
[167]

Using Fuzzy Logic to Make
Your AI Seem Alive

Fuzzy logic is a fantastic way to represent the rules of your game in a more
nuanced way. Perhaps more so than other concepts in this book, fuzzy logic is
a very math-heavy topic. Most of the information can be represented purely in
mathematical functions. For the sake of teaching the important concepts as they

Unity's built-in features. Of course, if you are the type who loves math, this is a
somewhat deep topic in that regard, so feel free to take the concepts covered in
this book and run with them! In this chapter, we'll learn:

What fuzzy logic is

Where fuzzy logic is used

How to implement fuzzy logic controllers

What the other creative uses for fuzzy logic concepts are

The simplest way to
previous chapters, we looked at transition rules as true or false or 0 or 1 values. Is

multiple values were being evaluated, all of the values had exactly two outcomes
thus, they are binary. In contrast, fuzzy values represent a much richer range of

stop looking at values as 0 or 1, and we start looking at them as 0 to 1.

[168]

A common example used to describe fuzzy logic is temperature. Fuzzy logic allows us

summer day and ascertain that it is warm, without knowing the temperature precisely.

is cold, again, without knowing the exact temperature. These concepts of cold, cool,
warm, and hot are fuzzy ones. There is a good amount of ambiguity as to at what point
we go from warm to hot. Fuzzy logic allows us to model these concepts as sets and
determine their validity or truth by using a set of rules.

When making decisions, people, as it is common to say, has some gray area. That is
to say, it's not always black and white. The same concept applies to agents that rely
on fuzzy logic. Say you hadn't eaten in a few hours, and you were starting to feel

could look at the time right after a meal as 0, and 1 would be the point where you
approached starvation. The

When making decisions, there are many factors that determine the choice. This leads
into another aspect of fuzzy logic controllers—they can take into account as much

considered one value for making that decision, which is the time since the last time
you ate, however, there are other factors that can affect this decision, such as, how
much energy you're expending and how lazy you are at that particular moment.

multiple input values can affect the output, which we can think of as the "likeliness
to have another meal".

[169]

input, the fuzzy logic provides an output. What that output means to your game is
entirely up to you. We've primarily looked at how the inputs would affect a decision,
which, in reality, is taking the output and using it in a way the computer, our agent,
can understand. However, the output can also be used to determine how much
of something to do, or how fast something happens, or for how long something

a "nitro-boost" ability that lets it expend a resource to go faster. Our 0 to 1 value
can represent a normalized amount of time for it to use that boost or perhaps a
normalized amount of fuel to use.

Picking fuzzy systems over binary systems
As with the previous systems we covered in this book, and with most things in game
programming, we must evaluate the requirements of our game and the technology
and hardware limitations when deciding on the best way to tackle a problem.

As you might imagine, there is a performance cost associated with going from

reasons we may opt out of using it. Of course, being a more complex system doesn't
necessarily always mean it's a better one. There will be times when you just want the

While there is some truth to the old adage "the simpler, the better", one should also
take into account the saying "everything should be made as simple as possible, but
not simpler". Though the quote is largely attributed to Albert Einstein, the father of
relativity, it's not entirely clear who said it. The important thing to consider is the
meaning of the quote itself. You should make your AI as simple as your game needs
it to be, but not simpler. Pac-Man's AI works perfectly for the game—it's just simple
enough. However, rules say that simple would simply be out of place in a modern
shooter or strategy game.

Using fuzzy logic
Once you understand the simple concepts behind fuzzy logic, it's easy to start
thinking of the many, many ways in which it can be useful. In reality, it's just
another tool in our belt, and each job requires different tools.

Fuzzy logic is great at taking some data; evaluating it in a way similar to how a
human would (albeit in a much simpler way) and then translating the data back
to information usable by the system.

[170]

Fuzzy logic controllers have several real-world use cases. Some are more obvious
than others, and while these are by no means one-to-one comparisons to our usage
in game AI, they serve to illustrate a point:

Heating ventilation and air conditioning (HVAC) systems: The temperature
example when talking about fuzzy logic is not only a good theoretical
approach to explaining fuzzy logic, but also a very common real-world
example of fuzzy logic controllers in action.

Automobiles: Modern automobiles come equipped with very sophisticated
computerized systems, from the air conditioning system (again) to fuel
delivery to automated breaking systems. In fact, putting computers in
automobiles has resulted in far more efficient systems than the old binary
systems that were sometimes used.

Your smartphone: Ever notice how your screen dims and brightens

operating systems look at ambient light, the color of the data being
displayed, and the current battery life to optimize screen brightness.

Washing machines: Not my washing machine necessarily as it's quite old,
but most modern washers (from the last 20 years) make some use of fuzzy
logic. Load size, water dirtiness, temperature, and other factors are taken
into account from cycle to cycle to optimize water use, energy consumption,
and time.

interesting uses of fuzzy logic, and I mean besides your computer, of course. While
these are "neat" uses of the concept, they're not particularly exciting or game-related.
I'm partial to games involving wizards, magic, and monsters, so let's look at a more
relevant example.

Implementing a simple fuzzy logic system
For this example, we're going to use my good friend, Bob, the wizard. Bob lives
in an RPG world, and he has some very powerful healing magic at his disposal.
Bob has to decide when to cast this magic on himself based on his remaining
health points (HPs).

In a binary system, Bob's decision-making process might look like this:

[171]

We see that Bob's health can be in one of the two states—above 50 or not. Nothing
wrong with that, but let's have a look at what the fuzzy version of this same scenario
might look similar to, starting with determining Bob's health status:

A typical function representing fuzzy values

Before the panic sets in upon seeing charts and values that may not quite mean

might be to try to map the probability that Bob will cast a healing spell to how much
health he is missing. That would, in simple terms, just be a linear function. Nothing
really fuzzy about that—it's a linear relationship, and while it is a step above a binary
decision in terms of complexity, it's still not truly "fuzzy".

Enter the concept of a membership function. It's sort of the key to our system as it
allows us to determine how true a statement is. In this example, we're not simply
looking at raw values to determine whether or not Bob should cast his spell, but
instead we're breaking it up into logical chunks of information for Bob to use in
order to determine what his course of action should be.

In this example, we're looking and comparing three statements and evaluating, not
only how true each one is, but which is the most true:

Bob is in critical condition

Bob is hurt

Bob is healthy

[172]

membership to a set. Once we have this information, our agent can determine what
to do with it next.

At a glance, you'll notice it's possible for two statements to be true at a time. Bob
can be in a critical condition and hurt. He can also be somewhat hurt and a little bit
healthy. You're free to pick the thresholds for each, but in this example, let's evaluate
these statements as per the preceding graph. The vertical value represents the degree

At 0 percent health, we can see that the critical statement evaluates to 1. It is
absolutely true that Bob is critical when his health is gone.

At 40 percent health, Bob is hurt, and that is the truest statement.

At 100 percent health, the truest statement is that Bob is healthy.

Anything outside of these absolutely true statements is squarely in fuzzy territory.
For example let's say Bob's health is at 65 percent health. In that same chart, we can
visualize it like this:

Bob's health at 65 percent

[173]

The vertical line drawn through the chart at 65 represents Bob's health. As we can
see, it intersects both sets, which means that Bob is a little bit hurt, but he's also
kind of healthy. At a glance, we can tell, however, that the vertical line intercepts
the "hurt" set at a higher point in the graph. We can take this to mean that Bob is

percent healthy, and 0 percent critical. Let's take a look at this in code; open up our
 scene in Unity. The hierarchy will look like this:

The hierarchy setup in our sample scene

[174]

The important game object to look at is . This contains the logic that
we'll be looking at. In addition to that, we have our containing all of the

the Unity-generated and , which we can disregard. There isn't
anything special going on with the setup for the scene, but it's a good idea to become
familiar with it, and you are encouraged to poke around and tweak it to your heart's
content after we've looked at why everything is there and what it all does.

With the game object selected, the inspector will look similar to the
following image:

The Fuzzy Example game object inspector

Our sample implementation is not necessarily something you'll take and implement
as it is in your game, but it is meant to illustrate the previous points in a clear
manner. For the different sets, we use Unity's for each one.
It's a quick an easy way to visualize the very same lines in our earlier graph.

Unfortunately, there is no straightforward way to plot all the lines in the same graph,
so we use a separate for each set. In the preceding image, they are
labeled "Critical", "Hurt", and "Healthy". The neat thing about these curves is that
they come with a built-in method to evaluate them at a given point (t). For us, t does t
not represent time, but rather the amount of health Bob has.

[175]

As in the preceding graph, the Unity example looks at a HP range of 0 to 100.
These curves also provide a simple user interface for editing the values. You can
simply click on the curve in the inspector. That opens up the curve editing window.
You can add points, move points, change tangents, and so on, as shown in the
following screenshot:

Unity's curve editor window

Our example focuses on triangle-shaped sets. That is, linear graphs for each set. You
are by no means restricted to this shape, though it is the most common. You could
use a bell curve or a trapezoid for that matter. To keep things simple, we'll stick to
the triangle.

You can learn more about Unity's editor
at

.

that we'll be looking at later in this chapter. The names of these variables are fairly
self-explanatory, however, so there isn't much guesswork to be done here.

[176]

Next, we can take a look at how the scene is set up. If you play the scene, the game
view will look something similar to the following screenshot:

A simple UI to demonstrate fuzzy values

We can see that we have three distinct groups, representing each statement from
the Bob the wizard example. How healthy is Bob, how hurt is Bob, and how critical

dynamically adjust to represent the actual degree of membership.

There is an input box in which you can type a percentage of health to use for the
test. No fancy controls are in place for this, so be sure to enter a value from 0 to 100.
For the sake of consistency, let's enter a value of into the box and then press the
Evaluate! button.

This will run some code, look at the curves, and yield the exact same results we saw
in our graph earlier. While this shouldn't come as a surprise (the math is what it is,
after all), there are fewer things more important in game programming than testing

[177]

After running the test by hitting the Evaluate! button, the game scene will look more
similar to the following screenshot:

This is how Bob is doing at 65 percent health

Again, the values turn out to be 0.125 (or 12.5 percent) healthy and 0.375 (or 37.5
percent) hurt. At this point, we're still not doing anything with this data, but let's
take a look at the code that's handling everything:

We start off by declaring some variables. The is simply a constant we use
to plug into our label. We replace the with the real value.

[178]

Next, we declare the three variables that we mentioned earlier.
Making these public or otherwise accessible from the inspector is key to being able
to edit them visually (though it is possible to construct curves by code), which is the
whole point of using them.

The following four variables are just references to UI elements that we saw earlier in

that our curves will evaluate into:

The method doesn't require much explanation. We simply update our
labels here so that they initialize to something other than the default text. The

null checking for our input string. We don't want to try and parse an empty string, so
we return out of the function if it is empty. As mentioned earlier, there is no check in
place to validate that you've input a numerical value, so be sure not to accidentally
input a non-numerical value or you'll get an error.

For each of the variables, we call the method,
where we replace
we ran, that value would be . Then, we update our labels once again to display the
values we got. The code looks similar to this:

[179]

We simply take each label and replace the text with a formatted version of our
 constant that replaces the with the real value.

Expanding the sets
We discussed this topic in detail earlier, and it's important to understand that
the values that make up the sets in our example are unique to Bob and his pain
threshold. Let's say we have a second wizard, Jim, who's a bit more reckless. For him,
"critical" might be below 20 rather than 40, as it is for Bob. This is what I like to call
a "happy bonus" from using fuzzy logic. Each agent in the game can have different

rules or have some degree or randomness determine the limits, and every single
agent would behave uniquely and respond to things in their own way.

the fuzzy logic controller, all that matters is that you determine what truth you're
trying to arrive at, and how you get there; it doesn't care how many different sets or
possibilities exist in that system.

Defuzzifying the data
Yes, that's a real (sort of) word. We've started with some crisp rules, which, in the
context of fuzzy
(again, a sort of real word) by assigning membership functions to sets. The last step
of the process is to defuzzify the data and make a decision. For this, we use simple
Boolean operations, that is:

Now, at this point, you may be saying, "Hold on a second. That looks an awful lot

controller, how does our agent understand what it means to be critical, hurt, or

own to a computer.

[180]

By using fuzzy logic, we're now able to use these vague terms, infer something from
them, and do concrete things; in this case, cast a healing spell. Furthermore, we're
able to allow each agent to determine what these vague terms mean to them at an
individual level, allowing us not only to achieve unpredictability at an individual
level, but even amongst several similar agents.

The process is described best in the following diagram:

The fuzzy logic controller flow

At the end of the day, they are still computers, so we're bound to the most basic thing
computers understand: 0s and 1s:

We start with, crisp data, that is, concrete, hard values that tell us something
very specific.

The fuzzification step is where we get to decide the abstract or ambiguous
data that our agent will need to make a decision.

During the inference step, our agent gets to decide what that data means. The
agent gets to determine what is "true" based on a provided set of rules, meant
to mimic the nuance of human decision-making.

The defuzzification step takes this human-friendly data and converts it into
simple computer-friendly information.

We end with crisp data, ready for our wizard agent to use.

[181]

Using the resulting crisp data
The data output from a fuzzy controller can then be plugged into a behavior tree or

to make decisions. In fact, we can take a whole bunch of them to achieve the most
realistic or interesting result (as convincing as a magic-using wizard can be, anyway).

determine whether or not to cast the heal spell:

another set of questions that really don't mean much to our agent on their own:

a lot of mana. It would not be uncommon for a human player to ask this question as
they choose to cast a magic spell in a game or use an ability. "Enough" may literally
be a binary amount, but more likely, it would be "enough to cast heal, and have some
left for other spells". We start with a straightforward crisp value—the amount of
mana the agent has available that we then stick to our fuzzy logic controller and get
some crisp data at the other end.

You can get creative with the input for your fuzzy logic controllers. You could, for
example, just take a raw "strength" value from your enemy, but you could also take
the difference between your "defensive" stat and the enemy's "attack power", and
plug that into your fuzzy logic controller. Remember, there is no restriction on how
you process the data before it goes into the controller.

[182]

Chapter 2, Finite State Machines and You, a simple
distance check can do wonders for a simple design, but at times, you may need more
than just that. You may need to take into account obstacles along the way—is that

questions could even be a nested set of statements that we need to evaluate.

Now, if we were to take that last question with the nested controllers, it might start
to look a little familiar.

why you couldn't build a behavior tree using fuzzy logic to evaluate each node.

these two concepts.

Using a simpler approach
If you choose to stick with a simple evaluation of the crisp output, in other words,

what your agent is going to do. The pseudo code would look like this:

We can check for conditions that are not true:

[183]

And we can also string multiple conditions together:

bonus" of using fuzzy logic—the crisp output abstracts much of the decision-making

Rather than having to parse through all the possibilities in your statements
and ending up with a bazillion of them or a gazillion switch statements, you can
neatly bundle pockets of logic into fewer, more meaningful chunks of data.

In other words, you don't have to nest all the statements in a procedural way that is

logic controller ends up being much more object-oriented and friendlier.

Finding other uses for fuzzy logic
Fuzzy data is very peculiar and interesting in that it can be used in tandem with all
of the major concepts we introduced in this book. We saw how a series of fuzzy logic

imagine how it can be used with an FSM.

Merging with other concepts
Sensory systems also tend to make use of fuzzy logic. While seeing something can
be a binary condition, in low-light or low-contrast environments, we can suddenly
see how fuzzy the condition can become. You've probably experienced it at night—

which then turns out to be a trash bag, some other animal, or perhaps even your
imagination. The same can be applied to sounds and smells.

which, a fuzzy logic controller can easily help fuzzify and make more interesting.

[184]

Creating a truly unique experience
Our agents can use fuzzy logic to mimic personalities. Some agents may be more
"brave" than others. Suddenly, their personal characteristics—how fast they are, how
far they can run, their size, and so on, can be leveraged to arrive at the decisions that
are unique to that agent.

Personalities can be applied to enemies, allies, friends, NPCs, or even to the rules of
the game. The game can take in crisp data from the player's progress, style of play, or

and personalized challenge.

Fuzzy logic can even be used to dole out the technical game rules, such as number
of players in a given multiplayer lobby, the type of data to display to the player, and
even how players are matched against other players. Taking the player's statistics
and plugging those into a matchmaking system can help keep the player engaged
by pitting him against the players that either match his style of play in a cooperative
environment or players of similar skill level in a competitive environment.

Summary
Glad to see that you've made it to the end of the chapter. Fuzzy logic tends to
become far less fuzzy once you understand the basic concepts. Being one of the
more math-pure concepts in the book, it can be a little daunting if you're not familiar
with the lingo, but when presented in a familiar context, the mystery fades away,
and you're left with a very powerful tool to use in your game.

We learned how fuzzy logic is used in the real world, and how it can help illustrate
vague concepts in a way that binary systems cannot. We also learned how to
implement our own fuzzy logic controllers using the concepts of member functions,
degrees of membership, and fuzzy sets. Lastly, we explored the various ways in which
we can use the resulting data, and how it can help make our agents more unique.

working together.

