
[41]

Implementing Sensors
In this chapter, we'll learn to implement AI behaviors using the concept of a sensory
system similar to what living entities have. As we discussed earlier, a character AI
system needs to have awareness of its environment such as where the obstacles are,
where the enemy it's looking for is, whether the enemy is visible in the player's sight,
and others. The quality of AI of our NPCs completely depends on the information
it can get from the environment. Based on that information, the AI characters will
decide which logic to execute. If there's not enough information for the AI, our AI
characters can show strange behaviors, such as choosing the wrong places to take
cover, idling, looping strange actions, and not knowing what decision to make.

characters even in AAA games.

We can detect all the environment parameters and check against our predetermined
values if we want. But using a proper design pattern will help us maintain code and
thus, will be easy to extend. This chapter will introduce a design pattern that we can
use to implement sensory systems. We will be covering:

What sensory systems are

What some of the different sensory systems that exist are

How to set up a sample tank with sensing

[42]

Basic sensory systems
The AI sensory systems emulate senses such as perspectives, sounds, and even
scents to track and identify objects. In game AI sensory systems, the agents will have
to examine the environment and check for such senses periodically, based on their
particular interest.

The concept of a basic sensory system is that there will be two components:
and . Our AI characters will have senses, such as perception, smell, and

example, you could have a patrol guard AI with a perception sense that's looking for
other game objects with an enemy aspect, or it could be a zombie entity with a smell

For our demo, this is basically what we are going to implement: a base interface
called that will be implemented by other custom senses. In this chapter, we'll
implement perspective and touch senses. Perspective is what animals use to see the

we can take some action. Likewise, with touch, when an enemy gets too close, we
want to be able to sense that; almost as if our AI character can hear that the enemy is
nearby. Then we'll write a minimal class that our senses will be looking for.

Cone of sight
In the example provided in Chapter 2, Finite State Machines and You, we set up
our agent to detect the player tank using line of sight, which is literally a line in
the form of a raycast. A raycast is a feature in Unity that allows you to determine
which objects are intersected by a line cast from a point toward a given direction.

accurately model the way vision works for most entities. An alternative to using line

appropriate for your type of game.

[43]

with the source, that is, the agent's eyes, the cone grows, but becomes less accurate
with the distance, as represented by the fading color of the cone.

The actual implementation of the cone can vary from a basic overlap test to a more
complex realistic model, mimicking eyesight. In the simple implementation, it is only
necessary to test whether an object overlaps with the cone of sight, ignoring distance
or periphery. The complex implementation mimics eyesight more closely; as the cone

see things toward the edges of the cone diminishes compared to those near the center
of the source.

One very simple, yet effective way of modeling sounds, touch, and smell is via the
use of spheres. For sounds, for example, we imagine the center as being the source,
and the loudness dissipating the farther from the center the listener is. Inversely, the
listener can be modeled instead of, or in addition to, the source of the sound. The
listener's hearing is represented with a sphere, and the sounds closest to the listener
are more likely to be "heard". We can modify the size and position of the sphere
relative to our agent to accommodate feeling and smelling.

[44]

As with sight, the probability of an agent registering the sensory event can be

the sensory event is always detected as long as the source overlaps the sphere.

Expanding AI through omniscience
Truth be told, omniscience is really a way to make your AI cheat. While your
agent doesn't necessarily know everything, it simply means that they can know
anything. In some ways, this can seem like the antithesis to realism, but often the
simple solution is the best solution. Allowing our agent access to seemingly hidden
information about their surroundings or other entities in the game world can be a
powerful tool to give it an extra layer of complexity.

In games, we tend to model abstract concepts using concrete values. For example, we
may represent a player's health with a numeric value ranging from 0 to 100. Giving
our agent access to this type of information allows it to make realistic decisions,
even though having access to that information is not realistic. You can also think of
omniscience as your agent being able to "use the force" or sense events in your game
world without having to "physically" experience them.

[45]

Getting creative with sensing
While these are among the most basic ways an agent can see, hear, and perceive their
environment, they are by no means the only ways to implement these senses. If your
game calls for other types of sensing, feel free to combine these patterns together.

Setting up the scene
Now we have to get a little bit of setup out of the way to start implementing the
topics we've discussed. We need to get our scene ready with environment objects,
our agents, and some other items to help us see what the code is doing:

1. Let's create a few walls to block the line of sight from our AI character to the
enemy. These will be short but wide cubes grouped under an empty game
object called .

2. Add a plane to be used as a floor.

3. Then, we add a directional light so that we can see what is going on in
our scene.

We will be going over this next part in detail throughout the chapter, but basically,
we will use a simple tank model for our player, and a simple cube for our AI
character. We will also have a object to show us where the tank will move to
in our scene. Our scene hierarchy will look similar to the following screenshot:

The hierarchy

[46]

Now we will position the tank, AI character, and walls randomly in our scene.
Increase the size of the plane to something that looks good. Fortunately, in this

the camera so that we can have a clear view of the following scene:

Where our tank and player will wander in

Now that we have the basics set up, we'll look at how to implement the tank,
AI character, and aspects for our player character.

[47]

Setting up the player tank and aspect
Our object is a simple sphere object with the mesh render disabled. We have
also created a point light and made it a child of our object. Make sure the
light is centered, or it will not be very helpful for us.

Look at the following code in the

Attach this script to our object, which is what we assign in the inspector to
the variable. The script detects the mouse click event and then, using
the raycasting technique, detects the mouse click point on the plane in the 3D space.
After that it updates the object to that position in our scene.

[48]

Implementing the player tank
Our player tank is the simple tank model we used in Chapter 2, Finite State Machines
and You, with a non-kinematic rigid body component attached. The rigid body
component is needed in order to generate trigger events whenever we do collision

 to our tank.

The tank is controlled by the script, which we will create in a moment.
This script retrieves the target position on the map and updates its destination point
and the direction accordingly.

The code in the

[49]

Properties of our tank object

The preceding screenshot gives us a snapshot of our script in the inspector once
applied to our tank.

[50]

This script retrieves the position of the object on the map and updates its
destination point and the direction accordingly. After we assign this script to our
tank, be sure to assign our object to the variable.

Implementing the Aspect class
Next, let's take a look at the class. Aspect is a very simple class with just
one public property called . That's all of the variables we need in this
chapter. Whenever our AI character senses something, we'll check against this with

 to see whether it's the aspect that the AI has been looking for.

The code in the

Attach this aspect script to our player tank and set the property as
, as shown in the following image:

Setting which aspect to look out for

Creating an AI character
Our AI character will be roaming around the scene in a random direction. It'll have
two senses:

The perspective sense will check whether the enemy aspect is within a set
visible range and distance

Touch sense will detect if the enemy aspect has collided with the box collider,
soon to be surrounding our AI character

[51]

As we have seen previously, our player tank will have the aspect. So, these
senses will be triggered when they detect the player tank.

The code in the

[52]

The
the AI character reaches its current destination point. The method will then
rotate our enemy and move it toward this new destination. Attach this script to our
AI character so that it can move around in the scene.

Using the Sense class
The class is the interface of our sensory system that the other custom senses

 and ,
which will be implemented in custom senses, and are executed from the
and methods, respectively.

The code in the

[53]

The basic properties include its detection rate to execute the sensing operation as
well as the name of the aspect it should look for. This script will not be attached to
any of our objects.

Giving a little perspective
The perspective

The code in the

[54]

We need to implement the and methods that will be called
from the and methods of the parent class, respectively. Then,
in the

where the player tank is located. The ray length is the value of visible distance
property. The
we'll check against the aspect component and the aspect name. This way, even if the
player is in the visible range, the AI character will not be able to see if it's hidden
behind the wall.

The
and viewing distance so that we can see the AI character's line of sight in the editor
window during play testing. Attach this script to our AI character and be sure that
the aspect name is set to .

[55]

This method can be illustrated as follows:

Touching is believing
Another sense we're going to implement is , which is triggered when the
player entity is within a certain area near the AI entity. Our AI character has a box
collider component and its

We need to implement the
collider component is collided with another collider component. Since our tank
entity also has a collider and rigid body components, collision events will be raised
as soon as the colliders of the AI character and player tank are collided.

The code in the

[56]

We implement the
component is collided with another collider component. Since our tank entity also
has a collider and the rigid body components, collision events will be raised as soon
as the colliders of the AI character and the player tank are collided. Our trigger can
be seen in the following screenshot:

The collider around our player

[57]

The preceding screenshot shows the box collider of our enemy AI that we'll use to
implement the touch sense. In the following screenshot, we see how our AI character
is set up:

The properties of our player

Inside the method, we access the aspect component of the other
collided entity and check whether the name of the aspect is the aspect this AI
character is looking for. And, for demo purposes, we just print out that the enemy
aspect has been detected by touch sense. We can also implement other behaviors
in real projects; maybe the player will turn over to an enemy and start chasing,
attacking, and so on.

[58]

Testing the results
Play the game in Unity3D and move the player tank near the wandering AI character
by clicking on the ground. You should see the Enemy touch detected message in the
console log window whenever our AI character gets close to our player tank.

Our player and tank in action

The preceding screenshot shows an AI agent with touch and perspective senses
looking for an enemy aspect. Move the player tank in front of the AI character, and
you'll get the Enemy detected message. If you go to the editor view while running
the game, you should see the debug drawings rendered. This is because of the

 method implemented in the perspective class.

[59]

Summary
This chapter introduced the concept of using sensors in implementing game AI and
implemented two senses, perspective and touch, for our AI character. The sensory
system is just part of the decision-making system of the whole AI system. We can
use the sensory system in combination with a behavior system to execute certain
behaviors for certain senses. For example, we can use an FSM to change to Chase
and Attack states from the Patrol state once we have detected that there's an enemy
within the line of sight. We'll also cover how to apply behavior tree systems in
Chapter 6, Behavior Trees.

