
[17]

Finite State
Machines and You

In this chapter, we'll expand our knowledge about the FSM pattern and its uses in
games and learn how to implement it in a simple Unity game. We will create a tank
game with sample code, which comes with this book. We'll be dissecting the code
and the components in this project. The topics we'll cover are as follows:

Understanding Unity's state machine features

Creating our own states and transitions

Creating a sample scene using examples

Unity 5 introduced state machine behaviors, which are a generic expansion of the
Mecanim animation states that were introduced in the 4.x cycle. These new state
machine behaviors, however, are independent of the animation system, and we will
learn to leverage these new features to quickly implement a state-based AI system.

In our game, the player will be able to control a tank. The enemy tanks will be
moving around in the scene with reference to four waypoints. Once the player tank
enters their visible range, they will start chasing us and once they are close enough to
attack, they'll start shooting at our tank agent. This simple example will be a fun way
to get our feet wet in the world of AI and state FSMs.

Finding uses for FSMs
Though we will primarily focus on using FSMs to implement AI in our game to make
it more fun and interesting, it is important to point out that FSMs are widely used
throughout game and software design and programming. In fact, the new system in

Finite State Machines and You

[18]

We can categorize many things into states in our daily lives. The most effective
patterns in programming are those that mimic the simplicity of real-life designs,
and FSMs are no different. Take a look around and you'll most likely notice a
number of things in one of any number of possible states. For example, is there a

grade school for a moment and think about the time when we were learning about
the different states a matter can be in. Water, for example, can be solid, liquid, or
gaseous. Just like in the FSM pattern in programming, where variables can trigger a
state change, water's transition from one state to another is caused by heat.

The three distinct states of water

Though there are no hard rules beyond these of our own implementation in
programming design patterns, it is a characteristic of FSMs to be in one and only
one state at a time. With that said, transitions allow for a "hand-off" of sorts between
two states, just like ice slowly melts into water. Additionally, an agent can have
multiple FSMs, driving any number of behaviors, and states can even contain state
machines of their own. Think Christopher Nolan's Inception, but with state machines
instead of dreams.

Chapter 2

[19]

Creating state machine behaviors
Now that we're familiar with the concept of a state machine, let's get our hands dirty
and start implementing our very own.

As of Unity 5.0.0f4, state machines are still part of the animation system, but

them. Don't be alarmed or confused if you see code referencing the
component or the asset as it's merely a quirk of the current
implementation. It's fathomable that Unity will address this in a later version, but the
concepts will likely not change.

Creating the AnimationController asset
The asset is a type of asset within Unity that handles states
and transitions. It is, in essence, an FSM, but it also does much more. We'll focus on
the FSM portion of its functionality. An animator controller can be created from the
Assets menu, as shown in the following image:

Finite State Machines and You

[20]

Once you create the animator controller, it will pop up in your project assets folder,
ready to be named. We'll name it . When you select the animator controller,
unlike most other asset types, the hierarchy is blank. That is because animation
controllers use their own window. You can simply click on Open in the hierarchy to
open up the Animator window, or open it in the Window menu, as you can see in
the following screenshot:

Be sure to select Animator and not Animation as these are two
different windows and features entirely.

Let's familiarize ourselves with this window before moving forward.

Chapter 2

[21]

Layers and Parameters
Layers, as the name implies, allow us to stack different state machine levels on top
of each other. This panel allows us to organize the layers easily and have a visual
representation. We will not be doing much in this panel for now as it primarily
relates to animation, but it's good to be familiar with it. Refer to the following

Here is a summary of the items shown in the previous screenshot:

Add layer: This button creates a new layer at the bottom of the list.

Layer list: These are the layers currently inside the animator controller.
You can click to select a layer and drag-and-drop layers to rearrange them.

Layer settings: These are animation-specific settings for the layer.

Second, we have the Parameters panel, which is far more relevant to our use of the
animator controller. Parameters are variables that determine when to transition
between states, and we can access them via scripts to drive our states. There are four
types of parameters: , , , and . You should already be familiar

animator controller, not to be confused with physics triggers, which do not apply
here. Triggers are just a means to trigger a transition between states explicitly.

Finite State Machines and You

[22]

The following screenshot shows the elements in the Parameters panel:

Here is a summary of the items depicted in the previous screenshot:

Search: We can quickly search through our parameters here. Simply type in
the name and the list will populate with the search results.

Add parameter: This button lets you add new parameters. When you click on
it, you must select the parameter type.

Parameter list: This is the list of parameters you've created. You can assign
and view their values here. You can also reorder the parameters to your
liking by dragging-and-dropping them in the correct order. This is merely for
organization and does not affect functionality at all.

Lastly, there is an eyeball icon, which you can click to hide the Layers and
Parameters panels altogether. When the panels are closed, you can still create
new layers by clicking on the Layers dropdown and selecting Create New Layer:

Chapter 2

[23]

The animation controller inspector
The animation controller inspector is slightly different from the regular inspector
found throughout Unity. While the regular inspector allows you to add components
to the game objects, the animation controller inspector has a button labeled Add
Behaviour, which allows you to add a to it. This is the
main distinction between the two types of inspectors, but apart from this, it will
display the serialized information for any selected state, substate, transition, or blend
tree, just as the regular inspector displays the data for the selected game object and
its components.

Bringing behaviors into the picture
State machine behaviors are a unique new concept in Unity 5. While states existed,
conceptually, in the original implementation of Mecanim, transitions were handled
behind the scenes, and you did not have much control over what happened upon
entering, transitioning, or exiting a state. Unity 5 addressed this issue by introducing
behaviors; they provide a built-in functionality to handle typical FSM logic.

Behaviors are sly and tricky. Though their name might lead you to believe they are
related to , do not fall for it; if anything, these two are distant cousins
at best. In fact, behaviors derive from , not , so
they exist only as assets, which cannot be placed in a scene or added as a component
to a GameObject.

OK, so that's not entirely true since Unity creates a few default states for us in our
animator controller: New State, Any State, Entry, and Exit, but let's just agree that

You can select states in this window by clicking on them, and you can move
them by dragging-and-dropping them anywhere in the canvas.

Select the state named New State and delete it by either right-clicking and
then clicking on Delete or simply hitting the Delete key on your keyboard.

Finite State Machines and You

[24]

If you select the Any State, you'll notice that you do not have the option to
delete it. The same is true for the Entry state. These are required states in an
animator controller and have unique uses, which we'll cover up ahead.

state, right-click anywhere on the canvas and then
select Create State, which opens up a few options from which we'll select Empty.
The other two options, From Selected Clip and From New Blend Tree, are not

Chapter 2

[25]

Transitioning between states
You'll notice that upon creating our state, an arrow is created connecting the Entry
state to it, and that its node is orange. Unity will automatically set default states
to look orange to differentiate them from other states. When you only have one
state, it is automatically selected as the default state, and as such, it is automatically
connected to the entry state. You can manually select which state is the default
state by right-clicking on it and then clicking on Set as Layer Default State. It will
then become orange, and the entry state will automatically connect itself to it. The
connecting arrow is a transition connector. Transition connectors allow us some
control over how and when the transition occurs, but the connector from the entry
state to the default state is unique in that it does not provide us any options since this
transition happens automatically.

You can manually assign transitions between states by right-clicking on a state node
and then selecting Make Transition. This will create a transition arrow from the
state you selected to your mouse cursor. To select the destination of the transition,
simply click on the destination node and that's it. Note that you cannot redirect the
transitions though. We can only hope that the kind folks behind Unity add that
functionality at a later point, but for now, you must remove a transition by selecting
it and deleting it and then assigning an all-new transition manually.

Setting up our player tank
Open up the sample project included with this book for this chapter.

It is a good idea to group like assets together in your project folder to keep it
organized. For example, you can group your state machines in a folder called

. The assets provided for this chapter are grouped for you already,
so you can drop the assets and scripts you create during this chapter into the
corresponding folder.

Creating the enemy tank
Let's go ahead and create an animator controller in your assets folder. This will be
your enemy tank's state machine. Call it .

This state machine will drive the tank's basic actions. As described earlier, in our
example, the enemy can patrol, chase, and shoot the player. Let's go ahead and set
up our state machine. Select the asset and open up the Animator window.

Finite State Machines and You

[26]

Now, we'll go ahead and create three empty states that will conceptually and
functionally represent our enemy tank's states. Name them , , and

. Once they are created and named, we'll want to make sure we have the
correct default state assigned. At the moment, this will vary depending on the order
in which you created and named the states, but we want the Patrol state to be the
default state, so right-click on it and select Set as Layer Default State. Now it is
colored orange and the Entry state is connected to it.

Choosing transitions
At this point, we have to make some design and logic decisions regarding the way

want to keep in mind the conditions that trigger the transitions to make sure they are
logical and work from a design-standpoint. Out in the wild, when you're applying
these techniques on your own, different factors will play into how these transitions
are handled. In order to best illustrate the topic at hand, we'll keep our transitions
simple and logical:

Patrol: From patrol, we can transition into chasing. We will use a chain of
conditions to choose which state we'll transition into, if any.

continue with patrolling.

Chase: From this state, we'll want to continue to check whether the player is
within sight to continue chasing, close enough to shoot, or completely out of
sight that would send us back into the patrol state.

Shoot: Same as earlier, we'll want to check our range for shooting and
then the line of sight to determine whether or not we can chase to get
within the range.

Chapter 2

[27]

This particular example has a simple and clean set of transition rules. If we connect
our states accordingly, we'll end up with a graph looking more or less similar to
this one:

Keep in mind that the placement of the nodes is entirely up to you, and it does not
affect the functionality of the state machine in any way. You try to place your nodes
in a way that keeps them organized so that you can track your transitions visually.

Now that we have our states mapped out, let's assign some behaviors to them.

Finite State Machines and You

[28]

Making the cogs turn
This is the part I'm sure you've been waiting for. I know, I've kept you waiting, but
for good reason—as we now get ready to dive into coding, we do so with a good
understanding of the logical connection between the states in our FSM. Without
further ado, select our Patrol state. In the hierarchy, you'll see a button labeled
Add Behaviour. Clicking this gives you a context menu very similar to the Add
Component button on regular game objects, but as we mentioned before, this
button creates the oh-so-unique state machine behaviors.

Go ahead and name this behavior . Doing so creates a script of the
same name in your project and attaches it to the state we created it from. You can
open this script via the project window, or by double-clicking on the name of the

Chapter 2

[29]

Downloading the example code

 for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit and register to

Before we begin, uncomment each method. Let's break it down step by step. Unity

commented code acts as a guide. Much like the methods provided for you in a
, these methods are called for you by the underlying logic. You

don't need to know what's going on behind the scenes to use them; you simply
have to know when they are called to leverage them. Luckily, the commented code
provides a brief description of when each method is called, and the names are fairly
descriptive themselves. There are two methods here we don't need to worry about:

 and , which are animation messages, so go ahead and delete

To reiterate what's stated in the code's comments, the following things happen:

 is called when you enter the state, as soon as the
transition starts

 is called on each frame, after MonoBehaviors update

 is called after the transition out of the state is finished

those for our purposes:

 is called just before the IK system gets updated. This is an
animation and rig-specific concept.

 is used on avatars that are set up to use root motion.

Finite State Machines and You

[30]

Another important piece of information to note is the parameters passed into
these methods:

The animator parameter is a reference to the animator that contains this
animator controller, and therefore, this state machine. By extension of that,
you can fetch a reference to the game object that the animator controller
is on, and from there, you can grab any other components attached to it.
Remember, the state machine behavior exists only as an asset, and does not
exist in the class, meaning this is the best way to get references to runtime
classes, such as mono behaviors.

The animator state info provides information about the state you're currently
in, however, the uses for this are primarily focus on animation state info, so
it's not as useful for our application.

Lastly, we have the layer index, which is an integer telling us which layer
within the state machine our state is in. The base layer is index 0, and each
layer above that is a number higher.

Now that we understand the basics of a state machine behavior, let's get the rest
of our components in order. Before we can actually see these behaviors in action,
we have to go back to our state machine and add some parameters that will drive
the states.

Setting conditions
We will need to provide our enemy tank with a few conditions to transitions states.
These are the actual parameters that will drive the functionality.

Let's begin with the Patrol state. In order for our enemy tank to go from Patrol to
Shoot, we need to be in range of the player, in other words, we'll be checking the

So, in your Parameters . We can
also use this parameter to determine whether or not to go into the Chase state.

The Shoot state and the Chase state will share a common condition, which is
whether or not the player is visible. We'll determine this via a simple raycast, which
will in turn, tell us whether the player was in line-of-sight or not. The best parameter
for this is a Boolean, so create a Boolean and call it . Leave the
parameter unchecked, which means false.

Chapter 2

[31]

Now we'll assign the conditions via the transition connectors' inspector. To do
this, simply select a connector. When selected, the inspector will display some
information about the current transition, and most importantly, the conditions,
which show up as a list. To add a condition, simply click on the + (plus) sign:

Let's tackle each transition one by one.

Patrol to Chase

The patrol to chase transition conditions

Finite State Machines and You

[32]

Chase to patrol gets a bit more interesting as we have two separate conditions that can
trigger a transition. If we were to simply add two conditions to that transition, both
would have to be evaluated to true in order for the transition to occur, but we want
to check whether the player is out of range or they are out of sight. Luckily, we can
have multiple transitions between the same two states. Simply add another transition
connection as you normally would. Right-click on the Chase state and then make a
transition to the Patrol state. You'll notice that you now have two transitions listed
at the top of the inspector. In addition, your transition connection indicator shows
multiple arrows instead of just one to indicate that there are multiple transitions
between these two states. Selecting each transition in the inspector will allow
you to give each one separate condition:

Chase to Patrol (A)

Chase to Patrol (B)

Chase to Shoot

Shoot to Chase

Shoot to Patrol (A)

Shoot to Patrol (B)

We now have our states and transitions set. Next, we need to create the script that
will drive these values. All we need to do is set the values, and the state machine
will handle the rest.

Chapter 2

[33]

Driving parameters via code
Before going any farther, we'll need a few things from the assets we imported
earlier in the chapter. For starters, go ahead and open the DemoScene folder of
this chapter. You'll notice the scene is fairly stripped down and only contains an
environment prefab and some waypoint transforms. Go ahead and drop in the

 prefab into the scene.

You may notice a few components that you may or may not be familiar with on the
EnemyTank. We'll get a chance to thoroughly explore NavMesh and NavMeshAgent
in Chapter 4, Finding Your Way, but for now, these are necessary components to make
the whole thing work. What you will want to focus on is the Animator component
which will house the state machine (animator controller) we created earlier. Go
ahead and drop in the state machine into the empty slot before continuing.

We will also need a placeholder for the player. Go ahead and drop in the
 prefab as well. We won't be doing much with this for now.

As with the enemy tank placeholder prefab, the player tank placeholder prefab has a
few components that we can ignore for now. Simply place it in the scene and continue.

Next, you'll want to add a new component to the game
object—the script, which is located in the folder. If we open

Finite State Machines and You

[34]

Chapter 2

[35]

We have a series of variables that are required to run this script, so we'll run through
what they're for in order:

: This is a reference to the player placeholder prefab we
dropped in earlier.

: This is the animator for our enemy tank, which
contains the state machine we created.

: This is simply a declaration for a ray that we'll use in a raycast test
on our loop.

: This is a declaration for the hit information we'll receive
from our raycast test.

: This number coincides with the value we set
in our transitions inside the state machine earlier. Essentially, we are saying
that we're only checking as far as this distance for the player. Beyond that,
we can assume that the player is out of range.

: This is the current distance between the player
and the enemy tanks.

You'll notice we skipped a few variables. Don't worry, we'll come back to cover
these later. These are the variables we'll be using for our patrol state.

Our method handles fetching the references to our player and animator

with the attribute and set them via the inspector.

Finite State Machines and You

[36]

The
between the position of the player and the enemy tank. The part to pay special
attention to is ,

earlier in our state machine. The same is true for the following section of the
code, which passes in the hit result of the raycast as a Boolean. Lastly, it sets the

 variable, which we'll be using for the patrol state in the
next section.

As you can see, none of the code concerns itself with how or why the state machine
will handle transitions; it merely passes in the information the state machine needs,

Making our enemy tank move
You may have noticed, in addition to the variables we didn't cover yet, that our tank
has no logic in place for moving. This can be easily handled with a substate machine,

easily break down the patrol state into substates. For our example, the Patrol state

next waypoint. A waypoint is essentially a destination for our agent to move toward.
In order to make these changes, we'll need to go into our state machine again.

First, create a substate by clicking on an empty area on the canvas and then selecting
Create Sub-State Machine. Since we already have our original Patrol state and
all the connections that go with it, we can just drag-and-drop our Patrol state into
our newly-created substate to merge the two. As you drag the Patrol state over the
substate, you'll notice a plus sign appears by your cursor; this means you're adding
one state to the other. When you drop the Patrol state in, the new substate will
absorb it. Substates have a unique look; they are six-sided rather than rectangular.
Go ahead and rename the substate to .

Chapter 2

[37]

To enter a substate, simply double-click on it. Think of it as going in a level lower
into the substate. The window will look fairly similar, but you will notice a few
things: your Patrol state is connected to a node called (Up) Base Layer, which
essentially is the connection out from this level to the upper level that the substate
machine sits on, and the Entry state connects directly to the Patrol state.

Unfortunately, this is not the functionality we want as it's a closed loop that doesn't
allow us to get in and out of the state into the individual waypoint states we need
to create, so let's make some changes. First, we'll change the name of the substate to

. Next, we need to assign some transitions. When we enter this Entry
state, we want to decide whether to continue moving to the current waypoint, or

states: and , then create transitions from the
PatrolEntry state to each one of the new states. Likewise, you'll want to create a
transition between the two new states, meaning a transition from the MovingToTarget

called and set up your conditions like this:

PatrolEntry to MovingToTarget:

PatrolEntry to FindingNewTarget:

MovingToTarget to FindingNewTarget:

Finite State Machines and You

[38]

new target state to the MovingToTarget state. This is because we'll be executing
some code via a state machine behavior and then automatically going into the
MovingToTarget state without requiring any conditions. Go ahead and select the
FindingNewTarget state and add a behavior and call it .

Open up the new script and remove all the methods, except for . Add
the following functionality to it:

What we're doing here is getting a reference to our script and calling its

Lastly, we need to redo our outgoing connections. Our new states don't have
transitions out of this level, so we need to add one using the exact same conditions
that our PatrolEntry state has to the (Up) Base Layer state. This is where Any State
comes in handy—it allows us to transit from any state to another state, regardless of
individual transition connections, so that we don't have to add transitions from each
state to the (Up) Base Layer state; we simply add it once to the Any State, and we're
set! Add a transition from the Any State to the PatrolEntry state and use the same
conditions as the Entry state has to the (Up) Base Layer state. This is a work-around
to not being able to connect directly from the Any State to the (Up) Base Layer state.

When you're done, your substate machine should look similar to this:

Chapter 2

[39]

Testing
Now, all we have to do is hit play and watch our enemy tank patrol back and
forth between the two provided waypoints. If we place the player in the editor
in the enemy tank's path, we'll see the transition happen in the animator, out of the
Patrol state, into the Chase state, and when we move the player out of range, back

out yet. This is because we'll be implementing these states via concepts we'll cover
in Chapter 3, Implementing Sensors, and Chapter 4, Finding Your Way.

Summary
In this chapter, we learned how to implement state machines in Unity 5 using
animator controller-based state machines for what will be our tank game. We
learned about state machine behaviors and transitions between states. With all of
these concepts covered, we then applied the simple state machine to an agent, thus

In the next chapter, we'll continue to build our tank game and give our agent more
complex methods of sensing the world around it.

