
Adaptation
Having good AI for our characters is more than just giving them simple tasks to
perform; we'd like to have our characters realistically react to the game environment.
Game events such as seeing new objects appear or having a bomb go off in a scene
should cause a reaction in the AI. Having the AI adapt to the environment is a huge
topic, but we will focus on the basic ways to have AI adapt to the environment. In
this chapter, we will look at taking AI skills we learned in previous chapters and
combining them to create AI characters that adapt to the game environment in a
realistic way, changing their tasks based on game events.

In this chapter, you will be:

Creating AI characters that react and adapt to multiple game events
Setting up more complex AI characters in RAIN
Getting to know the importance of creating larger AI scenes with REACT AI

An overview
In previous
how to make characters patrol a path, have them wander an environment, change
state with behavior trees, and sense objects in the game environment. These are all
important, but it's more important to understand how we can combine these different
elements to make AI that works well in a large game environment. We will need
characters that can navigate an environment to perform tasks but then change based
on game events that occur. To do this, the game needs to be designed at a high level,

goals are things such as wanting an enemy to patrol an area until it sees the player and
then start to chase and attack him. From there, the different aspects of sensing need
to be designed for the level, deciding what objects need to be tagged, so they can be

and high-level goals can be created using existing nodes and custom actions.

Adaptation

[82]

RAIN's motor system. We have been using the motor system with the move node
but not directly. The motor system controls moving the character, and it is available
through the motion panel in RAIN, the icon with two feet. This is how the motion
panel in RAIN looks:

RAIN supports three different kinds of motors:

A basic motor, which we will use for most cases

A character controller that uses the standard Unity character controller
for movement

A Mecanim controller (we will discuss Mecanim with RAIN in
Chapter 10, Animation and AI)

The movement is target based: you give the motor a target position to go to
and use the motor to get there.

Unity's character controller is very popular, but if you want to use
it with RAIN, stick with RAIN's character controller. There are
some known issues mixing Unity's basic character controller and

Chapter 7

[83]

motors are pretty straightforward:

Speed / Rotation Speed
move and rotate.

Close Enough Distance / Close Enough Angle
the character needs to move to a target.

Face Before Move Angle
needs to be facing its target before moving. This prevents weird movements
with very close targets.

Step Up Height
used to customize behavior for things such as steep terrain and staircases. We
will discuss step up heights more in Chapter 11, Advanced NavMesh Generation.

We use the motor system from a Custom Action option in our demo, but you can
use motors to move the character from any component.

Here's a little snippet that shows how to move from a standard Unity character script:

First, we get attached to the character. Then, we call
 to make sure that the AI system has the latest transforms

(position and rotation) from the character before updating. Next, we set
to a variable as , so the AI system knows where we want
to go. Then, we call to update the character's transforms in the AI system,

 to update our game to show the
new transforms from the AI system. Using these methods, we can update game
characters at any time.

With customized movements, we can have our characters adapt in any way we
want. The best way to see how this works is to look at a demo. The demo that
we will look at in this chapter is an extension of the ship demo from Chapter 6,
Sensors and Activities. We will have a ship in a level searching for gold pieces,
but we'll extend it to make the gold pieces appear more random and dynamic
in the level over time. Then, we will have a bomb with a timer and when it goes
off all of ships will be destroyed and stop updating their AI. This will illustrate
how we can have AI characters react to game events.

Adaptation

[84]

RAIN's demo
The basic start of the demo will be similar to our others, a ground with several
walls around for our ships to travel. This is how the basic starting point of our
demo should look:

The basic starting point of our demo

 and add it
to the ground plane. This class will be used to provide higher-level information

level. Here is the class with the random position chooser method:

Chapter 7

[]

In the preceding code, we are able to ask for a random position at anytime from
anywhere in the game. In the method for the class, we store the
and positions for it, and as we don't want positions on the very edge of the
level, it is scaled to 90 percent by multiplying by . The and positions
are static, so we can add a static method, , that returns a
random 2D position on the level with a constant height. We'll be using this method
in several other spots in the code.

that the spot never overlaps any of the walls in the scene, but to make
the code simpler for this demo, we won't worry about this edge case.
However, you would do this in a production game.

Reacting to game events
Next, we want to have some ships chase gold pieces, but we'll make it more dynamic
than in the last demo. Create a Sphere object with a gold color and add a RAIN entity
to it (by navigating to RAIN | Create Entity) and add a Visual Aspect called Gold to
it so that AI characters can sense it. Turn this gold piece into a prefab. Instead of just
placing it manually in the scene, we want them to be spawned randomly; add the
code mentioned in the following screenshot to the script:

In the Unity editor, drag the Gold prefab to the in this script. This
script randomly spawns a gold piece somewhere in the level every 2 seconds by
tracking the time using . If you run the game now, you'll see a gold
piece created randomly every 2 seconds. Next, we need ships to collect these.

Adaptation

[86]

Our AI ship characters will pick a random spot on the level and travel there and then
after arriving, pick another random spot to go to; however, if they see a piece of gold
along the way, they will stop and pick it up. To do this, create a ship object with a
RAIN visual sensor with a horizontal angle of 120, a vertical angle of 45, and a range of
15. The behavior tree for the ship will be straightforward. Set the root node to parallel
and one Detect child set to look for Gold and store its form in the variable. Add
another child to the root with a constraint to test if gold == null. If gold is not null,
it should move to pick up the gold; if it is, pick a random spot on the level and move
there. To pick a random spot in the level, create a new Custom Action option with
a new script called . Set the following code for it:

Chapter 7

[87]

The method uses our static
level and sets it to the variable in the AI's memory. Next, add a move
node to go to the variable. If you need a review of how to set up these
nodes, check Chapter 6, Sensors and Activities. The behavior tree for the ship should
look like the following screenshot:

Change the ship to a prefab and add a few ships to the level. Now if you run the
game, your ships will wander around, but if they see gold, they will race to pick

Using RAIN's motor directly
However, if you run the game now, you'll see a problem. As expected, the ship
will look for gold, and if it doesn't see any, it will pick a random position on the
level and move toward it. If it sees gold along the way, it doesn't stop to pick it
up; it keeps moving to its target location.

Adaptation

[88]

Our root node is a parallel type, so the character is always trying to detect
gold, but it still ignores it while traveling. This is because our move node will
keep running until it hits its destination, and even if it sees something, it is not

move node underneath
ChooseRandomSpot Custom Action. Then, change ChooseRandomAction
to the code shown in the following screenshot:

Chapter 7

[89]

This is a big change, so let's discuss what is going on. The method is the same
as before: store a random position to move to in memory. However, our action method

we don't need to keep moving to our target, so we return failure. Then, we get our
 variable out of memory and check the position of the variable of

our AI. If it is within one unit of the goal, we say that this is close enough and return
success. Finally, if we don't have gold and aren't close to , we call on
the AI's motor system to move to the target and keep updating it by returning the
running state.

With this update, we could have used a regular class variable to store
, but we keep it in memory to keep things consistent.

If you run the demo now, we will see the ships moving around as new gold appears
in more expected ways, as shown in the following screenshot:

You can see the ships wandering and chasing gold in the preceding screenshot.

Adaptation

[90]

Adding large game events
As the last step of this demo, let's have a giant bomb go off in the scene and then have
all of our AI stop to simulate having them all destroyed. To start, create a large red
sphere to represent the bomb and turn it into a prefab. We will have the AI characters
react to this bomb in the standard way by adding a RAIN Entity component to it and
a visual aspect and have visual sensors on the ships detect it. But to show we can
access the AI systems directly, let's have the bomb go off using the class:

Here, we added a bomb transform to the script, so drag the bomb prefab in the
Unity prefab over to it. There
the bomb goes off and is instantiated into the scene. At this point, we grab all the
AIs in the scene and send them a message, in this case, to disable it. We could have
made this more complex than a simple disabling; this just shows us that we can
have our game AI react to game events from anywhere. If you run the demo now,
the ships stop when the bomb goes off, as shown in the following screenshot:

Chapter 7

[91]

In the preceding screenshot, you can see the ships reacting to a bomb.

The React AI
We have been using RAIN for our adaption so far, but there is no reason you cannot
create a demo like the one we just did with React. The basic behavior tree and node
logic can stay the same. The main difference is that React doesn't use a built-in sensor

done through Unity's built-in ray casting methods to query the scene. The following
is a method adapted from React's sample that can be used with React to determine

the player and comparing the angle of it and the forward direction of the AI character.

Adaptation

[92]

This is a simple and quick test that does a basic check, in terms of collision detection,
and this is called the broad phase. Then, the Unity physics system is used to ray
cast from the character to the target; this is quite expensive but a more accurate test.
Using this for sensing and React's built-in behavior tree demos, like the one in this
chapter, can be created.

Summary
In this chapter, we looked at how we can make our AI adapt to events in the game.
This was done using methods we learned in the previous chapters, and we also
took a look at RAIN's motor system to allow our adaptions to be more customizable.
Our demos in this chapter have been pretty straightforward, but there is no reason
why this demo couldn't be extended to have more events to send and more reactions

one important thing, which is yet to be discussed: the player. In the next chapter,
we will discuss how AI characters attack by adding a player to our scene and
having our characters react and attack. We will discuss how to create enemies
for the player and have them attack the player.

