
1

Behaviors – Intelligent
Movement

In this chapter, we will develop AI algorithms for movement by covering the following recipes:

 Creating the behaviors' template

 Pursuing and evading

 Arriving and leaving

 Facing objects

 Wandering around

 Following a path

 Avoiding agents

 Avoiding walls

 Blending behaviors by weight

 Blending behaviors by priority

 Combining behaviors using a steering pipeline

 Shooting a projectile

 Predicting a projectile's landing spot

 Targeting a projectile

 Creating a jump system

Behaviors – Intelligent Movement

2

Introduction
Unity has been one of the most popular game engines for quite a while now, and it's
probably the de facto game development tool for indie developers, not only because
of its business model, which has a low entry barrier, but also because of its robust project
editor, year-by-year technological improvement, and most importantly, ease of use and
an ever-growing community of developers around the globe.

Thanks to Unity's heavy lifting behind the scenes (rendering, physics, integration, and
cross-platform deployment, just to name a few) it's possible for us to focus on creating the
AI systems that will bring to life our games, creating great real-time experiences in the blink
of an eye.

The goal of this book is to give you the tools to build great AI, for creating better enemies,

In this chapter, we will start by exploring some of the most interesting movement algorithms
based on the steering behavior principles developed by Craig Reynolds, along with work from
Ian Millington. These recipes are the stepping stones for most of the AI used in advanced games

Creating the behavior template
Before creating our behaviors, we need to code the stepping stones that help us not only to
create only intelligent movement, but also to build a modular system to change and add these
behaviors. We will create custom data types and base classes for most of the algorithms
covered in this chapter.

Getting ready

Also, it's important to refresh so that we can select the scripts' order of execution. For our
behaviors to work as intended, the rules for ordering are as follows:

 Agent scripts

 Behavior scripts

 Behaviors or scripts based on the previous ones

Chapter 1

3

This is an example of how to arrange the order of execution for the movement scripts.
We need to pursue derives from Seek, which derives from AgentBehaviour.

How to do it...
We need to create three classes: , , and :

1. serves as a custom data type for storing the movement and rotation of
the agent:

Behaviors – Intelligent Movement

4

2. Create the class, which is the template class for most of the
behaviors covered in this chapter:

3. Finally, is the main component, and it makes use of behaviors in order to

Chapter 1

5

Next, we code the function, which handles the movement according to the
current value:

5. Finally, we implement the function, which takes care of updating the
steering for the next frame according to the current frame's calculations:

Behaviors – Intelligent Movement

6

How it works...
The idea is to be able to delegate the movement's logic inside the function
on the behaviors that we will later build, simplifying our agent's class to a main calculation
based on those.

Besides, we are guaranteed to set the agent's steering value before it is used thanks to Unity
script and function execution orders.

There's more...
This is a component-based approach, which means that we have to remember to always have
an script attached to for the behaviors to work as expected.

See also
For further information on Unity's game loop and the execution order of functions and scripts,

Pursuing and evading
Pursuing and evading are great behaviors to start with because they rely on the most basic
behaviors and extend their functionality by predicting the target's next step.

Getting ready
We need a couple of basic behaviors called and ; place them right after the
class in the scripts' execution order.

The following is the code for the behaviour:

Chapter 1

7

Also, we need to implement the behavior:

How to do it...
 and are essentially the same algorithm but differ in terms of the base class

they derive from:

1. Create the class, derived from , and add the attributes for the prediction:

Behaviors – Intelligent Movement

8

2. Implement the function in order to set up everything according to the
real target:

3. As well as implement the function, to properly handle the internal object:

Finally, implement the function:

5. To create the behavior, the procedure is just the same, but it takes into
account that is the parent class:

Chapter 1

9

How it works...
These behaviors rely on and and take into consideration the target's velocity
in order to predict where it will go next; they aim at that position using an internal extra object.

Arriving and leaving
Similar to and , the idea behind these algorithms is to apply the same principles
and extend the functionality to a point where the agent stops automatically after a condition is
met, either being close to its destination (arrive), or far enough from a dangerous point (leave).

Getting ready
 and , respectively, and

remember to set their custom execution order.

How to do it...
They use the same approach, but in terms of implementation, the name of the member

 function:

1. First, implement the
radius for stopping (target) and slowing down:

2. Create the function:

Behaviors – Intelligent Movement

10

3. function, in which we compute the desired
speed depending on the distance from the target according to the radii variables:

second half of the function, in which we set the steering
value and clamp it according to the maximum speed:

5. To implement , the name of the member variables changes:

6. function:

Chapter 1

11

7. stays just the same.

How it works...
After calculating the direction to go in, the next calculations are based on two radii distances
in order to know when to go full throttle, slow down, and stop; that's why we have several

 statements. In the behavior, when the agent is too far, we aim to full-throttle,

to the target. The converse train of thought applies to .

A visual reference for the Arrive and Leave behaviors

Behaviors – Intelligent Movement

12

Facing objects
Real-world aiming, just like in combat simulators, works a little differently from the
widely-used automatic aiming in almost every game. Imagine that you need to implement an
agent controlling a tank turret or a humanized sniper; that's when this recipe comes in handy.

Getting ready
 class:

1. Add new member values to limit some of the existing ones:

2. Add a function called
of rotation after two orientation values are subtracted:

3. Also, we need to create a basic behavior called that is the stepping stone
for the facing algorithm. It uses the same principle as , but only in terms
of rotation:

Chapter 1

13

How to do it...
We now proceed to implement our facing algorithm that derives from :

1. Create the class along with a private auxiliary target member variable:

2. Override the function to set up everything and swap references:

Behaviors – Intelligent Movement

14

3. Also, implement the function to handle references and avoid
memory issues:

the function:

How it works...
The algorithm computes the internal target orientation according to the vector between the
agent and the real target. Then, it just delegates the work to its parent class.

Wandering around
This technique works like a charm for random crowd simulations, animals, and almost any
kind of NPC that requires random movement when idle.

Chapter 1

15

Getting ready
We need to add another function to our class called that
converts an orientation value to a vector.

How to do it...
We could see it as a big three-step process in which we manipulate the internal target position
in a parameterized random way, face that position, and move accordingly:

1. Create the class deriving from :

2. function in order to set up the internal target:

3. function:

Behaviors – Intelligent Movement

16

How it works...
The behavior takes into consideration two radii in order to get a random position to go to
next, looks towards that random point, and converts the computed orientation into a direction
vector in order to advance.

A visual description of the parameters for creating the Wander behavior

Chapter 1

17

Following a path
There are times when we need scripted routes, and it's just inconceivable to do this entirely
by code. Imagine you're working on a stealth game. Would you code a route for every single

Getting ready
:

How to do it...
This is a long recipe that could be seen as a big two-step process. First, we build the

we build the behavior, which makes use of that abstraction in order to get
actual spatial points to follow:

1. Create the class, which consists of nodes and segments but only the nodes are
public and assigned manually:

Behaviors – Intelligent Movement

18

2. function to set the segments when the scene starts:

3. function to build the segments from the nodes:

:

5.

Chapter 1

19

6. Given the current position, we need to work out the direction to go to:

7. Find the point in the segment using vector projection:

8. Finally, returns the next position to go to along the path:

9. function:

10.

11. Finally, converts the parameter as a spatial point and returns it:

Behaviors – Intelligent Movement

20

12. Create the behavior, which derives from (remember to set the
order of execution):

13. Implement the function to set the target:

 function, which relies on the abstraction
created by the class to set the target position and apply :

How it works...
We use the class in order to have a movement guideline. It is the cornerstone, because
it relies on to map an offset point to follow in its internal guideline, and it also uses

 to convert that referential point to a position in the three-dimensional space
along the segments.

The path-following algorithm just makes use of the path's functions in order to get a new
position, update the target, and apply the behavior.

Chapter 1

21

There's more...
It's important to take into account the order in which the nodes are linked in the Inspector for
the path to work as expected. A practical way to achieve this is to manually name the nodes
with a reference number.

An example of a path set up in the Inspector window

Also, we could function in order to have a better visual reference of
the path:

Behaviors – Intelligent Movement

22

Avoiding agents
In crowd-simulation games, it would be unnatural to see agents behaving entirely like particles
in a physics-based system. The goal of this recipe is to create an agent capable of mimicking
our peer-evasion movement.

Getting ready
We need to create a tag called Agent and assign it to those game objects that we would like
to avoid, and we also need to have the Agent script component attached to them.

An example of how should look the Inspector of a dummy agent to avoid

How to do it...
This recipe will

1. Create the behavior, which is composed of a collision avoidance radius
and the list of agents to avoid:

Chapter 1

23

2. Implement the function in order to set the list of agents according to the tag
we created earlier:

3. function:

Add the following variables to compute distances and velocities from agents that
are nearby:

5. Find the closest agent that is prone to collision with the current one:

Behaviors – Intelligent Movement

24

6. If there is one, then get away:

How it works...
Given a list of agents, we take into consideration which one is closest, and if it is close

according to its current velocity so that they don't collide.

There's more
This behavior works well when combined with other behaviors using blending techniques
(some are included in this chapter); otherwise it's a starting point for your own collision
avoidance algorithms.

Avoiding walls
This technique aims at imitating our capacity to evade walls by considering a safety margin,
and creating repulsion from their surfaces when that gap is broken.

Getting ready
This technique uses the structure and the function from the physics
engine, so it's recommended that you take a refresher on the docs in case you're a little rusty
on the subject.

Chapter 1

25

How to do it...
Thanks to our previous hard work, this recipe is a short one:

1. Create the behavior derived from :

2.
to cast:

3. function to set up the target:

 function for the following steps:

5. Declare and set the variable needed for ray casting:

6. Cast the ray and make the proper calculations if a wall is hit:

Behaviors – Intelligent Movement

26

How it works...
We cast a ray in front of the agent; when the ray collides with a wall, the target object is
placed in a new position taking into consideration its distance from the wall and the safety
distance declared and delegating the steering calculations to the behavior; this creates
the illusion of the agent avoiding the wall.

There's more...
We could extend this behavior by adding more rays, like whiskers, in order to get better
accuracy. Also, it is usually paired with other movement behaviors, such as ,
using blending.

The original ray cast and possible extensions for more precise wall avoidance

See also
For further information on the structure and the function, please refer

Blending behaviors by weight
Blending techniques allow you to add behaviors and mix them without creating new scripts
every time you need a new type of hybrid agent.

This is one of the most powerful techniques in this chapter, and it's probably the most used
behaviour-blending approach because of its power and the low cost of implementation.

Chapter 1

27

Getting ready
We must add a new member variable to our class called and
preferably assign a default value—in this case, . Besides this, we should refactor the

 function to incorporate as a parameter to the class'
function. All in all, the new class should look something like this:

How to do it...
We just need to change the

How it works...
The weights are used to amplify the behavior result, and they're added to the main
steering structure.

There's more...
The weights don't necessarily need to add up to . The parameter is a reference

 behavior will have among the other ones.

See also
In this project, there is an example of avoiding walls, worked out using weighted blending.

Behaviors – Intelligent Movement

28

Blending behaviors by priority
Sometimes, weighted blending is not enough because heavyweight behaviors dilute the
contributions of the lightweights, but those behaviors need to play their part too. That's when
priority-based blending comes into play, applying a cascading effect from high-priority to
low-priority behaviors.

Getting ready
The approach is very similar to the one used in the previous recipe. We must add a new
member variable to our class. We should also refactor the
function to incorporate as a parameter to the class'
function. The new class should look something like this:

How to do it...
Now, we need to make some changes to the class:

1. Add a new namespace from the library:

2. Add the member variable for the minimum steering value to consider a group
of behaviors:

3. Add the member variable for holding the group of behavior results:

Initialize the variable in the function:

Chapter 1

29

5. Modify the function so that the steering variable is set by calling
:

6. Modify the
values in their corresponding priority groups:

7. Finally, implement the function to funnel the steering group:

Behaviors – Intelligent Movement

30

How it works...

group in which the steering value exceeds the threshold is selected. Otherwise, steering from
the least-priority group is chosen.

There's more...
We could extend this approach by mixing it with weighted blending; in this way, we would
have a more robust architecture by getting extra precision on the way the behaviors make
an impact on the agent in every priority level:

See also
There is an example of avoiding walls using priority-based blending in this project.

Combining behaviors using a steering
pipeline

This is a different approach to creating and blending behaviors that is based on goals. It tries
to be a middle-ground between movement-blending and planning, without the implementation
costs of the latter.

Getting ready
Using a steering pipeline slightly changes the train of thought used so far. We need to think in
terms of goals, and constraints. That said, the heavy lifting rests on the base classes and the

The following code is for the class. It can be seen as a goal-driven behavior:

Chapter 1

31

Now, we create the class:

We also need a class:

 class:

Behaviors – Intelligent Movement

32

How to do it...
The class makes use of the previously implemented classes in
order to work, maintaining the component-driven pipeline but with a different approach,
as mentioned earlier:

1. Create the class deriving from the behavior, including
the array of components that it handles:

2. function to set the references to the attached components in the
game object:

3. function to work out the goal and the steering value to
reach it:

Chapter 1

33

How it works...
This code takes a composite goal generated by targeters, creates sub-goals using
decomposers constraints before "blending" them

to produce a steering result. If everything fails (the constraints are not
 behavior.

There's more...
You should try to implement some of the behavior recipes in terms of targeters, decomposers,
constraints, and an actuator. Take into account that there's room for one actuator only, and

 Targeters: seeking, arriving, facing, and matching velocity

 Decomposers algorithms

 Constraints: avoiding walls/agents

See also
For more theoretical insights, refer to Ian Millington's book, .

Behaviors – Intelligent Movement

34

Shooting a projectile
This is the stepping stone for scenarios where we want to have control over gravity-reliant
objects, such as balls and grenades, so we can then predict the projectile's landing spot,
or be able to effectively shoot a projectile at a given target.

Getting ready
This recipe differs slightly as it doesn't rely on the base class.

How to do it...
1. Create the class along with its member variables to handle the physics:

2. function:

Chapter 1

35

3. Finally, implement the
calling it after it is instantiated in the scene):

How it works...
This behavior uses high-school physics in order to generate the parabolic movement.

There's more...
We could also take another approach: implementing public properties in the script or
declaring member variables as public and, instead of calling the function, having the
script disabled by default in the prefab and enabling it after all the properties have been set.
That way, we could easily apply the object pool pattern.

See also
For further information on the object pool pattern, please refer to the following Wikipedia

addresses:

Predicting a projectile's landing spot
After a projectile is shot, some agents need to make a run for it, if we're talking about a
grenade, or look at it when we're developing a sports game. In either case, it's important
to predict the projectile's landing spot in order to make decisions:

Behaviors – Intelligent Movement

36

Getting ready
Before we get into predicting the landing position, it's important to know the time left before
it hits the ground (or reaches a certain position). Thus, instead of creating new behaviors, we
need to update the class.

How to do it...
1. First, we need to add the function to compute the landing time:

2. Now, we add the function to predict the landing spot:

Chapter 1

37

How it works...

projectile's current position and speed, we are able to get the time at which the projectile
will reach the given height.

There's more...
Take into account the validation. It's placed that way because there may be two, one, or
no solution to the equation. Furthermore, when the landing time is less than zero, it means
the projectile won't be able to reach the target height.

Targeting a projectile
Just like it's important to predict a projectile's landing point, it's also important to develop
intelligent agents capable of aiming projectiles. It wouldn't be fun if our rugby-player agents
aren't capable of passing the ball.

Getting ready
Just like the previous recipe, we only need to expand the class.

How to do it...
Thanks to our previous hard work, this recipe is a real piece of cake:

1. Create the function:

2. Solve the corresponding quadratic equation:

Behaviors – Intelligent Movement

38

3. If shooting the projectile is feasible given the parameters, return a non-zero
direction vector:

How it works...

desired direction (when at least one time value is available), which doesn't need to be
normalized because we already normalized the vector while setting up the projectile.

There's more...
Take into account that we are returning a blank direction when time is negative; it means that

speeds and then shoots the projectile.

Another relevant improvement is to add an extra parameter of the type for those cases
when we have two valid times (which means two possible arcs), and we need to shoot over an
obstacle such as a wall:

Chapter 1

39

Creating a jump system
Imagine that we're developing a cool action game where the player is capable of escaping
using cliffs and rooftops. In that case, the enemies need to be able to chase the player
and be smart enough to discern whether to take the jump and gauge how to do it.

Getting ready
We need to create a basic matching-velocity algorithm and the notion of jump pads and
landing pads in order to emulate a velocity math so that we can reach them.

Also, the agents must have the tag , the main object must have a
component marked as trigger. Depending on your game, the agent or the pads will
need the component attached.

The following is the code for the behavior:

Also, it's important to create a data type called :

Behaviors – Intelligent Movement

40

How to do it...
We will learn how to implement the behavior:

1. Create the class deriving from , with its member variables:

Chapter 1

41

2. Implement the method. It disables all the agent behaviors, except for the
 component:

3.
learned before:

Implement the member function for setting up the behaviors' target for matching
its velocity:

Behaviors – Intelligent Movement

42

5. Implement the function for computing the time:

6. Override the member function. The most important thing here is caching the
references to other attached behaviors, so function makes sense:

Chapter 1

43

7. Override the member function:

How it works...
The algorithm takes into account the agent's velocity and calculates whether it can reach the
landing pad or not. The behavior's target is the one responsible for executing the jump, and
if it judges that the agent can, it tries to match the targets' vertical velocity while seeking the
landing pad's position.

Behaviors – Intelligent Movement

44

There is more
We will need a jump pad and a landing pad in order to have a complete jumping system.
Both the jump and landing pads need the component marked as trigger. Also, as
stated before, they will probably need to have a component, too, as seen in the
image below.

The pads we will need a script attached as explained below.

The following code is to be attached to the jump pad:

Chapter 1

45

The following code is to be attached to the landing pad:

See Also
The Shooting a projectile recipe

