Decision Making

In this chapter, we will cover the following recipes:

» Choosing through a decision tree

» Working a finite-state machine

» Improving FSMs: hierarchical finite-state machines

» Combining FSMs and decision trees

» Implementing behavior trees

»  Working with fuzzy logic

» Representing states with numerical values: Markov system
» Making decisions with goal-oriented behaviors

Introduction

Making decisions or changing the game flow according to the game's state could get
really messy if we rely only on simple control structures. That's why we will learn different
decision-making techniques that are flexible enough to adapt to different types of games,
and robust enough to let us build modular decision-making systems.

The techniques covered in the chapter are mostly related to trees, automata, and matrices.
Also, some topics require a good understanding of how recursion, inheritance, and
polymorphism work, so it is important that we review those topics if that is the case.

www.it-ebooks.info



Decision Making

Choosing through a decision tree

One of the simplest mechanisms for tackling decision-making problems is decision trees,
because they are fast and easy to grasp and implement. As a consequence, it's one of the
most used techniques today; it is extensively used in other character-controlled scopes such
as animations.

Getting ready

This recipe requires a good understanding of recursion and inheritance as we will constantly
be implementing and calling virtual functions throughout the sections.

How to do it...

This recipe requires a lot of attention due to the number of files that we will need to handle.
Overall, we will create a parent class DecisionTreeNode, from which we will derive the
other ones. Finally, we will learn how to implement a couple of standard decision nodes:

1. First, create the parent class, DecisionTreeNode:
using UnityEngine;
using System.Collections;
public class DecisionTreeNode : MonoBehaviour

{

public virtual DecisionTreeNode MakeDecision ()

{

return null;

}

2. Create the pseudo-abstract class, Decision, deriving from the parent class,
DecisionTreeNode
using UnityEngine;
using System.Collections;
public class Decision : DecisionTreeNode
{
public Action nodeTrue;
public Action nodeFalse;

public virtual Action GetBranch ()

{

return null;

ez

www.it-ebooks.info



Chapter 3

Define the pseudo-abstract class, Action:

using UnityEngine;
using System.Collections;
public class Action : DecisionTreeNode

{

public bool activated = false;

public override DecisionTreeNode MakeDecision ()

{

return this;

}

Implement the virtual function, LateUpdate:
public virtual void LateUpdate ()

{
if (lactivated)
return;
// Implement your behaviors here

}

Create the final class, DecisionTree:

using UnityEngine;

using System.Collections;

public class DecisionTree : DecisionTreeNode

{

public DecisionTreeNode root;
private Action actionNew;
private Action action0ld;

}

Override the function, MakeDecision:

public override DecisionTreeNode MakeDecision ()

{
}

Finally, implement the Update function:

return root.MakeDecision|() ;

void Update ()
actionNew.activated = false;
actionOld = actionNew;
actionNew = root.MakeDecision() as Action;
if (actionNew == null)

i

www.it-ebooks.info



Decision Making

actionNew = actionOld;
actionNew.activated = true;

Decision nodes choose which path to take, calling the MakeDecision function recursively.
It is worth mentioning that branches must be decisions and leaves must be actions. Also, we
should be careful not to create cycles within the tree.

= keep the previous action running

We can create custom decisions and actions starting from the pseudo-abstract classes we
already created. For example, a decision on whether to attack or run away from the player.

The custom Boolean decision:

using UnityEngine;
using System.Collections;

public class DecisionBool : Decision

{

public bool valueDecision;
public bool valueTest;

public override Action GetBranch ()

{

if (valueTest == valueDecision)

www.it-ebooks.info



Chapter 3

return nodeTrue;
return nodeFalse;

)
)
Working a finite-state machine

Another interesting yet easy-to-implement technique is finite-state machines (FSM). They
move us to change the train of thought from what it was in the previous recipe. FSMs are
great when our train of thought is more event-oriented, and we think in terms of holding
behavior until a condition is met changing to another.

Getting ready

This is a technique mostly based on automata behavior, and will lay the grounds for the next
recipe, which is an improved version of the current one.

How to do it...

This recipe breaks down into implementing three classes from the ground up, and everything
will make sense by the final step:

1. Implement the Condition class:

public class Condition

{

public virtual bool Test ()

{

return false;

}
}

2. Define the Transition class:

public class Transition

{

public Condition condition;
public State target;

www.it-ebooks.info



Decision Making

3.

{55

Define the State class:

using UnityEngine;
using System.Collections.Generic;

public class State : MonoBehaviour

{
}

Implement the Awake function:

public List<Transition> transitions;

public virtual void Awake ()

{

transitions = new List<Transition> () ;
// TO-DO
// setup your transitions here

Define the initialization function:

public virtual void OnEnable ()

// TO-DO
// develop state's initialization here

}

Define the finalization function:

public virtual void OnDisable ()

{
// TO-DO
// develop state's finalization here

}

Define the function for developing the proper behavior for the state:
public virtual void Update ()

{
// TO-DO
// develop behaviour here

}

Implement the function for deciding if and which state to enable next:
public void LateUpdate ()

{

foreach (Transition t in transitions)

{

if (t.condition.Test ())

{

www.it-ebooks.info



Chapter 3

t.target.enabled = true;
this.enabled = false;

return;

}

Each state is a MonoBehaviour script that is enabled or disabled according to the transitions
it comes from; we take advantage of LateUpdate in order not to change the usual train of
thought when developing behaviors, and we use it to check whether it is time to transition

to a different state. It is important to disable every state in the game object apart from the
initial one.

conditions transition

There's more...

In order to illustrate how to develop child classes deriving from Condition, let's take a look
at a couple of examples: one that is aimed at validating a value in a range and the other one
at being a logic comparer between two conditions:

The code for ConditionFloat is as follows:

using UnityEngine;
using System.Collections;

public class ConditionFloat : Condition

{

public float valueMin;
public float valueMax;
public float valueTest;

public override bool Test ()

www.it-ebooks.info



Decision Making

{

if (valueMax >= valueTest && valueTest >= valueMin)
return true;
return false;

}
The following is an example of code for ConditionAnd:

using UnityEngine;
using System.Collections;

public class ConditionAnd : Condition

{

public Condition conditionA;
public Condition conditionB;

public override bool Test ()

{

if (conditionA.Test () && conditionB.Test())
return true;
return false;

Improving FSMs: hierarchical finite-state

machines

Finite-state machines can be improved in terms of having different layers or hierarchies. The
principles are the same, but states are able to have their own internal finite-state machine,
making them more flexible and scalable.

Getting ready

This recipe is based on top of the previous recipe, so it is important that we grasp and
understand how the finite-state machine recipe works.

www.it-ebooks.info



Chapter 3

How to do it...

We will create a state that is capable of holding internal states, in order to develop multi-level
hierarchical state machines:

1.

2.

Create the StateHighLevel class deriving from State:
using UnityEngine;

using System.Collections;

using System.Collections.Generic;

public class StateHighLevel : State

{
}

Add the new member variables to control the internal states:

public List<State> states;
public State stateInitial;
protected State stateCurrent;

Override the initialization function:

public override void OnEnable ()

{

if (stateCurrent == null)
stateCurrent = stateInitial;
stateCurrent.enabled = true;

}

Override the finalization function:

public override void OnDisable ()

{

base.OnDisable() ;
stateCurrent.enabled = false;
foreach (State s in states)

{

s.enabled = false;

}

The high-level state class lets us activate the internal FSMs when it is enabled and recursively
disables its internal states when disabled. The working principle stays the same thanks to the
list of states and the way the parent class resolves the transitioning process.

I

www.it-ebooks.info



Decision Making

Kindly refer to the recipe, Working a finite-state machine.

Combining FSMs and decision trees

Given the previous recipes' ease of implementation and learning, we can combine them to
develop a powerful decision-making system with benefits from both worlds, making it a very
powerful technique in many different scenarios.

Getting ready

We will learn how to make modifications and develop child classes in order to create a finite-
state machine that is capable of creating complex transitions based on decision trees.

How to do it...

This recipe relies on creating a couple of child classes from the one we already know and
making a little modification:
1. Create a new action class that holds a reference to a state:

using UnityEngine;
using System.Collections;

public class ActionState : DecisionTreeNode

{

public State state;

public override DecisionTreeNode MakeDecision ()

{

return this;

}

2. Implement a transition class that is able to hold a decision tree:
using UnityEngine;
using System.Collections;

public class TransitionDecision : Transition

{

public DecisionTreeNode root;

public State GetState()

100

www.it-ebooks.info



Chapter 3

ActionState action;
action = root.MakeDecision() as ActionState;
return action.state;

}

3. Modify the LateUpdate function in the State class to support both transition types:

public void LateUpdate ()

{

foreach (Transition t in transitions)

{

if (t.condition.Test())

{

State target;
if (t.GetType () .Equals (typeof (TransitionDecision)))

TransitionDecision td = t as TransitionDecision;
target = td.GetState() ;

}

else

target = t.target;
target.enabled = true;
this.enabled = false;
return;

The modification on the State class lets us deal with the new type of transition. The new
child classes are specific types created to trick both systems and obtain the desired result of
having an action node that doesn't do anything itself, but returns a new state to be activated
after choosing with a decision tree.

See also

Refer to the following recipes:

» Choosing through a decision tree

» Working a finite-state machine

www.it-ebooks.info



Decision Making

Implementing behavior trees

Behavior trees can be seen as a synthesis of a number of other artificial intelligence
techniques, such as finite-state machines, planning, and decision trees. In fact, they share
some resemblance to FSMs, but instead of states, we think in terms of actions spanned
across a tree structure.

Getting ready

This recipe requires us to understand Coroutines.

How to do it...

Just like decisions trees, we will create three pseudo-abstract classes for handling the process:

1. Create the base class, Task:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class Task : MonoBehaviour

{

public List<Task> children;
protected bool result = false;
protected bool isFinished = false;

}

2. Implement the finalization function:

public virtual void SetResult (bool r)

{

result = r;
isFinished = true;

}

3. Implement the function for creating behaviors:

public virtual IEnumerator Run()

{

SetResult (true) ;
yield break;

102

www.it-ebooks.info



Chapter 3

Implement the general function for starting behaviors:

public virtual IEnumerator RunTask()

{
}

Create the ConditionBT class:

yield return StartCoroutine (Run()) ;

using UnityEngine;
using System.Collections;

public class ConditionBT : Task

{

public override IEnumerator Run ()

{
igFinished = false;
bool r = false;
// implement your behaviour here
// define result (r) whether true or false

SetResult (r) ;
yield break;

}

Create the base class for actions:
using UnityEngine;
using System.Collections;

public class ActionBT : Task

{

public override IEnumerator Run ()

{
isFinished = false;
// implement your behaviour here

return base.Run() ;

}

Implement the Selector class:
using UnityEngine;
using System.Collections;

public class Selector : Task

www.it-ebooks.info



Decision Making

{

public override void SetResult (bool r)

{
if (r == true)
igFinished = true;

public override IEnumerator RunTask ()

{

foreach (Task t in children)
yield return StartCoroutine (t.RunTask()) ;

}

8. Implement also the Sequence class:

using UnityEngine;
using System.Collections;

public class Sequence : Task

{

public override void SetResult (bool r)

{
if (r == true)

igFinished = true;

}

public override IEnumerator RunTask ()

{

foreach (Task t in children)
yield return StartCoroutine (t.RunTask()) ;

}

Behavior trees work in a similar fashion to decision trees. However, the leaf nodes are called
tasks and there are some branch nodes that are not conditions, but run a set of tasks in one
of two ways; Selector and Sequence. Selectors run a set of tasks and return true when one of
their tasks return true, it can be seen as an OR node. Sequences run a set of tasks and return
true when all of their tasks return true, it can be seen as an AND node.

For more theoretical insights, refer to lan Millington's book, Artificial Intelligence for Games.

104

www.it-ebooks.info



Chapter 3

Working with fuzzy logic

There are times when we have to deal with gray areas, instead of binary-based values, to make
decisions, and fuzzy logic is a set of mathematical techniques that help us with this task.

Imagine that we're developing an automated driver. A couple of available actions are steering
and speed control, both of which have a range of degrees. Deciding how to take a turn, and
at which speed, is what will make our driver different and possibly smarter. That's the type of
gray area that fuzzy logic helps represent and handle.

Getting ready

This recipe requires a set of states indexed by continuous integer numbers. As this
representation varies from game to game, we handle the raw input from such states, along
with their fuzzification, in order to have a good general-purpose fuzzy decision maker. Finally,
the decision maker returns a set of fuzzy values representing the degree of membership of
each state.

How to do it...

We will create two base classes and our fuzzy decision maker:

1. Create the parent class, MembershipFunction:

using UnityEngine;
using System.Collections;

public class MembershipFunction : MonoBehaviour

{

public int stateId;
public virtual float GetDOM (object input)

{

return 0f;

}

2. Implement the FuzzyRule class:

using System.Collections;
using System.Collections.Generic;

public class FuzzyRule

{

public List<int> statelds;
public int conclusionStateId;

www.it-ebooks.info



Decision Making

3. Create the FuzzyDecisionMaker class:
using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class FuzzyDecisionMaker : MonoBehaviour

{
}

4. Define the decision-making function signature and its member variables:

public Dictionary<int,float> MakeDecision (object[] inputs,
MembershipFunction[] [] mfList, FuzzyRule[] rules)

{

Dictionary<int, float> inputDOM = new Dictionary<int,
floats> () ;

Dictionary<int, float> outputDOM = new Dictionary<int,
floats> () ;

MembershipFunction memberFunc;

// next steps

}

5. Implement the loops for traversing the inputs and populate the initial degree of
membership (DOM) for each state:

foreach (object input in inputs)

{
int r, c¢;

for (r = 0; r < mfList.Length; r++)

{

for (¢ = 0; ¢ < mfList[r].Length; c++)

{
}

// next step

}

// steps after next

6. Define the body of the innermost loop, which makes use of the proper membership
functions to set (or update) the degrees of membership:

memberFunc = mfList [r] [c];
int mfId = memberFunc.stateld;
float dom = memberFunc.GetDOM (input) ;
if (!inputDOM.ContainsKey (mfId))
{
inputDOM.Add (mfId, dom) ;
outputDOM.Add (mfId, 0f);

106

www.it-ebooks.info



Chapter 3

}

else
inputDOM [mfId] = dom;

7. Traverse the rules for setting the output degrees of membership:

foreach (FuzzyRule rule in rules)
{
int outputId = rule.conclusionStatelId;
float best = outputDOM [outputId] ;
float min = 1f;
foreach (int state in rule.statelds)
{
float dom = inputDOM [state] ;
if (dom < best)
continue;
if (dom < min)
min = dom;
}
outputDOM [outputId] = min;

}

8. Finally, return the set of degrees of membership:
return outputDOM;

We make use of the boxing/unboxing technique for handling any input via the object data
type. The fuzzification process is done with the help of our own membership functions, derived
from the base class that we created in the beginning. Then, we take the minimum degree of
membership for the input state for each rule and calculate the final degree of membership for
each output state given the maximum output from any of the applicable rules.

There's more...

We can create an example membership function to define whether an enemy is in enraged
mode, knowing that its life points (ranging from O to 100) are equal to or less than 30.

The following is the code for the example MFEnraged class:

using UnityEngine;
using System;
using System.Collections;

public class MFEnraged : MembershipFunction

fio7—

www.it-ebooks.info



Decision Making

{

public override float GetDOM (object input)

{
if ((int)input <= 30)
return 1f;
return 0f;

}

It's worth noting that it is a common requirement to have a complete set of rules; one for each
combination of states from each input. This makes the recipe lack in scalability, but it works
well for a smaller number of input variables and a small number of states per variable.

For more theoretical insights regarding (de)fuzzification and scalability weaknesses, please
refer to lan Millington's book, Artificial Intelligence for Games.

Representing states with numerical values:

Markov system

Having learned about fuzzy logic, it may do us well to mix some approaches and probably
extend the functionality with finite-state machines. However, fuzzy logic doesn't work directly
with values—they have to be defuzzified before they have a meaning within its scope. A Markov
chain is a mathematical system that allows us to develop a decision-making system that can
be seen as a fuzzy state machine.

Getting ready

This recipe uses the matrix and vector classes that come with Unity to illustrate the theoretical
approach and make a working example, but it can be improved with our own matrix and vector
classes with the proper implementation of the required member functions, such as vector-
matrix multiplication.

How to do it...

1. Create the parent class for handling transitions:

using UnityEngine;
using System.Collections;

public class MarkovTransition : MonoBehaviour

{

108

www.it-ebooks.info



Chapter 3

2.

public Matrix4x4 matrix;
public MonoBehaviour action;

}

Implement the IsTriggered member function:
public virtual bool IsTriggered()

{

// implementation details here
return false;

}

Define the Markov state machine with its member variables:
using UnityEngine;

using System.Collections;

using System.Collections.Generic;

public class MarkovStateMachine : MonoBehaviour

{

public Vector4 state;

public Matrix4x4 defaultMatrix;

public float timeReset;

public float timeCurrent;

public List<MarkovTransition> transitions;
private MonoBehaviour action;

}

Define the Start function for initialization:
void Start ()

{
}

Implement the Update function:

timeCurrent = timeReset;

void Update ()
{
if (action != null)
action.enabled = false;

MarkovTransition triggeredTransition;
triggeredTransition = null;
// next steps

www.it-ebooks.info



Decision Making

6. Look for a triggered transition:

foreach (MarkovTransition mt in transitions)

{

if (mt.IsTriggered())

{
triggeredTransition = mt;
break;

}

7. If found, compute its matrix into the game state:

if (triggeredTransition != null)
timeCurrent = timeReset;
Matrix4x4 matrix = triggeredTransition.matrix;
state = matrix * state;
action = triggeredTransition.action;

}

8. Otherwise, update the countdown timer and compute the default matrix into the
game state, if necessary:

else
timeCurrent -= Time.deltaTime;
if (timeCurrent <= 0f)
state = defaultMatrix * state;
timeCurrent = timeReset;
action = null;

}

We define a game state based on the numerical value of the vector 4 member variable, with
each position corresponding to a single state. The values in the game state change according
to the matrix attached to each transition. When transitions are triggered, the game state
changes, but we also have a countdown timer to handle a default transition and change the
game accordingly. This is useful when we need to reset the game state after a period of time
or just apply a regular transformation.

www.it-ebooks.info



Chapter 3

For more theoretical insights regarding the Markov process' application to game Al, please
refer to lan Millington's book, Artificial Intelligence for Games.

Making decisions with goal-oriented

behaviors

Goal-oriented behaviors are a set of techniques aimed at giving agents not only a sense of
intelligence, but also a sense of free will, once a goal is defined, and given a set of rules to
choose from.

Imagine that we're developing a trooper agent that needs to only reach the endpoint of
capturing the flag (the main goal), while taking care of its life and ammo (the inner goals for
reaching the first). One way of implementing it is by using a general-purpose algorithm for
handling goals, so the agent develops something similar to free will.

Getting ready

We will learn how to create a goal-based action selector that chooses an action considering
the main goal, avoids unintentional actions with disrupting effects, and takes an action's
duration into account. Just like the previous recipe, this requires the modeling of goals in
terms of numerical values.

How to do it...

Along with the action chooser, we will create base classes for actions and goals:

1. Create the base class for modeling actions:
using UnityEngine;

using System.Collections;

public class ActionGOB : MonoBehaviour

{

public virtual float GetGoalChange (GoalGOB goal)

{
}

public virtual float GetDuration ()

{
}

return 0f;

return 0f;

T

www.it-ebooks.info



Decision Making

2.

Create the GoalGOB parent class with member functions:
using UnityEngine;
using System.Collections;

public class GoalGOB

{

public string name;
public float value;
public float change;

}

Define the proper functions to handle discontentment and change over time:

public virtual float GetDiscontentment (float newValue)

{

return newValue * newValue;

public virtual float GetChange ()

{
}

Define the ActionChooser class:

return 0f;

using UnityEngine;
using System.Collections;

public class ActionChooser : MonoBehaviour

{
}

Implement the function for handling unintentional actions:

public float CalculateDiscontentment (ActionGOB action, GoalGOBI[]
goals)
float discontentment = 0;
foreach (GoalGOB goal in goals)
float newValue = goal.value + action.GetGoalChange (goal) ;
newValue += action.GetDuration() * goal.GetChange() ;
discontentment += goal.GetDiscontentment (newValue) ;

}

return discontentment;

www.it-ebooks.info



Chapter 3

6. Implement the function for choosing an action:
public ActionGOB Choose (ActionGOB[] actions, GoalGOB[] goals)

{
ActionGOB bestAction;
bestAction = actions[0];
float bestValue = CalculateDiscontentment (actions[0], goals) ;
float value;
// next steps

}

7. Pick the best action based on which one is least compromising:

foreach (ActionGOB action in actions)

{

value = CalculateDiscontentment (action, goals);
if (value < bestValue)

{

bestValue = value;
bestAction = action;

}

8. Return the best action:

return bestAction;

The discontentment functions help avoid unintended actions, depending on how much a
goal's value changes, in terms of an action and the time it takes to be executed. Then, the
function for choosing an action is taken care of by computing the most promising one in terms
of the minimum impact (discontentment).

www.it-ebooks.info



www.it-ebooks.info



