
Sensors and Activities

moving through our AI environments and changing states, but they didn't really
react to anything. They knew about the navigation mesh and different points in
the scene, but there was no way for them to sense different objects in the game and
react to them. This chapter changes that; we will look at how to tag objects in the
game so that our characters can sense and react to them.

In this chapter, you will learn about:

Sensors and tagging game objects so that they can be sensed

AI characters that use sensors in RAIN

Having AI characters react to different objects and perform different
activities once they are sensed

An overview of sensing
A part of having good game AI is having the AI characters react to other parts
of the game in a realistic way. For example, let's say you have an AI character in
a scene searching for something, such as the player to attack them or items to
collect (as in the demo in this chapter). We could have a simple proximity check,
for example, if the enemy is 10 units from the player, it starts attacking. However,
what if the enemy wasn't looking in the direction of the player and wouldn't be able

Sensors and Activities

[68]

To set up senses for our characters, we will use RAIN's senses system. You might
assume that we will use standard methods to query a scene in Unity, such as
performing picking through Unity's ray casting methods. This works for simple cases,
but

to an object, and the AI might be able to sense objects only inside the volume. Not
everything in the volume can be sensed because there might be additional restrictions
such as not being able to see through walls. A visualization illustrates this volume

on the visualization of a sense in a RAIN AI:

The early versions of RAIN included additional senses, such as smell,
with the idea that more senses meant more realism. However, adding
more senses was confusing for users and was used only in rare cases,
so they were cut from the current versions. If you need a sense such
as smell for something like the ant demo we saw in Chapter 5, Crowd
Control, try modifying how you use vision or hearing, such as using a
visual for smell and have it on a layer not visible to players in game.

While setting up characters to sense game objects in their environment, you might
think that the AI system would automatically analyze everything in the scene (game
objects and geometry) to determine what is sensed. This will work for small levels
but as we've seen before, we run into the problem of scaling if we have a very large
scene with many objects. Larger scenes will mostly have background items that our
AI doesn't care about, and we will need a more complex system to analyze all the

Similarly, our senses don't work on everything; for an object to be sensed, it needs
to be tagged.

Chapter 6

[69]

In RAIN, the AI characters we create have an object, but for items we want
to detect in the scene, we add a RAIN Entity component to them. The RAIN menu
in Unity has a Create Entity option that is used to add an Entity component. The
tags that you can set on the entities are called aspects, and the two types of aspects
correspond to our two sensor types: visual aspects and audio aspects. So, a typical

AI characters sense the environment is to put Entity
components on game objects to detect, add aspects to those entities with the
different tags a sensor can detect, and create sensors on your AI characters.

Advanced visual sensor settings
We've heard stories of people setting up their sensors—especially visual ones—and

the senses' advanced settings can help avoid issues such as these and make
development easier.

To see visual sensor settings, add a RAIN AI to a game object and click on the
eye icon, select Visual Sensor from the Add Sensor dropdown, and then click
on the gear icon in the upper-right corner and select Show Advanced Settings.
The following screenshot shows the Visual Sensor section in RAIN:

Sensors and Activities

[70]

Here are some of the properties of the sensor:

Show Visual / Sensor Color: These are used to show how the sensor will
look in the Unity editor, not in the game.

Is Active
sense aspects in the scene or whether it is disabled.

Sensor Name: This shows the name of the sensor. This is useful when using
the sensor in behavior trees, which we will see in this chapter's demo.

Mount Point: This is the game object the sensor is attached to.

Horizontal Angle / Vertical Angle / Range
of the sense; nothing outside of it will be picked up. The visualization of the
sense matches these dimensions. You will want to customize these settings
for different characters in your game. Unexpected behavior can occur from
setting these up incorrectly.

Require Line of Sight
aspect without intersecting other objects for the aspect to be seen. Without

Can Detect Self / Line of Sight Ignores Self
ignore the AI character. This is important as it prevents a common problem.
For example, we can have several soldier characters with a soldier aspect
and then add a soldier from a different team that attacks the other soldiers.
However, the attacking soldier when sensing might pick up its own aspect

Line of Sight Mask: To further help control what can be seen, layer masks
can be used. These work the same as Unity's ray casting masks.

Advanced audio sensor settings
The properties for the audio sensor is similar to that of the visual sensor, except it
doesn't have any line of sight properties and the volume of the sense is a radius
and doesn't have vertical or horizontal angle limits. The important properties are:

Range

Chapter 6

[71]

Volume Threshold: When listening for aspects, this is the lowest volume
that the sensor can hear

Now that we understand all of our sensor options, let's start the demo.

Using senses with RAIN
For this demo, we will use RAIN 2.14 and have a ship that patrols a path, looks for
pieces of gold, and picks them up. To start, we'll use a setup similar to that of the
demo in Chapter 3, Behavior Trees. You can start from there or recreate it; we just
need a ship, a wall, a path, with the ground being a little larger, and the objects
spread out a little.

When changing the base geometry of your game levels, you need to
regenerate the navigation mesh. This is done by selecting the Navigation
Mesh object in your scene and clicking on the Generate NavMesh button.

Here is our basic setup. The following image shows the starting point of our
sensor demo:

Sensors and Activities

[72]

We also just need the behavior tree for the ship to only patrol the path. Set up this
behavior like we did in Chapter 2, Patrolling, or if you are using the behavior tree
demo, delete the timer node functionality. The new behavior tree should look like
the following screenshot:

This will be the starting point of the behavior tree for our sensor demo. If you start
the demo now, the ship will just keep circling the wall.

Setting up aspects in RAIN
For our sensor demo, we will have the ship look for gold, which will be represented
by a simple game object. Create a Sphere object in Unity by navigating to Game
Object | Create Other | Sphere. Make it a little smaller by giving it Scale of 0.25
for X, Y, and Z, and change the material to a golden color. We'll be duplicating
the object later so if you want duplicating to be easier, make it a prefab. This is
our starting point, as illustrated in the following screenshot:

The starting point of our object (Sphere)

Chapter 6

[73]

To have an aspect, the game object needs an Entity component. With Gold selected,
go to RAIN | Create Entity. There are a few settings to customize, but for now just
change the Entity Name Gold. The other important setting is Form, which
is the game object attached to it; we can leave it to Sphere.

Click on the Add Aspect dropdown and select Visual Aspect. Set the aspect name
to Gold as well. The setting should look like the following screenshot:

We now have an entity with a visual aspect. Create a Prefab tab for this Gold object
and then add it to the opposite side of the wall as the ship. The scene should look
like the following screenshot:

A sensor demo with gold

Sensors and Activities

[74]

Setting up a visual sensor in RAIN
We have the gold aspect; next we need a visual sensor. Select Ship AI, click on the
eye icon for the sensors tab, and from the Add Sensor dropdown, select Visual
Sensor. Go to the Advanced Settings (selecting the gear icon) icon and adjust the
horizontal and vertical angles as well as the range until the sensor can see a bit in
front of the ship. Typically, you will make these very large so that the character can
see most of the level. For this demo, the sensor values are 120 for Horizontal Angle,
45 for Vertical Angle, and 15 for Range. Also, check the Require Line of Sight
option so that the ship can't see gold through the wall. The setup should look like
the following screenshot:

Chapter 6

[]

If you run the demo now, you will see the ship moving with the sensor (in Editor
View). The ship with a visual sensor should look like the following image:

This completes setting up the sensor for our ship.

Changing activities based on sensing
We now have the ship sensing the gold as it passes by, but it still doesn't react to it.
To do this, we will update the behavior tree for the ship.

it sees Gold. Open the behavior tree for the ship and create a detect node. As the
detect node will be running continuously, change its Repeat type to Forever and
right-click on the root node and change its type to Parallel. For the detection part
of the detect node to work, set the Aspect "Gold" and set the sensor it will
be using to "Visual Sensor". Finally, we need to set the form of the aspect, the game
object attached. Set Form Variable to gold.

quotes and others don't. This is planned to be improved in future versions

value with quotes means the name of an object and without means the
value of a variable. So in our case, "Visual Sensor" and "Gold" were both
in quotes as they were referring to objects by name, but gold is an actual
variable we store data in, so it doesn't have quotes.

Sensors and Activities

[76]

Your setup should look like the following screenshot:

In the preceding screenshot, you can see the behavior tree with the detect node.

Now if you run the game, the gold will be detected, but the ship still doesn't move
to it yet. To do this, we will use a selector node similar to the original behavior tree
demo. Place a selector node under root and create a constraint node as a child with
a Constraint value of gold == null. Then, move the original patrol node to be a child
of the constraint. The setup should look the following screenshot:

The preceding screenshot shows a detection behavior tree with a constraint node.

Chapter 6

[77]

Now if you run the demo, when the ship sees the gold, the gold value will not be
null and it will stop moving. However, instead of stopping, we want it to move over
to the gold; so, add another constraint node with the Expressiongold != null value
and a move node below it that has a Move Target value of gold. Here is how the
behavior tree with the detect node settings will look:

If you run the demo now, the ship will move to the gold when it sees it. However,
let's change this so that the ship goes back to patrolling after the pickup. Make sure
that both root and selector nodes are set to Forever for their Repeat type. Then,
create a new custom action node (like in Chapter 3, Behavior Trees) and put it under
the move node for the gold. Create a new class for the custom action and call it

. Set its code to this:

Sensors and Activities

[78]

The important code here is in the method. We got the game object that
was sensed from the memory and then erased it from memory by setting the
value to . Then, we destroyed the object, so it won't be sensed anymore.
If you run the code now, the ship will follow the path, pick up gold when it sees it,
and then go back to the path.

Next, try adding several more gold prefabs to the scene and run the demo, as shown
in the following image:

Chapter 6

[79]

Now in the demo, the ship will go and collect all the different gold pieces it sees and
then return to the path.

If you tried running the demo with multiple gold pieces, you must have seen a small

be the closest. If it sees a distant piece from the corner of its eye, it will go straight to
 to the RAIN

sensors. Filters are ways to manipulate the list of sensed objects, and RAIN might
have more in the future but for now, it just has one: NearestXFilter. Select Visual
Sensor in the ship and set the Size 1 and select NearestXFilter under the
Filters section. The following screenshot will show the settings of NearestXFilter
on the sensor:

Sensors and Activities

[80]

The NearestXFilter
In our case, we just leave it to one. If you run the demo now, the ship will always

ship demo.

Summary
In this chapter, we looked at how to set up sensors for our AI characters so that they
can see the environment. We also saw how to tag objects with aspects so that they
are visible to our AI. We also saw how to change a character's activities based on
sensing, and we discussed different settings for sensors and how to tweak them.
Sensors and aspects can make your game's AI more realistic, but they need to be
carefully adjusted to give good results.

In the next chapter, we will look at taking our work with navigation and mind

we will see how all of the AI we have used so far can make our AI characters adapt
to different game events and create more complex AI.

