
153

Agent Awareness

In this chapter, we will learn some algorithm recipes for simulating senses and agent awareness:

 The seeing function using a collider-based system

 The hearing function using a collider-based system

 The smelling function using a collider-based system

 The seeing function using a graph-based system

 The hearing function using a graph-based system

 The smelling function using a graph-based system

 Creating awareness in a stealth game

Introduction
In this chapter, we will learn different approaches on how to simulate sense stimuli on
an agent. We will learn how to use tools that we are already familiar with to create these
simulations: colliders, and graphs.

functions bound to this component, such as , in order to leverage
the need to acquire objects nearby in the three-dimensional world. Then, we will learn how
to simulate the same stimuli using the graph theory and functions so that we can take
advantage of this way of representing the world.

Finally, we'll learn how to implement agent awareness using a mixed approach that considers
the previously learned sensory-level algorithms.

Agent Awareness

154

The seeing function using a collider-based
system

This is probably the easiest way to simulate vision. We take a collider, be it a mesh or a Unity
primitive, and use it as the tool for determining whether or not an object is inside the agent's
vision range.

Getting ready
It's important to have a collider component attached to the same game object using the script
on this recipe, as well as the other collider-based algorithms in this chapter. In this case, it's
recommended that the collider is a pyramid-based one in order to simulate a vision cone. The
fewer the polygons, the faster it will be in the game.

How to do it…
We will create a component that is able to see enemies nearby:

1. Create the component declaring its member variables. It is important to add

2. Implement the function for initializing the game object in case the component is
already assigned to it:

3. Declare the function for checking collisions in every frame, and let's build it in the
following steps:

Chapter 5

155

Discard the collision if it is not a target:

5. Get the game object's position and compute its direction from the visor:

6. Compute its length and create a new ray to be shot soon:

7. Cast the created ray and retrieve all the hits:

8. Check for any wall between the visor and target. If none, we can proceed to call our
functions or develop our behaviors that are to be triggered:

How it works…
The collider component checks every frame if it is colliding with any game object in the scene.
We leverage the optimizations to Unity's scene graph and engine, and focus only on how to
handle the valid collisions.

Agent Awareness

156

After checking, if a target object is inside the vision range represented by the collider, we cast
a ray in order to check whether it is really visible or if there is a wall in between.

The hearing function using a collider-based
system

In this recipe, we will emulate the sense of hearing by developing two entities: a sound emitter
and a sound receiver. It is based on the principles proposed by Millington for simulating a
hearing system, and it uses the power of Unity colliders to detect receivers near an emitter.

Getting ready
As with the other recipes based on colliders, we will need collider components attached to
every object that is to be checked, and rigid body components attached to either emitters
or receivers.

How to do it…
We will create the class for our agents, and for things such
as alarms:

1. Create the class for the sound-receiver object:

Chapter 5

157

2.

3. Now, let's create the class for the sound-emitter object:

Initialize the list of nearby receivers and the emitter object, in case the component is
attached directly:

5. Implement the function for adding new receivers to the list when they enter the
emitter bounds:

Agent Awareness

158

6. Also, implement the function for removing receivers from the list when they are out
of reach:

7.

8. Compute sound attenuation for every receiver:

How it works…
The collider triggers help register agents in the list of agents assigned to an emitter. The
sound emission function then takes into account the agent's distance from the emitter in
order to decrease its intensity using the concept of sound attenuation.

Chapter 5

159

There is more…

intensity. It works by casting rays and adding up their values to the sound attenuation:

1. Create a dictionary for storing wall types as strings (using tags), and their
corresponding attenuation:

2. Reduce sound intensity this way:

3.

Compute the necessary values for ray casting:

5. Cast the ray and retrieve the hits:

Agent Awareness

160

6. For every wall type found via tags, add up its value (stored in the dictionary):

The smelling function using a collider-based
system

Smelling is one of the trickiest senses to translate from the real to the virtual world. There are
several techniques, but most of them are inclined to the use of colliders or graph logic.

Smelling can be simulated by computing a collision between an agent and odor particles
scattered throughout the game level.

Getting ready
As with the other recipes based on colliders, we will need collider components attached to
every object that is to be checked, and rigid body components attached to either emitters
or receivers.

How to do it…
We will develop the scripts for representing odor particles and agents that are able to smell:

1.
its lifespan:

Chapter 5

161

2. Implement the function for proper validations:

3. Implement the timer and destroy the object after its lifecycle:

Create the class for representing the sniffer agent:

5. Initialize the dictionary for storing odor particles:

6. Add to the dictionary the colliding objects that have the odor-particle component
attached:

Agent Awareness

162

7. Release the odor particles from the local dictionary when they are out of the agent's
range or are destroyed:

8. Create the function for computing the odor centroid according to the current
elements in the dictionary:

9. Implement the function for retrieving the odor centroids, if any:

How it works…
Just like the hearing recipe based on colliders, we use the trigger colliders in order to register
odor particles in an agent's perception (implemented using a dictionary). When a particle is
included or removed, the odor centroid is computed. However, we implement a function for
retrieving that centroid because when no odor particle is registered, the internal centroid
position is not updated.

Chapter 5

163

There is more…
Particle emission logic is left behind to be implemented according to our game's needs, and
it's basically instantiating odor-particle prefabs. Also, it is recommended that you attach the
rigid-body components to the agents. Odor particles are prone to be massively instantiated,
reducing the game's performance.

The seeing function using a graph-based
system

We will start the recipes oriented to use graph-based logic in order to simulate sense. Again,
we start by developing the sense of vision.

Getting ready

inner workings of the graph-based recipes.

How to do it…

1. Create the class for handling vision:

Agent Awareness

164

2. Validate the visor object in case the com:

3.
of nodes:

Implement a Breadth-First Search algorithm:

Chapter 5

165

5. Compare the set of visible nodes with the set of nodes reached by the vision system:

6. Return false if there is no match between the two sets of nodes:

How it works…
The recipe uses the Breadth-First Search algorithm in order to discover nodes within its vision
reach, and then compares this set of nodes to the set where agents reside.

The input array is computed outside, and it's out of the scope of this recipe because it
relies on pinpointing, for example, the position of each agent or object that needs to be
checked visibly.

The hearing function using a graph-based
system

Hearing works similarly to vision but doesn't take into account the nodes direct visibility
because of the properties of the sound. However, we still need a sound receiver in order to
make it work. Instead of making an agent a direct sound receiver, in this recipe, the sound
travels along the sound graph and is perceived by the graph nodes.

Getting ready

inner workings of the graph-based recipes.

How to do it…
1. Create the emitter class:

Agent Awareness

166

2. Declare the member variables:

3. Implement the validation of the emitter object's reference:

Declare the function for emitting sounds:

5. Declare and assign the variables needed:

6. Add the source node to the list of reached nodes and the queue:

7. Code the Breadth-First Search loop for reaching out to nodes:

8. Finish the loop if the sound runs out of intensity:

9. Take a node from the queue and get its neighbors:

Chapter 5

167

10. Check the neighbors and add them to the queue if necessary:

11. Reduce the sound intensity:

How it works…
The recipe returns the list of affected nodes by the sound intensity using the Breadth-First
Search algorithm. The algorithm stops when there are no more nodes to visit, or when the
intensity of the sound is dimmed by the graph traversal.

There is more…
After learning how to implement hearing using both colliders and graph logic, you could
develop a new hybrid algorithm that relies on a heuristic that takes distance as inputs.
If a node goes beyond the sound's maximum distance, there's no need to add its neighbors
to the queue.

See also
The following recipes of Chapter 2, Navigation:

 Breadth-First Search algorithm

The smelling function using a graph-based
system

In this recipe, we take a mixed approach to tag vertices with a given odor particle that collides
with it.

Agent Awareness

168

Getting ready
The vertices should have a broad collider attached so that they catch the odor particles nearby.

How to do it…
1. Add the following member variable to the odor-particle script to store its parent ID:

2. Create the new odor-enabled class, deriving from the original vertex:

3. Initialize the odor dictionary in the proper function:

Add the odor to the vertex's dictionary:

5. Remove the odor from the vertex's dictionary:

Chapter 5

169

6. Implement the function for checking if there is any odor tagged:

7. Implement the function for checking if a given type of odor is indexed in the vertex:

How it works…
The odor particles collide with the vertices, being indexed in their odor dictionary. From that
point on, our agents can check whether a given odor is registered in a vertex nearby.

See also
 Chapter 2, Navigation recipe, BFS and graph construction

Creating awareness in a stealth game
Now that we know how to implement sensory-level algorithms, it's time to see how they
could be taken into account in order to develop higher-level techniques for creating agent
awareness.

This recipe is based on the work of Brook Miles and its team at Klei Entertainment for the
game, . The mechanism moves around the notion of having interest sources
that can be seen or heard by the agents, and a sensory manager handling them.

Getting ready

an interest's sense and priority, and a data type for the interest itself.

Agent Awareness

170

This is the data structure for sense:

This is the data structure for priority:

The following is the interest data type:

Before developing the necessary classes for implementing this idea, it's important to note

our custom implementations. These implementations could be developed using some of the
previously learned recipes.

Chapter 5

171

How to do it…
This is a long recipe where we'll implement two extensive classes. It is advised to carefully
read the following steps:

1.

2.

3. Implement the function for setting a new interest in the agent:

custom function for investigating. This will have our own implementation,
and it will take into account the agent's interest:

Agent Awareness

172

5.
in charge of giving orders, and will depend on our own implementation:

6.

7. Implement a property for retrieving its interest:

8.

some of the next steps. This is one of the sensory-level functions:

Chapter 5

173

9. Implement the next sensory-level function for checking if an agent is affected by
sound. It has the same architectural considerations as the previous step:

10.
declared virtual, in case we need to specify further, or simply change the way it works:

11. Start creating the main loop for traversing the list of agents and return the list of
affected ones:

12. Discriminate an agent if it is out of the source's action radius:

13. Check whether the agent is affected, given the source's type of sense:

Agent Awareness

174

If the agent is affected, add it to the list:

15. Next, create the class for the sensory manager:

16. Implement its function:

17. Declare the function for getting a set of scouts, given a group of agents:

18. Validate according to the number of agents:

19. Remove the leader, if given its index:

Chapter 5

175

20. Calculate the number of scouts to retrieve:

21. Get random scouts from the list of agents:

22. Retrieve the scouts:

23. function for checking the list of interest sources:

Avoid inactive sources:

25. Avoid sources that don't affect any agent:

Agent Awareness

176

26. Get a random leader and the set of scouts:

27. Call the leader to its role if necessary:

28. Finally, inform the scouts about noticing the interest, in case it's relevant to them:

How it works…
There is a list of interest sources that could get the attention of a number of agents in the
world. Those lists are kept in a manager that handles the global update for every source,
taking into account only the active ones.

An interest source receives the list of agents in the world and retrieves only the affected
agents after a two-step process. First, it sets aside all the agents that are outside its action

more expensive) sensory-level mechanism.

There is more…
It is worth mentioning that the class works as a hub to store and organize
the list of agents and the list of interest sources, so it ought to be a singleton. Its duplication
could bring undesired complexity or behavior.

An agent's interest is automatically changed by the sensory manager using the priority values.
Still, it can be reset when needed, using the public function .

There is room for improvement still, depending on our game. The scout lists can overlap
with each other, and it's up to us and our game to handle this scenario the best way we can.
However, the system we built takes advantage of the priority values to make decisions.

Chapter 5

177

See also
For further information on the train of thought behind this recipe, please refer to Steve Rabin's
book, Game AI Pro.

