
Attacking

the player is the main game mechanic and the most noticeable AI in the game.
We will discuss the common methods for attack AI, how to make an enemy
character chase and attack the player, and then have the enemy character take
cover and hide from the player.

In this chapter, you will learn about:

Designing attack AI in RAIN 2.1.4
Creating basic chase attack AI
Creating and covering attack AI
Having AI attack in groups

An overview of attack AI
Attack AI is a large and much studied subject. When you start dealing with things
such as different attack moves based on different player actions or having enemies
coordinate attacks, the AI can become quite complex. However, designing good AI
that attacks is the same as designing for other AI scenarios we have looked at so far
in this book. First, we need sensors for our AI characters to perceive game events
and to create aspects in the game world, tagging what they can sense. Then, we

different behaviors is the main part of setting up attack AI.

We'll look at two foundational AI attack behaviors in our demos in this chapter.

to stop and attack. The second behavior we will look at is the duck and cover type,
where the enemy attacker will retreat to a safe position after attacking, and this is
based on set navigation points. These are both best illustrated through demos,
so let's start one now.

Attacking

[94]

The attack demo
Like our previous demos, we will start with a basic scene with a ground and walls.
The demos here will involve an enemy ship attacking a player, so add a ship to
the scene, name it , and add simple controls to move the ship around. Also,
tint the color of the material to make the player ship stand out from the enemy
ship that we'll add in a moment. Of course, the player ship isn't an AI, so it doesn't
need a RAIN AIRig, but it does need to have a RAIN Entity component. With the
player selected, go to RAIN | Create Entity. Next, it needs a visual aspect for the AI
enemies to see it; from the Add Aspect dropdown, select Visual Aspect and rename
the aspect to . This provides a base for our attack demo. This is how the RAIN
attack demos will look with a player ship:

Next, we need an enemy for the attack. The enemies will also be ship models, and
as we are focusing on just the AI, we won't worry about the actual game mechanics

player respond to being hit, and so on. Usually, these kind of attack AI states involve
playing different animations for the AI, and we will explore these more in Chapter 10,
Animation and AI; for now, we just need a simple visualization to illustrate the attack.

the enemy is attacking and if so, start blinking.

To set this up, add a ship to the scene and add an AIRig to it by going to RAIN
| Create AI Memory tab on the ship AI
(the light bulb icon) and from Add Variable, select bool. Rename the variable
to and leave it to the default value of false. The memory with the

 variable set should look like the following screenshot:

Chapter 8

[]

To use this variable, create a new script called and add it to the enemy
ship. Change the code to the following:

Here, we store the AIRig for the entity by retrieving it at the start. Then, we get
the variable from the working memory, and if the enemy is attacking,
the ship starts blinking green. If it's not attacking, the ship stays its default color,
which is white. Create a new prefab in Unity named and drag the ship into
it. Now we have enemies that can start attacking the player, and we can start
setting up our AI.

Attacking

[96]

The chase and attack demo
In the
sees the player, it starts moving toward it and then attacks it. A simple version of this
would be to have the enemy wander with a visual sensor to detect the player, and if
it sees the player, the enemy will move toward it and attack it. This would work but
it really wouldn't be any different from the demo from Chapter 7, Adaptation, where
the ship had to search for and collect gold. To make it a little different, we'll use a
two-sensor approach. We will have one larger sensor on the enemy that detects the
player, and if the enemy senses the player aspect, it will start chasing the player.
Then, there is a second smaller sensor that attacks the player, that is, if it senses the
player, then the enemy stops chasing and it instead attacks. This gives the effect
of chasing the player but when the enemy gets closer, it stops and starts attacking,
instead of just chasing and attacking at the same time.

To begin setting these up, go to the Perception tab on the enemy AI rig (the little
eye icon tab) and add a visual sensor called . This should be pretty
large and cover most of the scene. Then, add a second visual sensor and call it

. Make this one about a third the size of . The setup
should look something like the following screenshot:

Chapter 8

[97]

The preceding screenshot shows our enemy setup with two sensors: one will be used
to chase and the smaller one will be used to attack.

Using multiple sensors of the same type is a powerful tool to have
AI characters react to things differently based on how far away they are.

Now we have our sensor, we can work on the behavior tree for the enemy. Select the
Mind tab of the enemy AI rig and open the behavior editor. Create a new behavior
tree called ChaseAndAttack. The enemy will detect and chase or attack the player
at the same time, so right-click on the root node and change its type to Parallel.
Then, add two detect nodes, one for the chase sensor and one for the attack sensor.
For the chase detect node, set Sensor to "ChaseSensor", Aspect to "player", and
the form variable to (remember to watch out for the quotes). For the
attack sensor, set Sensor to "AttackSensor", Aspect also to "player", and the form
variable to . Then, add a constraint node, which will go off if either
of the sensors has found something, so set its constraint to playerChase != null ||
playerAttack != null. Then, add a selector node under the constraint node that will
handle the attack and chase logic. The multiple visual sensors behavior tree should
look like the following screenshot:

Remember the selector node will continue to run its children until one succeeds, so
 has a value (that is, it is not null), we

will set to true, and if not, set it to false. Add a constraint node under
the selector that checks for attacks and set its constraint to playerAttack != null. As
the variable is not null, add an expression node to start attacking
with an expression value of , which is equal to true.

Attacking

[98]

Then, if is null, we want the attack to stop, so add another expression
with , which is equal to false. The attack setup on our enemy behavior
tree should look like the following screenshot:

If you run the demo now, when the player gets sensed by , the enemy
will start attacking and stop when the player is out of range.

However, there's no reason why you couldn't add additional attack
nodes and states to make the behavior more realistic.

Finally, we need to have the enemy chase the player if it is not attacking, so add a
custom node called to the bottom of the selector. Create a script for it
and set the code to the following:

Chapter 8

[99]

This GameObject and then just moves to the player's
position. This is unlike the code in the demos in Chapter 7, Adaptation, where we
did a check to stop moving if the character gets very close to the moving target.
When the character gets close to the target, it will stop moving and start attacking,
so we don't need checks. If you run the demo now, the enemy will chase the player
and start attacking:

The preceding screenshot shows how an enemy attacking the player will look
at the end.

Creating cover AI
Our AI enemy will just keep attacking the player as long as it is close enough to
the ship. However, this isn't very realistic; we'd like the enemy ship to attack for a
little bit but then duck and head for cover. We could have this hiding behavior be

constant value of 5 seconds; after attacking the player for 5 seconds, it will hide.

 variable to our behavior tree that is
set to true after 5 seconds of attacking. Create a new constraint node under the root
parallel node with the playerAttack != null && isHiding == false expression. This
node's children start when is valid and we are not already hiding
from the player. Add a sequencer node under this constraint so it will go through

Seconds
value of 5 and Returns set to Success. Next, copy the don't attack node and add
it below the timer so that the enemy won't attack as it's running to hide.

Attacking

[100]

Then, add another expression node to set to true; its expression value
should be isHiding = true. The behavior tree should be like the following screenshot:

Finally, we

to take. To do this, create a few navigation targets by going to RAIN | Create
Navigation Target and add them to some good cover spots for the enemy.
Here's how they can be arranged:

This is how we set up navigation targets for hiding spots.

Next, we need to have the AI choose a point to take cover. Lastly, we need to select
and move to a hiding spot. To organize the tree better, add a selector node above
the hiding constraint node. Then, add another constraint node below the selector
node and create a custom action node with a new class.

Chapter 8

[101]

The tree should look like the following screenshot:

When creating larger trees, giving the nodes descriptive names
helps keep the tree organized and easy to understand.

The following is the code for our action to choose a hiding spot:

Attacking

[102]

Here, when objects and
store them in the
one closest to the enemy. Once we have the closest target, we store it in
and start moving to it.

As an addition to this, we can have the enemy start attacking again after hiding.
Add the following line right before is returned:

This just updates the memory to set the hiding value to false and the attack will
restart. This is a simple extension and the attack can be easily extended to better
attack behaviors.

Group attacks
We spent Chapter 4, Crowd Chaos, and Chapter 5, Crowd Control, looking at group
behaviors, and we won't go through a full demo of attacking in groups here, but
we should discuss a few main points. With the demo in this chapter, we can add
more ships and they will attack in a fairly believable manner. However, there are
ways to make it better by considering other enemy positions.

When the enemy ships choose a cover position, a simple method for a group is
to track each position if an enemy is already there. Then, when selecting a cover
position, each enemy won't go to one that is occupied, making the enemies more
diverse in their attacks.

Similarly, when attacking the player, instead of just going as close as possible,
the attack pattern can be coordinated. Instead of just going directly to the player,

and attack it. The key to these group behaviors is enemies taking into account
the behavior of other enemies.

Chapter 8

[103]

Summary
In this chapter, we looked at attack AI, focusing on how to have enemies chase and
attack a player and then how to evade. These are basic attack behaviors and can be

this when creating groups of enemies.

In the next chapter, we will look at another special AI case, which is driving and cars.
However, instead of using a general-purpose AI system such as RAIN or React AI,

to create realistic driving.

