
Random and Probability
In this chapter, we are going to look at how the concepts of probability can be
applied to game AI. This chapter will be more about generic game AI development
techniques in random and probability topics, and less about Unity3D in particular.
Moreover, they can be applied to any game development middleware or technology
framework. We'll be using mono C# in Unity3D for the demos mainly using the

Unity3D engine and the editor itself.

to the behaviors of AI characters, as well as to the game world. This makes the

provide the players with a more exciting and challenging experience.

Let us take an example of a typical soccer game. One of the rules of a soccer game
is to award a direct free kick if one player is fouled while trying to possess the ball
from the opposing team. Now, instead of giving a foul and a free kick all the time
whenever that foul happens, the game developer can apply a probability so that
only 98 percent of all the fouls will be rewarded with a direct free kick. As a result,
most of the time, the player will get a direct free kick. But when that remaining two
percent happens, like you have hit the other player and you know it's going to be a
free kick but the referee passes it, it can provide a certain emotional feedback to the
players from both the teams (assuming that you are playing against another human).
The other player would feel angry and disappointed, while you'd feel lucky and

not be 100 percent correct all the time.

So we use probability in a game AI to make the game and characters livelier and
seem more realistic, by not making the same decision or taking the same action again
and again. There are many topics to discuss and debate in the probability domain. So
this small single chapter will only be able to address the basic concepts, and how we
can implement some of them in Unity3D.

Random and Probability

[56]

In this chapter, we will be going over random and probability. We will be creating
a simple dice game. We will also give some application examples of probability and

add on more probability features.

Random
Probability is basically a measure of how likely it is that a particular condition
or a favorable outcome can be achieved among all the possible outcomes, if
selected randomly. So speaking of probability, one can't neglect the importance of
randomness. Random number generation (RNG) is very important when we need
to produce unpredictable results. The simplest and probably the oldest technique
would be throwing a dice to generate a random value between one and six. The
random numbers are produced computationally by a pseudorandom number
generator (PRNG), and they determine the same sequence of random numbers
based on the initial seed value. So, if we theoretically know the seed value, we can
regenerate the same sequence of random numbers again, and thus they are not
considered as truly random. The seed value is usually generated from the state of
the computer system, such as the elapsed time in milliseconds since the computer
starts running. Some RNGs are more random than others. If we were creating an
encryption program, we would want to look into a more random RNG. For the
games we will be making, the
how we can generate random numbers in Unity3D.

Random class
The Unity3D script has a class to generate random data. Two of the most
widely used properties would be and :

You can set this property of the class to seed the random number
generator. Usually, we will not want to seed the same value again and again, as this
will result in the same predictable sequence of random numbers being generated.
One of the reasons for keeping the same seed value is for testing purposes:

You can read the property to get a random number between
(inclusive) and (inclusive). Both and may be returned by this property.
Another class method that could be quite handy is the method.

Chapter 3

[57]

The method can be used to generate a random number from a range. When
given an , it returns a random number between
(inclusive) and (exclusive). This means that a zero may be returned, but never

number
between (inclusive) and (inclusive). Take note of the exclusive and inclusive
parts. Since the random value is exclusive of in range, we'll need to pass
in as the range, where is our desired maximum random integer. However,
for the random value, the max value in range is inclusive.

Simple random dice game
Let's set up a very simple dice game in a new scene, where a random number is
being generated between one and six, and checked against the input value. The
player will win, if the input value matches the dice result generated randomly as
shown in the following

Random and Probability

[58]

We implement this simple dice game in the method as we want to render

to play. The object will be used to display the result. Add a to
the scene, navigate to | Create Other | GUI Text, and add our
script to the object. The output that you get if you run the game is shown in the
following screenshot:

Simple dice game results

side of the surface of the dice has an equal chance to be picked.

based on the situations and the domain
context. The most commonly used notion of probability is to refer the possibility of an
event to successfully occur. The probability of an event to occur is usually written
as . To calculate we need to know the number of ways or times it can occur

, and the total number of times all the other possible events can occur .

So the probability of an event can be calculated as

 is the probability of the event to occur, and it's equal to the number of ways
that can occur out of the number of all outcomes . If is the probability
of the event to successfully occur, then the probability of the event will not occur,
or the probability of failure for event is equal to:

The range of probability is a decimal number from zero to one. Probability of zero
means there's no chance for the desired event to occur, and one means that it's 100
percent certain for the event to occur. And must equal to one. Since
the probability values range from zero to one, we can get the percentage value by
multiplying by 100.

Chapter 3

[59]

Independent and related events
Another important concept in probability is whether the chance of a particular event
to occur depends on any other event in some ways or not. For example, throwing
a six-sided dice twice are two independent events. Each time you throw a dice, the
probability of each side to turn up is one-sixth. On the other hand, drawing two

there's one less chance that you can get another Jack in the second event.

Conditional probability
When throwing two six-sided dices at the same time, what is the probability of

two conditional events; to get one

calculate the probability of getting one on both the dices. The probability to get one

Now let's consider another example, what's the probability that the sum of the

this sum, which is one and one, the probability is still the same as getting the same

But how about getting the sum of the numbers that show up on the two dices to

from the following table:

1 6

2 5

3 4

4 3

5 2

6 1

which is 16.7 percent. These are some examples of conditional probability, where two
events rely on each other to achieve a desirable outcome.

Random and Probability

[60]

A loaded dice
Now let's assume we haven't been that honest, and our dice is loaded so that the
side of the number six has a double chance of landing facing upward. For a six-sided
dice, the probability of each side facing upward is approximately one-sixth ().
Since we doubled the chance of getting six, we need to double the probability of
getting six, let's say up to
be reduced to .

The simplest way to implement this loaded dice algorithm is to generate a random
value between and . Check if the random value is in a range of one to 35. If
so
values have the same probability of .

So here's our method:

If we test our new loaded dice algorithm by throwing the dice multiple times, you'll
notice that the value yields more than usual. Here is our new function:

Chapter 3

[61]

We throw the dice ten times in our method, and here I got at least two to
three times (which is approximately 33 percent of ten times). But, if you normally
throw the dice without any loaded probability it's more possible that you won't get
any at all. Keep in mind that the value is only favored for 35 percent, and thus
there's still a chance that you will never get a out of ten dice throws, though it's
quite unlikely.

Character personalities
We can also use different probabilities to specify the in-game characters' specialties.
Let's pretend we designed a game proposal for a population management game for
the local government. We need to address and simulate issues like taxation versus
global talent attraction, immigration versus social cohesion, and so on. We have three
types of characters in our proposal, namely, workers, scientists, and professionals.

R&D Corporate Jobs

Worker 95 2 3

Scientist 5 85 10

Professional 10 10 80

Let us take a look at how we can implement this mechanic. Let's say the player needs
to build new houses to accommodate the increased population. A house construction

as the workload that can be done per second per unit type for a particular task. So
if you're building a house with one worker that will only take about 10 seconds to

) whereas it'll take more than three minutes if you
are trying to build with the scientists (). The same will be

enhanced later as the game progresses, making some of the early level tasks become
simpler, and takes less time.

Random and Probability

[62]

Then we introduce special items that could be discovered by the particular unit
type. Now, we don't want to give these items every time a particular unit has done
its tasks. Instead we want to reward the player as a surprise. So we associate the

following table:

Worker Professional

Raw materials 0.3 0.1 0.0

New tech 0.0 0.3 0.0

Bonus 0.1 0.2 0.4

raw materials, and a 10 percent chance to earn bonus income whenever they have
built a factory or a house. This allows the players to anticipate the possible upcoming
rewards, once they've done some tasks. This can make the game more fun because
the players will not know the outcome of the event.

FSM with probability
We discussed Finite State Machines (FSM) in Chapter 2, Finite State Machines, using
both simple switch statements as well as using the FSM framework. The decision
to choose which state to execute was purely based on true or false value of a given

Tank AI FSM

Chapter 3

[63]

To make the AI more interesting, and a little bit unpredictable, we can give our tank
entity some options with probabilities to choose from, instead of doing the same
thing whenever a certain condition is met. For example, in our earlier FSM, our AI
tank will chase the player tank once the player is in its line of sight. Instead we can

probability such as 50 percent as

FSM using probability

Now instead of chasing every time, the AI tank spots the player; there's a 50 percent

implement this mechanic the same way we did with our previous dice example. First
we need to generate a random value between one and 100, and see if the value lies
between one and 50 or 51 and 100. (Or we could randomly choose between zero and

array with these options in proportion to their respective probabilities. Then pick a
random state from this pool as if you were drawing a lottery winner. Let's see how to
use this technique as shown in the following

Random and Probability

[64]

In our method, when you click on the mouse button, we just choose one
random item from our array. Obviously, the one with more entries in
the poll will have a higher chance to be selected. Try it out.

Dynamic AI
We can also use probability to specify the intelligence levels of AI characters, and the
global game settings. This can in turn affect the
and keep it challenging and interesting enough to players. As described in the book,
The Art of Game Design, Jesse Schell, Morgan Kaufmann publications, players will only

The Flow Channel

Chapter 3

[65]

The players will feel anxious and get disappointed if we present tough challenges for
them to solve before they have the necessary skills. On the other hand, once they've
mastered the skills, and if we continue to keep the game at the same pace, then they
will get bored. The grey area that can keep the players engaged for a long time is
between these two extremes of hard and easy, which the original author referred

need to feed the challenges and missions that match with the progressive skills that

that works for all players, since the pace of learning and the expectations can be
different individually.

One way to tackle this problem is to collect the player attempts and results
during the game-play sessions, and to adjust the probability of the opponent's
AI accordingly. Though this approach is supposed to help the games to be more
engaging, there are many other players who don't like this approach, since this

beating a very hard boss AI character despite all the challenges can be much more
rewarding and satisfying than winning the game because the AI is dumb. They

have enough skills to match. So we must be careful about when we want to apply
this technique in our games.

Demo slot machine

and three reels. Just to make it simple we'll just use the numbers from zero to nine as
our symbols. Many slot machines would use fruit shapes and other simple shapes,

based on popular movies or TV programs as a franchise. Since there are 10 symbols
and three reels, that's a total of 1,000 (10^3) possible combinations.

Random slot machine
This random slot machine demo is similar to our previous dice example. This time
we are going to generate three random numbers for three reels. The only payout will
be when you get three of the same symbols on the payline. To make it simpler, we'll
only have one line to play against in this demo. And if the player wins, the game will
return 500 times the bet amount.

Random and Probability

[66]

We'll set up our scene with four GUI text objects to represent the three reels, and the
result message.

Our GUI text objects

This is how our new script looks, as shown in the following

Chapter 3

[67]

Random and Probability

[68]

Attach the script to our object, and then position the
element on the screen. We have a button called Pull Lever in the method
that will set the
method we generate a random value for each reel if the is true. Finally,
once we've got the value for the third reel, then we reset the to false.
While we are getting the random value for each reel, we also keep a track of how
much time has elapsed, since the player pulled the lever. Usually in the real world

 before showing
Pull Lever button, you

Random slot game in action

Chapter 3

[69]

Since your chance of winning is one out of 100, it becomes boring as you lose several
times consecutively. And of course if you've ever played a slot machine, this is not
how it works, or at least not anymore. Usually you can have several wins during your
play. Even though these small wins don't recoup your principal bet, and in the long
run most of the players go broke, the slot machines would render winning graphics
and winning sounds, which researchers referred to as losses disguised as wins.

So instead of just one single way to win—winning the jackpot—we'd like to modify
the rules a bit so that it pays out smaller returns during the play session.

Weighted probability
Real slot machines have something called a Paytable and Reel Strips (PARS) sheet,
which is like the complete design document of the machine. The PARS sheet is used
to specify what the payout percentage is, what the winning patterns, and what their
prizes are, and so on. Obviously the number of the payout prizes and the frequencies
of such wins need to be carefully selected, so that the house (slot machine) can collect
the fraction of the bets over time, while making sure to return the rest to the players to
make the machine attractive to play. This is known as payback percentage or return
to player (RTP). For example, a slot machine with a 90 percent RTP means that over
time the machine will return an average of 90 percent of all the bets to the players.

In this demo, we'll not be focusing on choosing the optimal value for the house to

up more times than usual. So let's say we'd like to make the symbol zero to appear

of half of the bet. In other words, a player will only lose half of their bet if they got

) or 10 percent probability

shown in the following

Random and Probability

[70]

New variable declarations are added, such as to specify the

 array
according to their distribution, so that we can later pick one randomly from the poll
like we did in our earlier FSM example. And then we initialize the list in our
method as shown in the following code:

Chapter 3

[71]

And the following is our revised method. Instead of just one jackpot win,

third row, and of course the lose condition:

In the method, we designed our slot machine to return 50 times if they

matched with any other symbol. And
we generate values for the three reels in the method as shown in the
following code:

Random and Probability

[72]

values. But once the time is up, we choose the value from our poll that is already
populated with symbols according to the probability distributions. So our zero
symbol would have 30 percent more chance of occurring than the rest, as shown
in the following screenshot:

Loss disguised as a win

third reel. But we make it seem like a win. It's just a lame message here, but if we

effects, this can really work, and attract players to bet more, and pull that lever again
and again.

Chapter 3

[73]

Near miss

near miss effect to the players by returning the random value to the third reel close to
the second one. We can do this by checking the

we shouldn't alter the result. But if it's not, then we should modify the result so that
it is close enough to the other two. Check the comments in the following code:

Random and Probability

[74]

And if that "near miss" happens, you should see it as shown in the
following screenshot:

A near miss

We can go even further by adjusting the probability in real-time based on the bet
amount. But that'd be too creepy. Another thing we could add to our game is a check
to make sure the player can't bet more money than they already have. Also, we could
add a game over message that appears when the player has bet all their money.

Summary
In this chapter, we learned about the applications of probability in the game AI
design. We experimented with some of the techniques by implementing them in
Unity3D. As a bonus, we also learnt about the basics of how a slot machine works,
and implemented a simple slot machine game using Unity3D. Probability in game
AI is about making the game and characters seem more realistic by adding some
uncertainty, so that the players cannot predict something for sure. One of the

desired event to occur out of all the other possible events. A good reference to
further study the advanced techniques on probability in game AI, such as decision
making under uncertainty using Bayesian techniques, would be the AI for Game
Developers David M. Bourg, Glenn Seeman, O'Reilly. In the next chapter, we will take
a look at implementing sensors, and how they can be used to make our AI aware
of its surroundings.

