
233

Miscellaneous

In this chapter, you will learn different techniques for:

 Handling random numbers better

 Building an air-hockey rival

 Devising a table-football competitor

 Creating a tennis rival

 Creating mazes procedurally

 Implementing a self-driving car

Introduction

different techniques in order to achieve different goals.

Handling random numbers better
Sometimes, we need to create random behaviors that don't differ too much from a pivot point;
this is the case of an aiming behavior. A normalized random behavior will shoot equally along
the x and the y axes over a given distance from the aiming point. However, we would like most
of the bullets to aim closer to the target because that's the expected behavior.

234

Most of the random functions out there return normalized values along the range given to
them, and those are the expected results. Nonetheless, this is not completely useful for
certain features in game development, as we just said. We will implement a random function
to be used in our games with normal distribution instead of a normal distribution.

Getting ready
It is important to understand the differences between uniform and normal distribution. In the

applying normal distribution with the example mentioned in the introductory text.

and it is intended to be used in general random distributions. However, while developing other
techniques, such as gun aiming, the desired random distribution will look more like the image
on the right-hand side.

How to do it…
We will build a simple class as follows:

1. Create the class:

235

2. member function that initializes the necessary
member variables:

3. Check whether the number of parameters equals zero. If so, create three new values:

Sum all the values:

5. Return the resulting random number:

There's more…

result. In this case, we could implement a new member function based on the solution offered
by Rabin and others (refer to the proceeding See also section):

236

See also
 For further information on the theory behind the Gaussian random generator and

other advanced generators, please refer to the book Game AI Pro by Steve Rabin,
article number 3

Building an air-hockey rival
Air hockey is probably one of the most popular games enjoyed by players of all ages during the
golden age of arcades, and they are still found everywhere. With the advent of touchscreen
mobile devices, developing an air-hockey game is a fun way to not only test physics engines,
but also to develop intelligent rivals despite the apparently low complexity of the game.

Getting ready
This is a technique based on some of the algorithms that we learned in Chapter 1, Movement,
such as , , and , and the ray casting knowledge that is employed in
several other recipes, such as path smoothing.

It is necessary for the paddle game object to be used by the agent to have the
, , and components attached, as it is used by the current

algorithm. Also, it is important to tag the objects used as walls, that is, the ones containing

237

Finally, it is important to create an type for handling the rival's state:

How to do it…
This is a long class, so it is important to carefully follow these steps:

1. Create the rival's class:

2.

3. Declare the private variables:

Implement the member function for setting up private classes, given the
public ones:

238

5. Declare the

6. Check the current state and call the proper functions:

7. Call the function for resetting the active state for hitting the puck:

8. Implement the function for setting up the state from external objects:

239

9. Implement the function for retrieving the distance from paddle to puck:

10.

11. Enable the agent component and calculate the distance to puck:

12. Check whether the puck is out of reach. If so, just follow it:

13. Attack the puck if it is within reach:

240

Implement the function for resetting the parameter for hitting the puck:

15.

16. Implement the function for predicting the puck's position in the future:

17. Cast a ray, given the position and the direction of the puck:

18. Check the hit results:

241

19. Check whether it collides with the goal wall. Base case:

20. Check whether it collides with a side wall. Recursive case:

21. Enter the recursive case. This is done from the loop:

How it works…
The agent calculates the puck's next hits given its current velocity until the calculation results
in the puck hitting the agent's wall. This calculation gives a point for the agent to move its
paddle toward it. Furthermore, it changes to the attack mode when the puck is close to its
paddle and is moving towards it. Otherwise, it changes to idle or defend depending on the
new distance.

See also
 Chapter 1, Movement recipes Pursuing and evading and Arriving and leaving recipes

Devising a table-football competitor
Another common table game that has made its way into the digital realm is table football. In
this recipe, we will create a competitor, imitating the way a human plays the game and using
some techniques that emulate human senses and limitations.

242

Getting ready
In this recipe, we will use the knowledge gained from Chapter 5, Agent Awareness, and the
emulation of vision.

First, it is important to have a couple of data structures, as shown in the following code:

How to do it…
This is a very extensive recipe. We'll build a couple of classes, one for the table-football bar
and the other for the main AI agent that handles the bars, as follows:

1. Create a class for the bar that will be handled by the AI:

2. Implement the function:

243

3.

Check whether it is locked (after beginning a movement). This is optional:

5. Validate the speed:

6. Validate the state and make a decision out of it:

7. Execute the transition:

8.

244

9. Implement the internal body for the transition:

10. Restore the bar to its default position:

11. Implement the function for moving the bar from side to side:

12. Create the class for the main AI:

245

13. Implement the function for initializing the piece list:

Start implementing the function:

15.

246

16. Implement the function. This will handle the prediction at 30 frames
per second:

17.

18.

19. Get the object of the collision and check whether it is a bar and whether it has been
checked already:

247

20. Check, if it is a bar, whether it is among those closest to the ball:

21. Get the bar collision point and calculate the movement for blocking the ball with the
closest piece:

22. Otherwise, recalculate with the wall's hitting point:

23. Create the function for setting the pieces to the proper bar:

Create a dictionary for comparing the pieces' depth:

25. Set up the dictionary:

248

26. Start mapping the pieces to the bars:

27. Assign pieces to their proper dictionary entry:

28.

29. Validate it:

30. Declare the necessary member values:

31. Traverse the list of bars:

249

32. Retrieve the found index:

33. Implement the function for calculating the vector axis:

35. Initialize all the necessary member variables:

36. Traverse the bars:

37. Sort the distances:

250

38. Get the distances and use the dictionary in an inverse way:

39. Retrieve the bar IDs:

Implement the function for checking whether a given object is a bar:

Start implementing the function for retrieving the closest piece of a bar, given
a position:

necessary member variables:

Traverse the list of pieces and calculate the closest one:

251

Retrieve the piece:

How it works…
The table-football competitor draws on the skills developed from the air-hockey rival. This
means casting rays to get the trajectory of the ball and moving the nearest bar considering
the pieces. It also moves the bar, depending on whether the rival is attacking or defending,
so that it can block the ball or let it go further.

See also
 The Seeing using a collider-based system recipe in Chapter 5, Agent Awareness

Creating mazes procedurally
This is a completely new recipe oriented toward having fun while creating maps and levels
procedurally. The main recipe works by creating a maze completely procedurally. Furthermore,
we will explore a gray area, where both level design and procedurally generated content meet.

Getting ready
In this recipe, it is important to understand the concepts of Binary Space Partitioning and the

Chapter 2, Navigation.

How to do it…
We will implement two classes, one for the nodes to be partitioned and one for holding all the
nodes and the maze representation, as follows:

1. Create the class and its members:

252

2. Implement the class constructor:

3.

Validate its base case:

5. Initialize all the necessary function variables:

6. Compute the horizontal split:

7. Compute the vertical split:

253

8. Create the class for handling the dungeon and declare all its member variables:

9. Implement the function for splitting:

10. Implement the function for drawing the maze using the nodes:

254

How it works...
We divided the maze into two big data structures. The logical side that is handled via the BSP
nodes and the visual and construction representation handled by the main class. The
idea behind this representation is to divide the space twice as many times as necessary until
a condition is met. This is the Binary Space Partitioning.

from the bottom to the top (leaves to root).

There's more...
 There's another technique that is a little bit simpler, but it requires more input from

the art or level-design team. It creates a level with BFS using random pieces in a list
and connects them.

 The pieces can be rotated.

 It can be improved by using the random function learned previously and tuning the
pieces' placement on the list.

See also
 The Finding the shortest path in a grid with BFS recipe in Chapter 2, Navigation

Implementing a self-driving car
What fun is a

cheater agents that disable
certain limitations that are always imposed on the player, such as physics behaviors; this is
because these limitations can create erratic or imprecise behaviors when evaluated by AI. In
our case, we will approach the problem organically using techniques from a previous chapter.

Getting ready
In this chapter, we will explore how to create an autonomous car using advanced techniques
from Chapter 1, Movement, such as following a path and avoiding walls. So, it is important to
have grasped the knowledge behind them.

255

How to do it...
1. Create an empty GameObject.

2. Attach the Agent component.

3. Attach the FollowPath component.

Attach the WallAvoid component.

5. Create the track using the track pieces with the PathNode component.

6. Tag the track borders as walls.

7. Make sure the track is complete.

How it works...
By working with the system from the previous chapters, we can easily create a simple, yet

See also
 The Following a path and Avoiding walls recipes in Chapter 1, Movement

banding system
We usually want to create experiences that adapt to the player, and racing games are a good

In this case, we will explore a middle ground for this using a framework that allows you to
come up with your own heuristic for managing the speed of the vehicle given its status. It
doesn't matter if it is an arcade racing game or simulation; the framework aims to work in a
similar fashion for both the cases.

Getting ready
It is important to have grasped the basic skills in Chapter 1, Movement, in order to be able
to develop a strategy to extend the framework for your own needs—that is, understanding the
principles of how the agent class works and how the behaviors help the player move toward
an object. In a nutshell, we are talking about vector operations.

256

How to do it...
We will implement three different classes for handling low-level and high-level AIs as follows:

1. Create the class for the basic rival agent:

2. Implement the function:

3. function for handling the target position to follow:

5. Create the class for handling the ghost rider or an invincible racer:

257

6.

7. Override the function, so the invincible car can adapt to the player's
behavior:

8. Implement its special behavior:

9. Create the class for handling the high-level AI:

10. Assign each racer its random position in the rubber system. We are using a circular
rubber band in this case:

258

How it works…
The high-level AI rubber system assigns the positions to be held by the racers. Each racer has
its own behavior for adjusting speed, especially the invincible racer. This agent works as the
center of the mass of the rubber band. If its dance from the player exceeds the threshold, it
will adapt. Otherwise, it'll stay just the same, wobbling.

