
[61]

Finding Your Way
Obstacle avoidance is a simple behavior for the AI entities to reach a target point.

to be used for behaviors such as crowd simulation, where the main objective of
each agent entity is just to avoid the other agents and reach the target. There's no

In this chapter, we will cover the following topics:

Path following and steering

A custom A* Pathfinding implementation

Unity's built-in NavMesh

[62]

Following a path
Paths are usually created by connecting waypoints together. So, we'll set up a simple
path, as shown in the following screenshot, and then make our cube entity follow
along the path smoothly. Now, there are many ways to build such a path. The one
we are going to implement here could arguably be the simplest one. We'll write a
script called and store all the waypoint positions in a array. Then,
from the editor, we'll enter those positions manually. It's bit of a tedious process right
now. One option is to use the position of an empty game object as waypoints. Or, if
you want, you can create your own editor plugins to automate these kind of tasks,

waypoint information manually, since the number of waypoints that we are creating
here are not that substantial.

An object path

[63]

First, we create an empty game entity and add our path script component, as shown
in the following screenshot:

The organized Hierarchy

Then, we populate our Point A variable with all the points we want to be included in
our path:

Properties of our path script

[64]

The preceding list shows the waypoints needed to create the path that was
described earlier. The other two properties are and . If the

 property is checked, the path formed by the positions entered will be
drawn as gizmos in the editor window. The property is a range value for
the path-following entities to use so that they can know when they've reached a
particular waypoint if they are in this radius range. Since to reach an exact position

path-following agents to navigate through the path.

The path script
So, let's take a look at the path script itself. It will be responsible for managing the
path for our objects. Look at the following code in the

[65]

As you can see, this is a very simple script. It has a property that returns the
length and size of the waypoint array if requested. The method returns the

have the method that is called by Unity frame to draw components
in the editor environment. The drawing here won't be rendered in the game view
unless gizmos, located in the top-right corner of the game view, are turned on.

Using the path follower
Next, we have our vehicle entity, which is just a simple cube object in this example.
We can replace the cube later with whatever 3D models we want. After we create
the script, we add the script component, as shown in the
following screenshot:

The properties of our VehicleFollowing script

The script takes a couple of parameters. First is the reference to the path object it
needs to follow. Then, the and properties, which are needed to calculate
its acceleration properly. The
the path continuously if it's checked. Let's take a look at the following code in the

[66]

First, we initialize the properties and set up the direction of our vector with
the entity's vector in the method, as shown in the following code:

There are only two methods that are important in this script, the and
methods. Let's take a look at the following code:

[67]

In the method, we check whether our entity has reached a particular
waypoint by calculating the distance between its current position and the path's
radius range. If it's in the range, we just increase the index to look it up from the
waypoints array. If it's the last waypoint, we check if the
is set, we set the target to the starting waypoint; otherwise, we just stop at that point.
Though, if we wanted, we could make it so that our object turned around and went
back the way it came. In the next part, we will calculate the acceleration from the

 method. Then, we rotate our entity and update the position according to the
speed and direction of the velocity:

[68]

The method takes the parameter target, which is a position

the remaining distance from the current position to the target position. The target
position vector minus the current position vector gives a vector toward the target
position vector. The magnitude of this vector is the remaining distance. We then
normalize this vector just to preserve the property. Now, if this is the

we slow down the velocity gradually according to the remaining distance to our

from this target velocity vector, we can calculate the new steering vector. Then, by
dividing this vector with the mass value of our entity, we get the acceleration.

If you run the scene, you should see your cube object following the path. You can
also see the path that is drawn in the editor view. Play around with the speed and
mass value of the follower and radius values of the path and see how they affect the
overall behavior of the system.

Avoiding obstacles
In this section, we'll set up a scene, as shown in the following screenshot, and
make our AI entity avoid the obstacles while trying to reach the target point. The
algorithm presented here using the raycasting method is very simple, so it can only
avoid the obstacles blocking the path in front of it. The following screenshot will
show us our scene:

[69]

A sample scene setup

To create this, we make a few cube entities and group them under an empty game
object called . We also create another cube object called and give
it our obstacle avoidance script. We then create a ground plane object to assist in

The organized Hierarchy

[70]

It is worth noting that this
many walls up, our
wall setups and see how our performs.

Adding a custom layer
We will now add a custom layer to our object. To add a new layer, we navigate to
Edit | Project Settings | Tags. Assign the name to User Layer 8. Now,
we go back to our cube entity and set its property to .

Creating a new layer

This is our new layer, which is added to Unity. Later, when we do the raycasting to
detect obstacles, we'll only check for these entities using this particular layer. This
way, we can ignore some objects that are not obstacles that are being hit by a ray,
such as bushes or vegetation.

Assigning our new layer

For larger projects, our game objects probably already have a layer assigned to them.
So, instead of changing the object's layer to , we would instead make a list
using bitmaps of layers for our cube entity to use when detecting obstacles. We will
talk more about bitmaps in the next section.

[71]

Layers are most commonly used by cameras to render a part of the
scene, and by lights to illuminate only some parts of the scene. But, they
can also be used by raycasting to selectively ignore colliders or create
collisions. You can learn more about this at

.

Implementing the avoidance logic
Now it is time to make the script that will help our cube entity avoid these walls.

The properties of our VehicleAvoidance (script)

a GUI text in our method. Let's take a look at the following code in the

[72]

Then in our method, we update the agent entity's position and rotation,
based on the direction vector returned by the method:

 method is retrieve the mouse click position so
that we can move our AI entity. We do this by shooting a ray from the camera in the
direction it's looking. Then, we take the point where the ray hit the ground plane
as our target position. Once we get the target position vector, we can calculate the
direction vector by subtracting the current position vector from the target position
vector. Then, we call the method and pass in this direction vector:

[73]

The method is also quite simple. The only trick to note here is
that raycasting interacts selectively with the
at User Layer 8 in our Unity TagManager. The method accepts a layer
mask parameter to determine which layers to ignore and which to consider during
raycasting. Now, if you look at how many layers you can specify in TagManager,

represent this layer mask parameter. For example, the following would represent a
zero in 32 bits:

without using a layer mask parameter, it'll raycast against all those eight layers,
which could be represented like the following in a bitmask:

Our layer was set at layer 8 (9th index), and we only want to raycast
against this layer. So, we'd like to set up our bitmask in the following way:

The easiest way to set up this bitmask is by using the bit shift operators. We only
need to place the 'on' bit or 1 at the 9th index, which means we can just move that bit

 places to the left. So, we use the left shift operator to move the bit places to the
left, as shown in the following code:

If we wanted to use multiple layer masks, say layer and layer , an easy way would
be to use the bitwise operator like this:

[74]

Unity3D online. The question and answer site can be found at

.

Once we have the layer mask, we call the method from the
current entity's position and in the forward direction. For the length of the ray, we
use our variable so that we'll only avoid those obstacles that
are being hit by the ray within this distance.

Then, we take the normal vector of the hit ray, multiply it with the force vector, and
add it to the current direction of our entity to get the new resultant direction vector,
which we return from this method.

The cube entity avoids a wall

Then in our method, we use this new direction after avoiding obstacles to
rotate the AI entity and update the position according to the speed value:

[75]

Next up, we'll be implementing the A* algorithm in a Unity environment using C#.

even though there are other algorithms, such as Dijkstra's algorithm, because of

in Chapter 1, The Basics of AI in Games, but let's review the algorithm again from an
implementation perspective.

Revisiting the A* algorithm
Let's review the A* algorithm again before we proceed to implement it in the
next section. First, we'll need to represent the map in a traversable data structure.
While many structures are possible, for this example, we will use a 2D grid array.
We'll implement the class later to handle this map information. Our

 class will keep a list of the objects that are basically titles in a 2D
grid. So, we need to implement that class to handle things such as node type
(whether it's a traversable node or an obstacle), cost to pass through and cost to reach
the goal , and so on.

