
[185]

How It All Comes Together
We've almost arrived at the end of our journey. We learned all the essential tools
to implement fun AI in our Unity game. We stressed on this throughout the course
of the book, but it's important to drive the point home: the concepts and patterns
we learned throughout the book are individual concepts, but they can, and often
should, be used in harmony to achieve the desired behavior from our AI. Before we
say our goodbyes, we'll look at a simple tank-defense game that implements some
of the concepts that we learned to achieve a cohesive "game", and I only say "game"
because this is more of a blueprint for you to expand upon and play with. In this
chapter, we will:

Integrate some of the systems we've learned in a single project

Create an AI tower agent

Create our tank

Set up the environment

Test our sample scene

Setting up the rules
Our "game" is quite simple. While the actual game logic, such as health, damage, and
win conditions, are left completely up to you, our example focuses on setting you up
to implement your own tank-defense game.

When deciding on what kind of logic and behavior you'll need from your agent, it's

as you implement different features, those rules can change, but having a set of
concepts nailed down early on will help you pick the best tools for the job.

[186]

It's a bit of a twist on the traditional tower-defense genre. You don't build towers to
stop an oncoming enemy; you rather use your abilities to help your tank get through
a gauntlet of towers. As your tank traverses the maze, towers along the path will
attempt to destroy your tank by shooting explosive projectiles at it. To help your
tank get to the other side, you can use two abilities:

Boost: This ability doubles up your tank's movement speed for a short period
of time. This is great for getting away from a projectile in a bind.

Shield: This creates a shield around your tank for a short period of time to
block oncoming projectiles.

have a limited number of states and don't require the extra complexity of a behavior
tree. The towers will also need to be able to be aware of their surroundings, or

needs to be able to navigate the environment on its own, so we use a NavMesh and
 to achieve this.

Creating the towers
In the sample prefab in the
folder. The tower itself is quite simple; it's just a group of primitives arranged
to look like a cannon, as you can see in the following screenshot:

Our beautiful primitive shape tower

[187]

target, but it is immobile in any other way. Once the tank gets far enough away,
the tower cannot chase it or reposition itself.

In the sample scene, there are several towers placed throughout the level. As they
are prefabbed, it's very easy to duplicate towers, move them around, and reuse them
between the levels. Their setup is not terribly complicated either. Their hierarchy
looks similar to the following screenshot:

The Tower hierarchy in the inspector

The breakdown of the hierarchy is as follows:

: Technically, this is the base of the tower—the cylinder that holds the
rest of it up. This serves no function but to hold the rest of the parts.

: The gun is where most of the magic happens. It is the sphere mounted
on the tower with the barrel on it. This is the part of the tower that moves
and tracks the player.

 and : The muzzle is located at the tip of the barrel. This is
used as the spawn point for the bullets that come out of the gun.

[188]

We mentioned that the gun is where the business happens for the tower, so
let's dig in a bit deeper. The inspector with the gun selected looks similar to
the following screenshot:

The inspector for the gun

[189]

There is quite a bit going on in the inspector here. Let's look at each of the
components that affect the logic:

Sphere Collider: This is essentially the tower's range. When the tank enters
this sphere, the tower can detect it and will lock on to it to begin shooting at it.
This is our implementation of perception for the tower. Notice that the radius
is set to . The value can be changed to whatever you liked, but 7 seems to be a
fair value. Also, note that we set the checkbox to true. We don't want
this sphere to actually cause collisions, just to fire trigger events.

Rigidbody: This component is required for the collider to actually work
properly whether objects are moving or not. This is because Unity does not
send collision or trigger events to game objects that are not moving, unless
they have a rigid body component.

Tower: This is the logic script for the tower. It works in tandem with the state
machine and the state machine behavior, but we'll look at these components
more in depth shortly.

Animator: This is our tower's state machine. It doesn't actually
handle animation.

Before we look at the code that drives the tower, let's take a brief look at the state
machine. It's not terribly complicated, as you can see in the following screenshot:

The state machine for the tower

[190]

There are two states that we care about: (the default state) and . The
transition from to happens when the bool is set to

, and the reverse transition happens when the bool is set to .

The state has a class attached to it, which we'll
look at next:

When we enter the state and
player. In the provided example, the player is tagged as so that we are able
to get a reference to it using . Next, we fetch a reference to
the component attached to our tower prefab and set its bool to .

[191]

As long as we're in the state, gets called on each frame. Inside this
method, we get a reference to the (which the component is
attached to) via the provided reference. We use this reference to the gun
to have it track the tank using .

Alternatively, as the bool of the is set to ,
this logic could be handled in the script, instead.

Lastly, as we exit the state, gets called. We use this method to do a little
cleanup. We reset the rotation of our gun to indicate that it is no longer tracking the
player, and we set the Tower's bool back to .

As we can see, this interacts with the script, so
let's look at next for a bit more context as to what's happening:

[192]

First up, we declare our variables and properties.

We need a reference to our state machine; this is where the variable comes
in. The next three variables, , , and all relate to our
tower's shooting logic. We'll see how that works up later.

As we mentioned earlier, the muzzle is the location the bullets will spawn from
when shooting. The projectile is the prefab we're going to instantiate.

Lastly, is get and set via . While this book, in general, strays
away from enforcing any particular coding convention, it's generally a good idea
to keep values private unless explicitly required to be public, so instead of making

 public, we provide a property for it to access it remotely (in this case,
from the behavior):

[193]

Next up, we have all our methods, and the meat and potatoes of the tower logic.
Inside the

 coroutine. We'll look at why is a
coroutine before coming back to the messages.

Coroutines can be a tricky concept to grasp if you're not already
familiar with them. For more information on how to use them,
check out Unity's documentation at

.

As we don't want our tower to be able to constantly shoot projectiles at the tank

to create a cushion between each shot. After we call and
set to , we start a counter from 0 up to , before we set

 to again. The method handles the instantiation
of the projectile and shoots it out toward the direction the gun is pointing to using

. The actual bullet logic is handled elsewhere, but we'll look
at that later.

Lastly, we have our two events—one for when something enters the
trigger attached to this component and another for when an object leaves said trigger.
Remember the
This variable gets set to here when we enter the trigger and back to as we
exit. Essentially, when the tank enters the gun's sphere of "vision", it instantly locks on
to the tank, and the lock is released when the tank leaves the sphere.

[194]

Making the towers shoot
If we look back at our component in the inspector, you'll notice that a
prefab named is assigned to the variable. This prefab can be
found in the folder of the sample project. The prefab looks similar to the
following screenshot:

The bullet prefab

The game object is nothing fancy; it's just a bright yellow orb. There is a
sphere collider attached to it, and once again, we must make sure that
is set to and it has a (with turned) attached to it. We
also have a component attached to the prefab. This handles the
collision logic. Let's take a look at the code:

[195]

walls tagged as , so in our method, we check that
the trigger this projectile is colliding with is either the player or the environment. If it
is, we instantiate an prefab and destroy the projectile. Let's take a look at
the prefab, which looks similar to this:

Inspector with the explosion prefab selected

[196]

As we can see, there is a very similar game object here; we have a sphere collider
with set to . The main difference is an component. When
this is instantiated, it expands as an explosion would, then we use the
state machine to destroy the instance when it transitions out of its explosion state.
The controller looks similar to the following screenshot:

The animation controller driving the explosion prefab

You'll notice the state has a behavior attached to it. The code inside this
behavior is fairly simple:

All we're doing here is destroying the instance of the object when we exit the state,
which occurs when the animation ends.

this may be a good place to trigger any secondary effects such as
damage, environment particles, or anything you can think of!

Setting up the tank
The example project also includes a prefab for the tank, which is simply called
(you guessed it) , inside the folder.

The tank itself is a simple agent with one goal—reach the end of the maze. As
mentioned earlier, the player has to help the tank out along the way by activating

[197]

By now you should be fairly familiar with the components you'll encounter along the
way, except for the component attached to the prefab. Let's take a look at

There are a number of values that we want to be able to tweak easily, so we declare

[198]

Our method simply does some setup for our tank; it grabs the
component and sets its destination to be equal to our goal variable. We will discuss
more on that soon.

We use the method to catch the input for our abilities. We've mapped to
 and to . As these are timed abilities, much like the towers' ability to

shoot, we implement these via coroutines:

The two abilities' logic is very similar. The enables and disables the

time equal to has passed, we turn it off, and allow the player to use
the again.

The main difference in the code is that rather than enabling and disabling a
game object, the calls on a particle system we assign via the inspector
and also sets the speed of our to double the original value, before
resetting it at the end of the ability's duration.

[199]

straightforward pattern that you can use to implement new abilities
in your own variant of the project. You can also add additional logic
to customize the shield and boost abilities here.

The sample scene already has an instance of the tank in it with all the variables
properly set up. The inspector for the tank in the sample scene looks similar to
the following screenshot:

Inspector with the tank instance selected

As you can see in the preceding screenshot, we've assigned the variable to a
transform with the same name, which is located in the scene at the end of the maze
we've set up. We can also tweak the duration of our abilities here, which is set to 3 by
default. You can also swap out the art for the abilities, be it the particle system used
in the boost or the game object used for the shield.

The last bit of code to look at is the code driving the camera. We want the camera to
follow the player, but only along its value, horizontally down the track. The code to
achieve this looks similar to this:

[200]

As you can see, we simply set the target position of the camera equal to its current
position on all axes, but we then assign the z axis of the target position to be the same
as our target's, which if you look in the inspector, has been set to the transform of
the tank. We then use linear interpolation () to smoothly translate the
camera from its current position to its target position every frame.

Setting up the environment
As our tank uses a component to traverse the environment, we need
to set up our scene using static game objects for the bake process to work properly, as
we learned in Chapter 4, Finding Your Way. The maze is set up in a way so that towers
are spread out fairly reasonably and that the tank has plenty of space to maneuver
around easily. The following screenshot shows the general layout of the maze:

The gauntlet our tank must run through

[201]

As you can see, there are seven towers spread out through the maze and a few twists
and turn for our tank to break line of sight. In order to avoid having our tank graze
the walls, we adjust the settings in the navigation window to our liking. By default,
the example scene has the agent radius set to 1.46 and the step height to 1.6. There
are no hard rules for how we arrived at these numbers; it is just trial and error.

After baking the NavMesh, we'll end up with something similar to what's shown in
the following screenshot:

The scene after we've baked our NavMesh

Feel free to rearrange the walls and towers to your liking. Just remember that any
blocking objects you add to the scene must be marked as static, and you have to
rebake the navigation for the scene after you've set everything up just the way you
like it.

[202]

Testing the example
The example scene is ready to play right out of the box, so if you didn't get the itch to
modify any of the default settings, you can just hit the Play button and watch your
tank go. You'll notice we've added a canvas with a label explaining the controls to
the player. There is nothing fancy going on here; it's just a simple "press this button
to do that" kind of instruction:

Simple instructions to guide the player

The example project is a great example to expand upon and to have fun with.
With the concepts learned throughout this book, you can expand on the types of
towers, the tank's abilities, the rules, or even give the tank a more complex, nuanced
behavior. For now, we can see that the concepts of state machines, navigation,
perception and sensing, and steering, all come together in a simple, yet amusing
example. The following screenshot shows the game in action:

The tank-defense game in action

[203]

Summary
So, we've reached the end. In this chapter, we took a few of the concepts covered
in the book and applied them to create a small tank-defense game. We built upon

Chapter 2, Finite
State Machines and You
towers' behavior. We then enhanced the behavior by combining it with sensing and

to help our tank AI navigate through our maze-like level, through a gauntlet of
autonomous AI towers with one thing on their simple AI minds—destroy!

