

private void Defend ()
{
agent.enabled = true;
seek.enabled = true;
leave.enabled = false;
Vector3 puckPos = puckBody.position;
Vector3 puckVel = puckBody.velocity;
Vector3 targetPos = Predict (puckPos, puckvel, 0);
seek.target.transform.position = targetPos;

}

Implement the function for predicting the puck's position in the future:

private Vector3 Predict (Vector3 position, Vector3 velocity,
numHit)

if (numHit == maxHits)
return position;
// next steps

}

Cast a ray, given the position and the direction of the puck:

RaycastHit [] hits = Physics.RaycastAll (position, velocity.
normalized) ;
RaycastHit hit;

Check the hit results:

foreach (RaycastHit h in hits)

{

string tag = h.collider.tag;
// next steps

int

www.it-ebooks.info



Chapter 8

19. Check whether it collides with the goal wall. Base case:
if (tag.Equals(goalWallTag))

position = h.point;
position += (h.normal * puckWidth) ;
return position;

}

20. Check whether it collides with a side wall. Recursive case:
if (tag.Equals(sideWallTag))

{
hit = h;
position = hit.point + (hit.normal * puckWidth) ;
Vector3 u = hit.normal;
u *= Vector3.Dot (velocity, hit.normal) ;
Vector3 w = velocity - u;
velocity = w - u;
break;

}

// end of foreach

21. Enter the recursive case. This is done from the foreach loop:

return Predict (position, velocity, numHit + 1);

The agent calculates the puck's next hits given its current velocity until the calculation results
in the puck hitting the agent's wall. This calculation gives a point for the agent to move its
paddle toward it. Furthermore, it changes to the attack mode when the puck is close to its
paddle and is moving towards it. Otherwise, it changes to idle or defend depending on the
new distance.

» Chapter 1, Movement recipes Pursuing and evading and Arriving and leaving recipes

Devising a table-football competitor

Another common table game that has made its way into the digital realm is table football. In
this recipe, we will create a competitor, imitating the way a human plays the game and using
some techniques that emulate human senses and limitations.

241

www.it-ebooks.info



Miscellaneous

Getting ready

In this recipe, we will use the knowledge gained from Chapter 5, Agent Awareness, and the
emulation of vision.

First, it is important to have a couple of enum data structures, as shown in the following code:

public enum TFRAxisCompare

public enum TFRState

{
}

How to do it...

This is a very extensive recipe. We'll build a couple of classes, one for the table-football bar
and the other for the main Al agent that handles the bars, as follows:

ATTACK, DEFEND, OPEN

1. Create a class for the bar that will be handled by the Al:

using UnityEngine;
using System.Collections;

public class TFRBar : MonoBehaviour
{
[HideInInspector]
public int barId;
public float barSpeed;
public float attackDegrees = 30f;
public float defendDegrees = 0f;
public float openDegrees = 90f;
public GameObject ball;
private Coroutine crTransition;
private bool isLocked;
// next steps

}

2. Implement the Awake function:

void Awake ()

{

crTransition = null;
isLocked = false;

242

www.it-ebooks.info



Chapter 8

Define the function for setting the state of the bar:
public void SetState (TFRState state, float speed = 0f)

{
}

Check whether it is locked (after beginning a movement). This is optional:

// next steps

// optional

if (isLocked)
return;

isLocked = true;

Validate the speed:
if (speed == 0)

speed = barSpeed;
float degrees = 0f;

Validate the state and make a decision out of it:

switch (state)
{
case TFRState.ATTACK:
degrees = attackDegrees;
break;
default:
case TFRState.DEFEND:
degrees = defendDegrees;
break;
case TFRState.OPEN:
degrees = openDegrees;
break;

}

Execute the transition:

if (crTransition != null)
StopCoroutine (crTransition) ;
crTransition = StartCoroutine (Rotate (degrees, speed)) ;

Define the function for rotating the bar:
public IEnumerator Rotate(float target, float speed)

{

// next steps

243

www.it-ebooks.info



Miscellaneous

9. Implement the internal body for the transition:

while (transform.rotation.x != target)
Quaternion rot = transform.rotation;
if (Mathf.Approximately (rot.x, target))
rot.x = target;
transform.rotation = rot;
float vel = target - rot.x;
rot.x += speed * Time.deltaTime * vel;
yield return null;

}

10. Restore the bar to its default position:

isLocked = false;
transform.rotation = Quaternion.identity;

11. Implement the function for moving the bar from side to side:
public void Slide(float target, float speed)

{
Vector3 targetPos = transform.position;
targetPos.x = target;
Vector3 trans = transform.position - targetPos;
trans *= speed * Time.deltaTime;
transform.Translate (trans, Space.World) ;

}

12. Create the class for the main Al:
using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class TFRival : MonoBehaviour

{

public string tagPiece = "TFPiece";
public string tagWall = "TFWall";
public int numBarsToHandle = 2;

public float handleSpeed;

public float attackDistance;

public TFRAxisCompare depthAxis = TFRAxisCompare.Z;
public TFRAxisCompare widthAxis = TFRAxisCompare.X;
public GameObject ball;

www.it-ebooks.info



Chapter 8

}

public GameObject[] bars;
List<GameObject>[] piecelist;
// next

13. Implement the Awake function for initializing the piece list:

void Awake ()

{

}

int numBars = bars.Length;
piecelist = new List<GameObject>[numBars] ;
for (int 1 = 0; 1 < numBars; i++)

{

piecelList[i] = new List<GameObjects>() ;

14. Start implementing the Update function:

void Update ()

{

}

int [] currBars = GetNearestBars() ;

Vector3 ballPos = ball.transform.position;
Vector3 barsPos;

int 1i;

// next steps

15. Define the status for each bar, depending on the ball's position:

for (i = 0; i < currBars.Length; i++)

{

GameObject barObj = bars[currBars[i]];
TFRBar bar = barObj.GetComponent<TFRBars () ;
barsPos = barObj.transform.position;
float ballVisible = Vector3.Dot (barsPos, ballPos) ;
float dist = Vector3.Distance (barsPos, ballPos) ;
if (ballvisible > 0f && dist <= attackDistance)
bar.SetState (TFRState.ATTACK, handleSpeed) ;
else if (ballvisible > 0f)
bar.SetState (TFRState.DEFEND) ;
else
bar.SetState (TFRState.OPEN) ;

245

www.it-ebooks.info



Miscellaneous

16. Implement the onGUT function. This will handle the prediction at 30 frames
per second:

public void OnGUI ()

{
}

17. Define the prediction function with its member values:

Predict () ;

private void Predict ()

{
Rigidbody rb = ball.GetComponent<Rigidbodys> () ;
Vector3 position = rb.position;
Vector3 velocity = rb.velocity.normalized;
int [] barsToCheck = GetNearestBars() ;
List<GameObject> barsChecked;
GameObject piece;
barsChecked = new List<GameObjects>() ;
int id = -1;
// next steps

}

18. Define the main loop for checking the ball's trajectory:
do

{

RaycastHit [] hits = Physics.RaycastAll (position, velocity.
normalized) ;

RaycastHit wallHit = null;
foreach (RaycastHit h in hits)

{

// next steps

} while (barsChecked.Count == numBarsToHandle) ;

19. Get the object of the collision and check whether it is a bar and whether it has been
checked already:

GameObject obj = h.collider.gameObject;
if (obj.CompareTag(tagWall))
wallHit = h;
if (!IsBar(obj))
continue;
if (barsChecked.Contains (obj))
continue;

246

www.it-ebooks.info



Chapter 8

20.

21.

22.

23.

24.

25.

Check, if it is a bar, whether it is among those closest to the ball:

bool isToCheck = false;
for (int i = 0; 1 < barsToCheck.Length; i++)

{

id = barsToCheck[i];
GameObject barObj = bars([id];
if (obj == barObj)

{

isToCheck = true;
break;

if (!isToCheck)

continue;

Get the bar collision point and calculate the movement for blocking the ball with the
closest piece:

Vector3 p = h.point;

piece = GetNearestPiece (h.point, id);

Vector3 piecePos = piece.transform.position;

float diff = Vector3.Distance (h.point, piecePos) ;
obj .GetComponent<TFRBar> () .Slide (diff, handleSpeed) ;
barsChecked.Add (obj) ;

Otherwise, recalculate with the wall's hitting point:
C

Create the function for setting the pieces to the proper bar:

void SetPieces|()

{
}

Create a dictionary for comparing the pieces' depth:

// next steps

// Create a dictionary between z-index and bar
Dictionary<float, int> zBarDict;

zBarDict = new Dictionary<float, int>();

int 1i;

Set up the dictionary:

for (i = 0; 1 < bars.Length; i++)

{

Vector3 p = bars[i] .transform.position;

247

www.it-ebooks.info



Miscellaneous

float index = GetVectorAxis(p, this.depthAxis);
zBarDict .Add (index, 1);

}

26. Start mapping the pieces to the bars:
// Map the pieces to the bars
GameObject [] objs = GameObject.FindGameObjectsWithTag(tagPiece) ;
Dictionary<float, List<GameObject>> dict;
dict = new Dictionary<float, List<GameObject>>();

27. Assign pieces to their proper dictionary entry:
foreach (GameObject p in objs)

{

float zIndex = p.transform.position.z;

if (!dict.ContainsKey (zIndex))
dict.Add(zIndex, new List<GameObject>()) ;

dict [zIndex] .Add (p) ;

}

28. Define the function for getting a bar's index, given a position:

int GetBarIndex (Vector3 position, TFRAxisCompare axis)

{

// next steps

}

29. Validate it:
int index = 0;
if (bars.Length == 0)

return index;

30. Declare the necessary member values:

float pos = GetVectorAxis (position, axis);
float min = Mathf.Infinity;

float barPos;

Vector3 p;

31. Traverse the list of bars:

for (int i = 0; 1 < bars.Length; i++)

{
p = bars[i] .transform.position;
barPos = GetVectorAxis (p, axis);
float diff = Mathf.Abs(pos - barPos);
if (diff < min)

{

248

www.it-ebooks.info



Chapter 8

32.

33.

34.

35.

36.

37.

min = diff;
index = 1i;

}

Retrieve the found index:

return index;

Implement the function for calculating the vector axis:
float GetVectorAxis (Vector3 v, TFRAxisCompare a)

{
if (a == TFRAxisCompare.X)
return v.Xx;
if (a == TFRAxisCompare.Y)
return v.y;
return v.z;

}

Define the function for getting the nearest bars to the ball:

public int[] GetNearestBars ()

{

// next steps

}

Initialize all the necessary member variables:

int numBars = Mathf.Clamp (numBarsToHandle, 0, bars.Length) ;
Dictionary<float, int> distBar;

distBar = new Dictionary<float, ints>(bars.Length);
List<float> distances = new List<floats (bars.Length) ;

int 1i;

Vector3 ballPos = ball.transform.position;

Vector3 barPos;

Traverse the bars:

for (i = 0; i < bars.Length; i++)

{

barPos = bars[i].transform.position;

float d = Vector3.Distance (ballPos, barPos) ;
distBar.Add (d, 1i);

distances.Add (d) ;

}

Sort the distances:

distances.Sort () ;

249

www.it-ebooks.info



Miscellaneous

38. Get the distances and use the dictionary in an inverse way:

int [] barsNear = new int [numBars];

for (i = 0; 1 < numBars; i++)

{

float d = distances|[i];
int id = distBar[d];
barsNear[i] = id;

}
39. Retrieve the bar IDs:

return barsNear;

40. Implement the function for checking whether a given object is a bar:

private bool IsBar (GameObject gobj)

{

foreach (GameObject b in bars)

{
if (b == gobj)
return true;

}

return false;

}

41. Start implementing the function for retrieving the closest piece of a bar, given
a position:

private GameObject GetNearestPiece (Vector3 position, int barId)

{
}

42. Define the necessary member variables:

// next steps

float minDist = Mathf.Infinity;
float dist;
GameObject piece = null;

43. Traverse the list of pieces and calculate the closest one:

foreach (GameObject p in piecelList [barId])

{

dist = Vector3.Distance(position, p.transform.position) ;
if (dist < minDist)

minDist = dist;
piece = p;

250

www.it-ebooks.info



Chapter 8

44, Retrieve the piece:

return piece;

The table-football competitor draws on the skills developed from the air-hockey rival. This
means casting rays to get the trajectory of the ball and moving the nearest bar considering
the pieces. It also moves the bar, depending on whether the rival is attacking or defending,
so that it can block the ball or let it go further.

» The Seeing using a collider-based system recipe in Chapter 5, Agent Awareness

Creating mazes procedurally

This is a completely new recipe oriented toward having fun while creating maps and levels
procedurally. The main recipe works by creating a maze completely procedurally. Furthermore,
we will explore a gray area, where both level design and procedurally generated content meet.

Getting ready

In this recipe, it is important to understand the concepts of Binary Space Partitioning and the
Breadth-first Search algorithm learned in Chapter 2, Navigation.

How to do it...

We will implement two classes, one for the nodes to be partitioned and one for holding all the
nodes and the maze representation, as follows:

1. Create the BSPNode class and its members:

using UnityEngine;

[System.Serializable]

public class BSPNode

{
public Rect rect;
public BSPNode nodeA;
public BSPNode nodeB;

251

www.it-ebooks.info



Miscellaneous

2. Implement the class constructor:
public BSPNode (Rect rect)

this.rect = rect;
nodeA = null;
nodeB = null;

}

3. Define the function for splitting the node into two subregions:

public void Split(float stopArea)

{
}

4. Validate its base case:

// next steps

if (rect.width * rect.height >= stopArea)

return;

5. Initialize all the necessary function variables:
bool vertSplit = Random.Range (0, 1)

1l
1]
Jun

float x, vy, w, h;
Rect rectA, rectB;

6. Compute the horizontal split:
if (!vertSplit)

{

= rect.x;

= rect.y;

= rect.width;

= rect.height / 2f;

rectA = new Rect(x, y, w, h);

[SEEEL SIS
|

y += h;
rectB = new Rect(x, y, w, h);

}

7. Compute the vertical split:

else

= rect.x;

rect.y;

= rect.width / 2f;
= rect.height;

=R
Il

252

www.it-ebooks.info



8.

10.

Chapter 8

rectA = new Rect(x, vy, w, h);
X += W;
rectB = new Rect(x, vy, w, h);

}

Create the class for handling the dungeon and declare all its member variables:
using UnityEngine;
using System.Collections.Generic;

public class Dungeon : MonoBehaviour
{
public Vector2 dungeonSize;
public float roomAreaToStop;
public float middleThreshold;
public GameObject floorPrefab;

private BSPNode root;
private List<BSPNode> nodelList;

}

Implement the function for splitting:
public void Split ()

{

float x, y, w, h;

x = dungeonSize.x / 2f * -1f;

y = dungeonSize.y / 2f * -1f;

w = dungeonSize.X;

h = dungeonSize.y;

Rect rootRect = new Rect(x, y, w, h);
root = new BSPNode (rootRect) ;

}

Implement the function for drawing the maze using the nodes:
public void DrawNode (BSPNode n)

{
GameObject go = Instantiate(floorPrefab) as GameObject;
Vector3 position = new Vector3(n.rect.x, 0f, n.rect.y);
Vector3 scale = new Vector3 (n.rect.width, 1f, n.rect.height);
go.transform.position = position;
go.transform.localScale = scale;

253

www.it-ebooks.info



Miscellaneous

We divided the maze into two big data structures. The logical side that is handled via the BSP
nodes and the visual and construction representation handled by the main Maze class. The
idea behind this representation is to divide the space twice as many times as necessary until
a condition is met. This is the Binary Space Partitioning.

We then created rooms for the leave nodes, and finally, we connected the regions on the tree
from the bottom to the top (leaves to root).

There's more...

» There's another technique that is a little bit simpler, but it requires more input from
the art or level-design team. It creates a level with BFS using random pieces in a list
and connects them.

» The pieces can be rotated.

» It can be improved by using the random function learned previously and tuning the
pieces' placement on the list.

» The Finding the shortest path in a grid with BFS recipe in Chapter 2, Navigation

Implementing a self-driving car

What fun is a racing game without competitors? This is one of the most difficult subjects in
artificial intelligence for games. It is usually tackled by creating cheater agents that disable
certain limitations that are always imposed on the player, such as physics behaviors; this is
because these limitations can create erratic or imprecise behaviors when evaluated by Al. In
our case, we will approach the problem organically using techniques from a previous chapter.

Getting ready

In this chapter, we will explore how to create an autonomous car using advanced techniques
from Chapter 1, Movement, such as following a path and avoiding walls. So, it is important to
have grasped the knowledge behind them.

www.it-ebooks.info



Chapter 8

How to do it...

Create an empty GameObject.

Attach the Agent component.

Attach the FollowPath component.

Attach the WallAvoid component.

Create the track using the track pieces with the PathNode component.
Tag the track borders as walls.

A S S I

Make sure the track is complete.

By working with the system from the previous chapters, we can easily create a simple, yet
flexible, system to create intelligent cars.

» The Following a path and Avoiding walls recipes in Chapter 1, Movement

Managing race difficulty using a rubber-

banding system

We usually want to create experiences that adapt to the player, and racing games are a good
field for this, given that there is this gap of the cheater agent.

In this case, we will explore a middle ground for this using a framework that allows you to
come up with your own heuristic for managing the speed of the vehicle given its status. It
doesn't matter if it is an arcade racing game or simulation; the framework aims to work in a
similar fashion for both the cases.

Getting ready

It is important to have grasped the basic skills in Chapter 1, Movement, in order to be able
to develop a strategy to extend the framework for your own needs—that is, understanding the
principles of how the agent class works and how the behaviors help the player move toward
an object. In a nutshell, we are talking about vector operations.

255

www.it-ebooks.info



Miscellaneous

How to do it...

We will implement three different classes for handling low-level and high-level Als as follows:

1. Create the class for the basic rival agent:

using UnityEngine;

public class RacingRival : MonoBehaviour

{

public float distanceThreshold;
public float maxSpeed;

public Vector3 randomPos;
protected Vector3 targetPosition;
protected float currentSpeed;
protected RacingCenter ghost;

}

2. Implement the Start function:
void Start ()

{

ghost = FindObjectOfType<RacingCenters () ;

}

3. Define the Update function for handling the target position to follow:
public virtual void Update ()

{

targetPosition = transform.position + randomPos;
AdjustSpeed (targetPosition) ;

}

4. Define your function for adjusting the speed accordingly:
public virtual void AdjustSpeed(Vector3 targetPosition)

{

// TODO
// your own behaviour here

}

5. Create the class for handling the ghost rider or an invincible racer:

using UnityEngine;
public class RacingCenter : RacingRival

{

public GameObject player;

256

www.it-ebooks.info



Chapter 8

10.

Implement the initial function for finding its target:

void Start ()

{
}

Override the Update function, so the invincible car can adapt to the player's
behavior:

player = GameObject.FindGameObjectWithTag ("Player") ;

public override void Update ()

{

Vector3 playerPos = player.transform.position;

float dist = Vector3.Distance(transform.position,
playerPos) ;
if (dist > distanceThreshold)

{

targetPosition = player.transform.position;
base.Update () ;

}

Implement its special behavior:

public override void AdjustSpeed(Vector3 targetPosition)

{

// TODO
// Use in case the base behaviour also applies
base.AdjustSpeed (targetPosition) ;

}
Create the class for handling the high-level Al:

using UnityEngine;

public class Rubberband : MonoBehaviour

{

RacingCenter ghost;
RacingRival[] rivals;

}

Assign each racer its random position in the rubber system. We are using a circular
rubber band in this case:

void Start ()

{

ghost = FindObjectOfType<RacingCenters () ;
rivals = FindObjectsOfType<RacingRivals> () ;

257

www.it-ebooks.info



Miscellaneous

foreach (RacingRival r in rivals)

{
if (ReferenceEquals(r, ghost))
continue;
r.randomPos = Random.insideUnitSphere;
r.randomPos.y = ghost.transform.position.y;
}

}

The high-level Al rubber system assigns the positions to be held by the racers. Each racer has
its own behavior for adjusting speed, especially the invincible racer. This agent works as the
center of the mass of the rubber band. If its dance from the player exceeds the threshold, it
will adapt. Otherwise, it'll stay just the same, wobbling.

258

www.it-ebooks.info



