Navigation

In this chapter, we will cover the following recipes:

>

Representing the world with grids

Representing the world with Dirichlet domains
Representing the world with points of visibility
Representing the world with a self-made navigation mesh
Finding your way out of a maze with DFS

Finding the shortest path in a grid with BFS

Finding the shortest path with Dijkstra

Finding the best-promising path with A*

Improving A* for memory: IDA*

Planning navigation in several frames: time-sliced search
Smoothing a path

Introduction

In this chapter, we will learn path-finding algorithms for navigating complex scenarios. Game
worlds are usually complex structures; whether a maze, an open world, or everything in
between. That's why we need different techniques for approaching these kinds of problems.

We'll learn some ways of representing the world using different kinds of graph structures, and
several algorithms for finding a path, each aimed at different situations.

It is worth mentioning that path-finding algorithms rely on techniques such as seek and
Arrive, learnt in the previous chapter, in order to navigate the map.

@]

www.it-ebooks.info

Navigation

Representing the world with grids

A grid is the most used structure for representing worlds in games because it is easy
to implement and visualize. However, we will lay the foundations for advanced graph
representations while learning the basis of graph theory and properties.

Getting ready

First, we need to create an abstract class called Graph, declaring the virtual methods that
every graph representation implements. It is done this way because, no matter how the
vertices and edges are represented internally, the path-finding algorithms remain high-level,
thus avoiding the implementation of the algorithms for each type of graph representation.

This class works as a parent class for the different representations to be learned in the
chapter and it's a good starting point if you want to implement graph representations not
covered in the book.

The following is the code for the Graph class:

1. Create the backbone with the member values:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public abstract class Graph : MonoBehaviour

{

public GameObject vertexPrefab;
protected List<Vertexs> vertices;
protected List<List<Vertex>> neighbours;
protected List<List<float>> costs;

// next steps

}
2. Define the Start function:

public virtual void Start()

{

Load () ;

}

3. Define the Load function, mentioned previously:
public virtual void Load() { }

o

www.it-ebooks.info

Chapter 2

4. Implement the function for getting the graph's size:

public virtual int GetSize()

{

if (ReferenceEquals (vertices, null))
return 0;
return vertices.Count;

}

5. Define the function for finding the nearest vertex given a position:

public virtual Vertex GetNearestVertex (Vector3 position)

{
}

6. Implement the function for getting the vertex given its ID:

return null;

public virtual Vertex GetVertexObj (int id)

{

if (ReferenceEquals (vertices, null) || vertices.Count == 0)
return null;

if (id < 0 || id »>= vertices.Count)
return null;

return vertices[id];

}

7. Implement the function for retrieving a vertex' neighbours:

public virtual Vertex[] GetNeighbours (Vertex v)

{

0)

if (ReferenceEquals (neighbours, null) || neighbours.Count ==

return new Vertex[0];

if (v.id < 0 || v.id >= neighbours.Count)
return new Vertex[0];

return neighbours|[v.id] .ToArray () ;

}
We also need a Vertex class, with the following code:

using UnityEngine;
using System.Collections.Generic;
[System.Serializable]
public class Vertex : MonoBehaviour
{
public int id;
public List<Edge> neighbours;
[HideInInspector]
public Vertex prev;

@]

www.it-ebooks.info

Navigation

Following, we need to create a class for storing a vertex' neighbours with their costs. This class
will be called Edge, and let's implement it:

1. Create the Edge class, deriving from IComparable:

using System;

[System.Serializable]
public class Edge : IComparable<Edge>

{

public float cost;
public Vertex vertex;
// next steps

}

2. Implement its constructor:

public Edge (Vertex vertex = null, float cost = 1f)

{

this.vertex = vertex;
this.cost = cost;

}

3. Implement the comparison member function:

public int CompareTo (Edge other)

{

float result = cost - other.cost;
int idA = vertex.GetInstanceID() ;
int idB = other.vertex.GetInstanceID() ;
if (idA == 1dB)
return O;
return (int)result;

}

4. Implement the function for comparing two edges:
public bool Equals (Edge other)

{
}

5. Override the function for comparing two objects:

return (other.vertex.id == this.vertex.id) ;

public override bool Equals (object obj)

{
Edge other = (Edge)obj;
return (other.vertex.id == this.vertex.id);

Ny

www.it-ebooks.info

Chapter 2

6. Override the function for retrieving the hash code. This is necessary when overriding
the previous member function:

public override int GetHashCode ()

{
}

return this.vertex.GetHashCode () ;

Besides creating the previous classes, it's important to define a couple of prefabs based on
the cube primitive in order to visualize the ground (maybe a low-height cube) and walls or
obstacles. The prefab for the ground is assigned to the vertexPrefab variable and the wall
prefab is assigned to the obstaclePrefab variable that is declared in the next section.

Finally, create a directory called Maps to store the text files for defining the maps.

How to do it...

Now, it's time to go in-depth and be concrete about implementing our grid graph. First,

we implement all the functions for handling the graph, leaving space for your own text files,
and in a following section we'll learn how to read . map files, which is an open format used
by a lot of games:

1.

Create the GraphGrid class deriving from Graph

using UnityEngine;

using System;

using System.Collections.Generic;

using System.IO;

public class GraphGrid : Graph

{

public GameObject obstaclePrefab;
public string mapName = "arena.map";
public bool get8Vicinity = false;
public float cellSize = 1f;

[Range (0, Mathf.Infinity)]

public float defaultCost = 1f;
[Range (0, Mathf.Infinity)]

public float maximumCost = Mathf.Infinity;
string mapsDir = "Maps";

int numCols;

int numRows;

GameObject [] vertexObjs;

// this is necessary for

// the advanced section of reading

57—

www.it-ebooks.info

Navigation

// from an example test file
bool[,] mapVertices;
// next steps

}

2. Define the GridToId and IdToGrid functions for transforming a position in the grid
into a vertex index, and vice versa, respectively

private int GridToId (int x, int y)

{

return Math.Max (numRows, numCols) * y + Xx;

private Vector2 IdToGrid(int id)

{
Vector2 location = Vector2.zero;
location.y = Mathf.Floor (id / numCols) ;

)

location.x = Mathf.Floor (id % numCols) ;

return location;

}

3. Define the LoadMap function for reading the text file:

private void LoadMap (string filename)
{
// TODO
// implement your grid-based
// file-reading procedure here
// using
// vertices[i, j] for logical representation and
// vertexObjs([i, j] for assigning new prefab instances

}

4. Override the LoadGraph function:

public override void LoadGraph ()

{

LoadMap (mapName) ;

}

5. Override the GetNearestVertex function. This is the traditional way, without
considering that the resulting vertex is an obstacle. In the next steps we will learn
how to do it better:

public override Vertex GetNearestVertex (Vector3 position)

{

position.x = Mathf.Floor (position.x / cellSize) ;
position.y = Mathf.Floor (position.z / cellSize) ;

=

www.it-ebooks.info

10.

int col = (int)position.x;
int row = (int)position.z;
int id = GridToId(col, row) ;
return vertices[id];

}

Chapter 2

Override the GetNearestVertex function. It's is based on the Breadth-First Search

algorithm that we will learn in depth later in the chapter:

public override Vertex GetNearestVertex (Vector3 position)
int col = (int) (position.x / cellSize);
int row = (int) (position.z / cellSize);
Vector2 p = new Vector2(col, row);
// next steps

}

Define the list of explored positions (vertices) and the queue of position to be explored:

List<Vector2> explored = new List<Vector2x>();
Queue<Vector2> queue = new Queue<Vector2s>();
queue . Enqueue (p) ;

Do it while the queue still have elements to explore. Otherwise, return null:
do

{
p = queue.Dequeue () ;
col = (int)p.x;
row = (int)p.y;
int id = GridToId(col, row) ;
// next steps
} while (queue.Count != 0);
return null;

Retrieve it immediately if it's a valid vertex:

if (mapVertices[row, coll)
return vertices[id];

Add the position to the list of explored, if it's not already there:

if (!explored.Contains (p))
{

explored.Add (p) ;

int i, j;

// next step

www.it-ebooks.info

55}

Navigation

11. Add all its valid neighbors to the queue, provided they're valid:

for (i = row - 1; 1 <= row + 1; i++)
for (j = col - 1; j <= col + 1; j++)

if(i<0||j<0)
continue;

if (j »= numCols || i >= numRows)
continue;

if (i == row && j == col)
continue;

queue .Enqueue (new Vector2(j, 1i));

Grid representation Vector representation
(general purpose)

01 2 Oj1)12]34|5]6]7
314|5
6|7|8

The algorithm makes use of its private functions in order to adapt itself to the general
functions derived from the parent's class, and it relies on simple mathematical functions to
convert from a two-dimensional vector position to a one-dimensional vector, or vertex index.

The LoadMap function is open to your own implementation, but in the next section we we'll
learn a way to implement and read certain kinds of text files containing maps based on grids.

N

www.it-ebooks.info

Chapter 2

There's more...

We'll learn a way to implement the LoadMap function by using the .map file format as
an example:

1. Define the function and create a StreamReader object for reading the file

private void LoadMap (string filename)

{

string path = Application.dataPath + "/" + mapsDir + "/" +
filename;

try

{

StreamReader strmRdr = new StreamReader (path) ;
using (strmRdr)

{

// next steps in here

}

catch (Exception e)

{

Debug.LogException (e) ;

}

2. Declare and initialize the necessary variables

int j = 0;
int 1 = 0;
int id = 0;

string line;
Vector3 position = Vector3.zero;
Vector3 scale = Vector3.zero;

3. Read the header of the file containing its height and width

line = strmRdr.ReadLine();// non-important line
line = strmRdr.ReadLine();// height

numRows = int.Parse(line.Split (' ') [1]);

line = strmRdr.ReadLine();// width

numCols = int.Parse(line.Split (' ') [1]);

line = strmRdr.ReadLine();// "map" line in file

1

www.it-ebooks.info

Navigation

4. Initialize the member variables, allocating memory at the same time:

vertices = new List<Vertex> (numRows * numCols) ;
neighbours = new List<List<Vertex>>(numRows * numCols) ;
costs = new List<List<floats>>(numRows * numCols) ;
vertexObjs = new GameObject [numRows * numCols] ;
mapVertices = new bool [numRows, numCols];

5. Declare the for loop for iterating over the characters in the following lines

for (i = 0; 1 < numRows; 1i++)

{

line = strmRdr.ReadLine () ;
for (j = 0; j < numCols; j++)

{

// next steps in here

}

6. Assign true or false to the logical representation depending on the character read

bool isGround = true;
if (linel[j] != '.")

isGround = false;
mapVertices[i, j] = isGround;

7. Instantiate the proper prefab
position.x = j * cellSize;
position.z = i * cellSize;
id = GridToId(j, 1i);
if (isGround)

vertexObjs[id] = Instantiate(vertexPrefab, position,
Quaternion.identity) as GameObject;
else

vertexObjs[id] = Instantiate (obstaclePrefab, position,

Quaternion.identity) as GameObject;

8. Assign the new game object as a child of the graph and clean-up its name
vertexObjs[id] .name = vertexObjs[id] .name.Replace (" (Clone)",
id.ToString()) ;

Vertex v = vertexObjs[id] .AddComponent<Vertexs> () ;
v.id = id;

vertices.Add (v) ;

neighbours.Add (new List<Vertex>()) ;

costs.Add (new List<float>());

float y = vertexObjs([id] .transform.localScale.y;

www.it-ebooks.info

10.

11.

Chapter 2

scale = new Vector3(cellSize, y, cellSize);
vertexObjs[id] .transform.localScale = scale;
vertexObjs[id] .transform.parent = gameObject.transform;

Create a pair of nested loops right after the previous loop, for setting up the
neighbors for each vertex:

for (i = 0; 1 < numRows; 1i++)

{

for (j = 0; j < numCols; j++)

{

SetNeighbours(j, i);

}

Define the SetNeighbours function, called in the previous step:
protected void SetNeighbours (int x, int y, bool get8 = false)

{
int col = x;
int row = y;
int 1, J;
int vertexId = GridToId(x, Vy);
neighbours [vertexId] = new List<Vertex>();
costs [vertexId] = new List<float>();
Vector2[] pos = new Vector2[0];
// next steps

}

Compute the proper values when we need vicinity of eight (top, bottom, right, left,
and corners):

if (get8)
{
pos = new Vector2[8];
int ¢ = 0;
for (i = row - 1; i <= row + 1; i++)
{
for (j = col -1; j <= col; j++)
{
poslc] = new Vector2(j, 1i);
C++;

57}

www.it-ebooks.info

Navigation

12. Set up everything for vicinity of four (no corners):

else

{

pos = new Vector2[4];

’

pos[0] = new Vector2(col, row - 1);

pos[1l] = new Vector2(col - 1, row);

pos[2] = new Vector2(col + 1, row);
()

pos[3] = new Vector2(col, row + 1

}
13. Add the neighbors in the lists. It's the same procedure regarding the type of vicinity:

foreach (Vector2 p in pos)

{

i (int)p.y;

j (int)p.x;

if (i <0 || J < 0)
continue;

if (i >= numRows || j >= numCols)
continue;
if (i == row && j == col)
continue;
if (!mapVertices([i, Jjl)
continue;
int id = GridToId(j, 1i);
neighbours [vertexId] .Add (vertices[id]) ;
costs [vertexId] .Add(defaultCost) ;

}

For further information about the map's format used and getting free maps from several
acclaimed titles, please refer to the Moving Al Lab's website, led by Professor Sturtevant,
available online at http://movingai.com/benchmarks/

www.it-ebooks.info

Chapter 2

Representing the world with Dirichlet

domains

Also called a Voronoi polygon, a Dirichlet domain is a way of dividing space into regions
consisting of a set of points closer to a given seed point than to any other. This graph
representation helps in distributing the space using Unity's primitives or existing meshes, thus
not really adhering to the definition, but using the concept as a means to an end. Dirichlet
domains are usually mapped using cones for delimiting the area of a given vertex, but we're
adapting that principle to our specific needs and tool.

Example of a Voronoi Diagram or Voronoi Polygon

Getting ready

Before building our new Graph class, it's important to create the VertexReport class, make
some modifications to our Graph class, and add the Vertex tag in the project:

1. Prependthe vertexReport class to the Graph class specification, in the same file:

public class VertexReport
{
public int vertex;
public GameObject obj;
public VertexReport (int vertexId, GameObject obj)

{

www.it-ebooks.info

Navigation

vertex = vertexId;
this.obj = obj;

. It's worth noting that the vertex objects in the scene must have a collider
% component attached to them, as well as the Vertex tag assigned. These
s objects can be either primitives or meshes, covering the maximum size of
the area to be considered that vertex node.

How to do it...

This can be seen as a two-step recipe. First we define the vertex implementation and then the
graph implementation, so everything works as intended:

1. First, create the VertexDirichlet class deriving from Vertex:

using UnityEngine;

public class VertexDirichlet : Vertex

{

// next steps

}

2. Define the onTriggerEnter function for registering the object in the current vertex:
public void OnTriggerEnter (Collider col)

{

string objName = col.gameObject.name;
if (objName.Equals("Agent") || objName.Equals("Player"))

{

VertexReport report = new VertexReport (id, col.
gameObject) ;

SendMessageUpwards ("AddLocation", report) ;

}

3. Define the onTriggerExit function for the inverse procedure
public void OnTriggerExit (Collider col)

{

string objName = col.gameObject.name;
if (objName.Equals("Agent") || objName.Equals("Player"))

{

&0

www.it-ebooks.info

Chapter 2

VertexReport report = new VertexReport (id, col.
gameObject) ;
SendMessageUpwards ("RemoveLocation", report) ;

}

Create the GraphDirichlet class deriving from Graph:

using UnityEngine;
using System.Collections.Generic;

public class GraphDirichlet : Graph

{

Dictionary<int, List<ints>> objToVertex;

}

Implement the AddLocation function we called before:
public void AddLocation (VertexReport report)

{

int objId = report.obj.GetInstanceID() ;
if (!objToVertex.ContainsKey (objId))

{

objToVertex.Add (objId, new List<int>());

}

objToVertex [objId] .Add (report.vertex) ;

}

Define the RemoveLocation function as well:

public void RemoveLocation (VertexReport report)

{

int objId = report.obj.GetInstanceID() ;
objToVertex [objId] .Remove (report.vertex) ;

}

Override the Start function to initialize the member variables:

public override void Start ()

{

base.Start () ;
objToVertex = new Dictionary<int, List<int>>();

}

Implement the Load function for connecting everything:

public override void Load ()

{

Vertex[] verts = GameObject.FindObjectsOfType<Vertex> () ;
vertices = new List<Vertexs> (verts) ;

[oi}—

www.it-ebooks.info

Navigation

for (int 1 = 0; 1 < vertices.Count; i++)
VertexVisibility vv = vertices[i] as VertexVisibility;
vv.id = 1i;
vv.FindNeighbours (vertices) ;

}

9. Override the GetNearestVertex function:

public override Vertex GetNearestVertex (Vector3 position)

Vertex vertex = null;
float dist = Mathf.Infinity;
float distNear = dist;
Vector3 posVertex = Vector3.zero;
for (int 1 = 0; 1 < vertices.Count; i++)

posVertex = vertices[i] .transform.position;

dist = Vector3.Distance(position, posVertex);

if (dist < distNear)

distNear = dist;

vertex = vertices[i];

}

return vertex;

}

10. Define the GetNearestVertex function, this time with a GameObject as input:
public Vertex GetNearestVertex (GameObject obj)

{
int objId = obj.GetInstancelD() ;
Vector3 objPos = obj.transform.position;
if (!objToVertex.ContainsKey (objId))
return null;
List<int> vertIds = objToVertex[objId];
Vertex vertex = null;
float dist = Mathf.Infinity;
for (int 1 = 0; 1 < vertIds.Count; i++)

{

int id = vertIdslI[i];

Vertex v = vertices[id];

Vector3 vPos = v.transform.position;
float d = Vector3.Distance (objPos, vPos);

ez

www.it-ebooks.info

Chapter 2

if (d < dist)

{

vertex = v;
dist = d;

}

return vertex;

}

11. Implement the GetNeighbors function:

public override Vertex[] GetNeighbours (Vertex v)

{
List<Edge> edges = v.neighbours;
Vertex[] ns = new Vertex[edges.Count];
int 1i;
for (i = 0; i < edges.Count; i++)
{
ns[i] = edges[i] .vertex;
}
return ns;
}

12. Finally, define the Get Edges function:
public override Edge[] GetEdges (Vertex v)

{

return vertices[v.id] .neighbours.ToArray () ;

}

When the agents or players enter into the area of a vertex, it sends a message to the graph
parent class, and indexes that vertex into the proper dictionary of objects, making the
appropriate quantization easier. The same inverse principle applies when the player leaves
the area. When the player is mapped into more than one vertex, the function returns the index
of the closest one.

Also, we're using a dictionary to facilitate the process of translating object instance IDs to the
indices of our vertex array.

www.it-ebooks.info

Navigation

Take into account that placing the vertices and making the connections between them (edges)
must be done manually using the implemented method. You're encouraged to implement a
way for getting a vertex's neighbors aimed at your own project if you need a more user-friendly
(or automated) technique.

Finally, we'll explore is an automated way to get a vertex's neighbors in the next recipe, using
ray casting that will probably serve as a starting point.

» The Representing the world with points of visibility recipe

Representing the world with points of

visibility

This is another widely-used technique for world representation based on points located
throughout the valid area of navigation, whether manually placed or automated via scripting.
We'll be using manually-placed points connected automatically via scripting.

Getting ready

Just like the previous representation, it's important to have several things in order before
continuing;:

» Having the Edge class prepended to the Graph class in the same file

» Defining the GetEdges function in the Graph class

» Having the Vvertex class

The vertex objects in the scene must have a collider component
attached to them, as well as the Vertex tag assigned. It's
’ recommended for them to be unitary Sphere primitives.

www.it-ebooks.info

Chapter 2

How to do it...

We'll be creating the graph representation class as well as a custom Vertex class:

1. Create the VertexVisibility class deriving from Vertex:
using UnityEngine;
using System.Collections.Generic;

public class VertexVisibility : Vertex

{

void Awake ()

{

neighbours = new List<Edges> () ;

}

2. Define the FindNeighbours function for automating the process of connecting
vertices among them:

public void FindNeighbours (List<Vertex> vertices)
{

Collider ¢ = gameObject.GetComponent<Colliders () ;

c.enabled = false;

Vector3 direction = Vector3.zero;

Vector3 origin = transform.position;

Vector3 target = Vector3.zero;

RaycastHit [] hits;

Ray ray;

float distance = 0f;

// next step

}

3. Go over each object and cast a ray to validate whether it's completely visible and then
add it to the list of neighbors:

for (int 1 = 0; 1 < vertices.Count; i++)
if (vertices[i] == this)
continue;

target = vertices[i] .transform.position;
direction = target - origin;

distance = direction.magnitude;

ray = new Ray(origin, direction) ;

hits = Physics.RaycastAll (ray, distance) ;
if (hits.Length == 1)

{

[}

www.it-ebooks.info

Navigation

4,

55

if (hits[0] .collider.gameObject.tag.Equals ("Vertex"))
{

Edge e = new Edge() ;

e.cost = distance;

GameObject go = hits[0] .collider.gameObject;

Vertex v = go.GetComponent<Vertexs>() ;

if (v != vertices[il])

continue;
e.vertex = v;
neighbours.Add (e) ;

}

c.enabled = true;

Create the GraphVisibility class:

using UnityEngine;
using System.Collections.Generic;

public class GraphVisibility : Graph

{

// next steps

}

Build the Load function for making the connections between vertices:

public override void Load ()
Vertex[] verts = GameObject.FindObjectsOfType<Vertexs> () ;
vertices = new List<Vertexs> (verts) ;
for (int 1 = 0; 1 < vertices.Count; i++)
VertexVisibility vv = vertices[i] as VertexVisibility;
vv.id = 1i;
vv.FindNeighbours (vertices) ;

}

Define the GetNearesteVertex function:

public override Vertex GetNearestVertex (Vector3 position)
Vertex vertex = null;
float dist = Mathf.Infinity;
float distNear = dist;
Vector3 posVertex = Vector3.zero;

www.it-ebooks.info

Chapter 2

for (int 1 = 0; 1 < vertices.Count; i++)
posVertex = vertices[i] .transform.position;
dist = Vector3.Distance(position, posVertex);
if (dist < distNear)
distNear = dist;

vertex = vertices[i];

}

return vertex;

}

7. Define the GetNeighbours function:

public override Vertex[] GetNeighbours (Vertex v)
{

List<Edge> edges = v.neighbours;

Vertex[] ns = new Vertex[edges.Count];

int 1i;

for (i = 0; i < edges.Count; i++)

{

ns[i] = edges[i] .vertex;

}

return ns;

}

8. Finally, override the Get Edges function:
public override Edge[] GetEdges (Vertex v)

{

return vertices[v.id] .neighbours.ToArray () ;

}

The parent class GraphVisibility indexes every vertex on the scene and makes use

of the FindNeighbours function on each one. This is in order to build the graph and make
the connections without total user supervision, beyond placing the visibility points where
the user sees fit. Also, the distance between two points is used to assign the cost to that
corresponding edge.

o7}

www.it-ebooks.info

Navigation

It's important to make a point visible to one another for the graph to be connected. This
approach is also suitable for building intelligent graphs considering stairs and cliffs, it just
requires moving the Load function to an editor-friendly class in order to call it in edit mode,
and then modify or delete the corresponding edges to make it work as intended.

Take a look at the previous recipe's Getting ready section so you can better understand the
starting point in case you feel you're missing something.

For further information about custom editors, editor scripting, and how to execute code in edit
mode, please refer to the Unity documentation, available online at:

» http://docs.unity3d.com/ScriptReference/Editor.html

» http://docs.unity3d.com/ScriptReference/ExecuteInEditMode.html

» http://docs.unity3d.com/Manual/PlatformDependentCompilation.
html

» Representing the world with Dirichlet domains recipe

Representing the world with a self-made

navigation mesh

Sometimes, a custom navigation mesh is necessary for dealing with difficult situations such
as different types of graphs, but placing the graph's vertices manually is troublesome because
it requires a lot of time to cover large areas.

We will learn how to use a model's mesh in order to generate a navigation mesh based on its
triangles' centroids as vertices, and then leverage the heavy lifting from the previous recipe
we learned.

Getting ready

This recipe requires some knowledge of custom editor scripting and understanding and
implementing the points of visibility in the graph representation. Also, it is worth mentioning
that the script instantiates a CustomNavMesh game object automatically in the scene and
requires a prefab assigned, just like any other graph representation.

&5

www.it-ebooks.info

Chapter 2
Finally, it's important to create the following class, deriving from Graphvisibility:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class CustomNavMesh : GraphVisibility

{

public override void Start ()

{

instIdToId = new Dictionary<int, int>();

How to do it...

We will create an editor window for easily handling the automation process without weighing
down the graph's Start function, delaying the scene loading.

1. Create the CustomNavMeshWindow class and place it in a directory called Editor:
using UnityEngine;
using UnityEditor;
using System.Collections;
using System.Collections.Generic;

public class CustomNavMeshWindow : EditorWindow

{

}
2. Add the attributes to the editor window:

static bool isEnabled = false;
static GameObject graphObj;
static CustomNavMesh graph;

// next steps here

static CustomNavMeshWindow window;
static GameObject graphVertex;

3. Implement the function for initializing and showing the window:

[MenuItem ("UAIPC/Ch02/CustomNavMeshWindow")]

static void Init ()
window = EditorWindow.GetWindow<CustomNavMeshWindows () ;
window.title = "CustomNavMeshWindow";
SceneView.onSceneGUIDelegate += OnScene;

www.it-ebooks.info

Navigation

graphObj = GameObject.Find ("CustomNavMesh") ;

if (graphObj == null)

{
graphObj = new GameObject ("CustomNavMesh") ;
graphObj . AddComponent<CustomNavMeshs> () ;
graph = graphObj.GetComponent<CustomNavMeshs> () ;

}

else

{

graph = graphObj.GetComponent<CustomNavMeshs> () ;
if (graph == null)

graphObj . AddComponent<CustomNavMeshs> () ;
graph = graphObj.GetComponent<CustomNavMeshs> () ;

}

4. Define the onDestroy function:
void OnDestroy ()

{

SceneView.onSceneGUIDelegate -= OnScene;

}

5. Implement the onGUI function for drawing the window's interior:
void OnGUI ()

{

isEnabled = EditorGUILayout.Toggle ("Enable Mesh Picking",
isEnabled) ;
if (GUILayout.Button ("Build Edges"))
{
if (graph != null)
graph.LoadGraph () ;

}

6. Implement the first half of the onScene function for handling the left-click on the
scene window:

private static void OnScene (SceneView sceneView)
{
if (!isEnabled)
return;
if (Event.current.type == EventType.MouseDown)
{
graphVertex = graph.vertexPrefab;
if (graphVertex == null)

7]

www.it-ebooks.info

Chapter 2

Debug.LogError ("No Vertex Prefab assigned");
return;

}

Event e = Event.current;

Ray ray = HandleUtility.GUIPointToWorldRay (e.

mousePosition) ;

RaycastHit hit;

GameObject newV;

// next step

}

7. Implement the second half for implementing the behavior when clicking on the mesh:
if (Physics.Raycast (ray, out hit))

{
GameObject obj = hit.collider.gameObject;
Mesh mesh = obj.GetComponent<MeshFilters () .sharedMesh;
Vector3 pos;

int 1i;
for (i = 0; i < mesh.triangles.Length; i += 3)
{

int i0 = mesh.triangles[i];

int il = mesh.triangles[i + 1];

int i2 = mesh.triangles[i + 2];

pos = mesh.vertices[i0];

pos += mesh.vertices([il];

pos += mesh.vertices[i2];

pos /= 3;

newV = (GameObject)Instantiate (graphVertex, pos,
Quaternion.identity) ;

newV.transform.Translate (obj.transform.position) ;

newV.transform.parent = graphObj.transform;

graphObj.transform.parent = obj.transform;

}

We create a custom editor window and set up the delegate function OnScene for handling
events on the scene window. Also, we create the graph nodes by traversing the mesh vertex
arrays, computing each triangle's centroid. Finally, we make use of the graph's LoadGraph
function in order to compute neighbors.

[

www.it-ebooks.info

Navigation

Finding your way out of a maze with DFS

The Depth-First Search (DFS) algorithm is a path-finding technique suitable for low-memory
devices. Another common use is to build mazes with a few modifications to the list of nodes
visited and discovered, however the main algorithm stays the same.

Getting ready

This is a high-level algorithm that relies on each graph's implementation of the general
functions, so the algorithm is implemented in the Graph class.

It is important to

How to do it...

Even though this recipe is only defining a function, please take into consideration the
comments in the code to understand the indentation and code flow for effectively:

1. Declare the GetPathDFS function:

public List<Vertex> GetPathDFS (GameObject srcObj, GameObject
dstObj)

{

// next steps

}

2. Validate if input objects are null:

if (srcObj == null || dstObj == null)
return new List<Vertex> () ;

3. Declare and initialize the variables we need for the algorithm:

Vertex src = GetNearestVertex (srcObj.transform.position) ;
Vertex dst = GetNearestVertex (dstObj.transform.position) ;
Vertex[] neighbours;

Vertex v;

int [] previous = new int[vertices.Count];

for (int i = 0; i < previous.Length; i++)
previous[i] = -1;
previous [src.id] = src.id;

Stack<Vertex> s = new Stack<Vertex> () ;
s.Push(src) ;

7z

www.it-ebooks.info

Chapter 2
4. Implement the DFS algorithm for finding a path:

while (s.Count != 0)

{
v = s.Pop();
if (ReferenceEquals (v, dst))

{
}

return BuildPath(src.id, v.id, ref previous) ;

neighbours = GetNeighbours (v) ;
foreach (Vertex n in neighbours)

{

if (previous[n.id] != -1)

continue;
previous[n.id] = v.id;
s.Push(n) ;

}

The algorithm is based on the iterative version of DFS. It is also based on the in-order
traversing of a graph and the LIFO philosophy using a stack for visiting nodes and adding
discovered ones.

There is more...

We called the function BuildpPath, but we haven't implemented it yet. It is important to note
that this function is called by almost every other path-finding algorithm in this chapter, that's
why it's not part of the main recipe.

This is the code for the BuildPath method:

private List<Vertex> BuildPath(int srcId, int dstId, ref int/[]
prevList)
List<Vertex> path = new List<Vertex>();
int prev = dstId;
do
path.Add (vertices [prev]) ;
prev = prevList [prev];
} while (prev != srcId);
return path;

(75}

www.it-ebooks.info

Navigation

Finding the shortest path in a grid with BFS

The Breadth-First Search (BFS) algorithm is another basic technique for graph traversal
and it's aimed to get the shortest path in the fewest steps possible, with the trade-off being
expensive in terms of memory; thus, aimed specially at games on high-end consoles and
computers.

Getting ready

This is a high-level algorithm that relies on each graph's implementation of the general
functions, so the algorithm is implemented in the Graph class.

How to do it...

Even though this recipe is only defining a function, please take into consideration the
comments in the code to understand the indentation and code flow more effectively:

1. Declare the GetPathBFS function:

public List<Vertex> GetPathBFS (GameObject srcObj, GameObject
dstObj)
{
if (srcObj == null || dstObj == null)
return new List<Vertex> () ;
// next steps

}

2. Declare and initialize the variables we need for the algorithm:

Vertex[] neighbours;

Queue<Vertex> g = new Queue<Vertex> () ;

Vertex src = GetNearestVertex (srcObj.transform.position) ;
Vertex dst = GetNearestVertex (dstObj.transform.position) ;
Vertex v;

int [] previous = new int[vertices.Count];

for (int i = 0; i < previous.Length; i++)
previous[i] = -1;
previous [src.id] = src.id;

g.Enqueue (src) ;

3. Implement the BFS algorithm for finding a path:
while (g.Count != 0)

{
v = g.Dequeue () ;
if (ReferenceEquals (v, dst))

7]

www.it-ebooks.info

Chapter 2
{

return BuildPath(src.id, v.id, ref previous) ;

}

neighbours = GetNeighbours (v) ;
foreach (Vertex n in neighbours)

{

if (previous[n.id] != -1)
continue;
previous[n.id] = v.id;

q.Enqueue (n) ;
}
}

return new List<Vertex> () ;

The BFS algorithm is similar to the DFS algorithm because it's based on the same in-order
traversing of a graph but, instead of a stack such as DFS, BFS uses a queue for visiting the
discovered nodes.

There is more...

In case you haven't noticed, we didn't implement the method BuildPath. This is because we
talked about it at the end of the Depth-First Search recipe.

» Finding your way out of a maze with DFS, recipe.

Finding the shortest path with Dijkstra

The Dijkstra's algorithm was initially designed to solve the single-source shortest path problem
for a graph. Thus, the algorithm finds the lowest-cost route to everywhere from a single point.
We will learn how to make use of it with two different approaches.

Getting ready

The first thing to do is import the binary heap class from the Game Programming Wiki
(GPWiki) into our project, given that neither the .Net framework nor Mono has a defined
structure for handling binary heaps or priority queues.

(75}

www.it-ebooks.info

Navigation

For downloading the source file and more information regarding GP Wiki's binary heap, please
refer to the documentation online available at http://content .gpwiki.org/index.
php/C_sharp:BinaryHeapOfT

How to do it...

We will learn how to implement the Dijkstra algorithm using the same number of parameters
as the other algorithms, and then explain how to modify it to make maximum use of it
according to its original purpose.

1. Define the GetPathDijkstra function with its internal variables:
public List<Vertex> GetPathDijkstra (GameObject srcObj, GameObject
dst0Obj)
{
if (srcObj == null || dstObj == null)
return new List<Vertex> () ;
Vertex src = GetNearestVertex(srcObj.transform.position) ;
Vertex dst GetNearestVertex (dstObj.transform.position) ;

GPWiki.BinaryHeap<Edge> frontier = new GPWiki.
BinaryHeap<Edge> () ;

Edge[] edges;

Edge node, child;

int size = vertices.Count;

float [] distValue = new float[sizel;
int [] previous = new int[size];

// next steps

}

2. Add the source node to the heap (working as a priority queue) and assign a distance
value of infinity to all of them but the source node:

node = new Edge(src, 0);
frontier.Add (node) ;
distValue[src.id] = 0;

previous [src.id] = src.id;
for (int 1 = 0; 1 < size; 1++)
{
if (i == src.id)
continue;
distValue[i] = Mathf.Infinity;
previous [i] = -1;

75

www.it-ebooks.info

Chapter 2

3. Define a loop to iterate while the queue is not empty:

while (frontier.Count != 0)

{

node = frontier.Remove () ;
int nodeId = node.vertex.id;
// next steps

}

return new List<Vertex> () ;

4. Code the procedure when arriving at the destination:

if (ReferenceEquals (node.vertex, dst))

{
}

5. Otherwise, process the visited nodes and add its neighbors to the queue, and return
the path (not empty if there is a path from source to destination vertex):

return BuildPath(src.id, node.vertex.id, ref previous) ;

edges = GetEdges (node.vertex) ;
foreach (Edge e in edges)
{
int eId = e.vertex.id;
if (previous[eId] != -1)
continue;
float cost = distValue[nodeId] + e.cost;
if (cost < distValuel[e.vertex.id])
{
distValue[eId] = cost;
previous [eId] = nodeId;
frontier.Remove (e) ;
child = new Edge(e.vertex, cost);
frontier.Add (child) ;

The Dijkstra algorithm works in a similar way to BFS, but considers non-negative edge costs in
order to build the best route from the source vertex to every other one. That's why we have an
array for storing the previous vertex.

(7}

www.it-ebooks.info

Navigation

There's more...

We will learn how to modify the current Dijkstra algorithm in order to approach the problem
using pre-processing techniques and optimizing the path-finding time. It can be seen as three
big steps: modifying the main algorithm, creating the pre-processing function (handy in editor
mode, for example), and, finally, defining the path-retrieval function.

1. Modify the main function's signature:
public int[] Dijkstra(GameObject srcObj)

2. Change the returning value:

return previous;

3. Remove the lines from step 4 in the How to do it section:
4. Also, delete the following line at the beginning:

Vertex dst = GetNearestVertex (dstObj.transform.position) ;

5. Create a new member value to the Graph class:

List<int[]> routes = new List<int[]>();

6. Define the pre-processing function, called DijkstraProcessing:

public void DijkstraProcessing()
{
int size = GetSize() ;
for (int 1 = 0; 1 < size; 1++)
{
GameObject go = vertices[i] .gameObject;
routes.add (Dijkstra(go)) ;

}

7. Implement a new GetPathDijkstra function for path retrieval:

public List<Vertex> GetPathDijkstra (GameObject srcObj, GameObject
dstObj)

{
List<Vertex> path = new List<Vertexs> () ;
Vertex src = GetNearestVertex (srcObj) ;
Vertex dst = GetNearestVertex (dstObj) ;
return BuildPath(src.id, dst.id, ref routes[dst.id]) ;

}

In case you haven't noticed, we didn't implement the method BuildPath. This is because we
talked about it at the end of the Depth-First Search recipe.

78]

www.it-ebooks.info

Chapter 2

» Finding your way out of a maze with DFS, recipe.

Finding the best-promising path with A*

The A* algorithm is probably the most-used technique for path finding, given its
implementation simplicity, and efficiency, and because it has room for optimization. It's no
coincidence that there are several algorithms based on it. At the same time, A* shares some
roots with the Dijkstra algorithm, so you'll find similarities in their implementations.

Getting ready

Just like Dijkstra's algorithm, this recipe uses the binary heap extracted from the GPWiki.
Also, it is important to understand what delegates are and how they work for. Finally, we are
entering into the world of informed search; that means that we need to understand what a
heuristic is and what it is for.

In a nutshell, for the purpose of this recipe, a heuristic is a function for calculating the
approximate cost between two vertices in order to compare them to other alternatives and
take the minimum-cost choice.

We need to add small changes to the Graph class:

1. Define a member variable as delegate:

public delegate float Heuristic(Vertex a, Vertex b);

2. Implement Euclidean distance member function to use it as default heuristic:
public float EuclidDist (Vertex a, Vertex b)

Vector3 posA = a.transform.position;
Vector3 posB = b.transform.position;
return Vector3.Distance (posA, posB) ;

}

3. Implement Manhattan distance function to use as a different heuristic. It will help us
in comparing results using different heuristics:

public float ManhattanDist (Vertex a, Vertex b)
{

Vector3 posA = a.transform.position;

Vector3 posB = b.transform.position;

return Mathf.Abs (posA.x - posB.x) + Mathf.Abs(posA.y -
posB.y) ;

}

www.it-ebooks.info

Navigation

How to do it...

Even though this recipe covers defining a function, please take into consideration the
comments in the code to understand the indentation and code flow more effectively:

1. Define the GetPathAstar function along with its member variables:
public List<Vertex> GetPathAstar (GameObject srcObj, GameObject
dstObj, Heuristic h = null)
{
if (srcObj == null || dstObj == null)
return new List<Vertex> () ;
if (ReferenceEquals (h, null))
h = EuclidDist;

Vertex src = GetNearestVertex (srcObj.transform.position) ;

Vertex dst = GetNearestVertex (dstObj.transform.position) ;

GPWiki.BinaryHeap<Edge> frontier = new GPWiki.
BinaryHeap<Edge> () ;

Edge[] edges;

Edge node, child;

int size = vertices.Count;

float[] distValue = new float[size];

int [] previous = new int[size]l;

// next steps

}

2. Add the source node to the heap (working as a priority queue) and assign a distance
value of infinity to all of them but the source node:

node = new Edge(src, 0);
frontier.Add (node) ;
distValue[src.id] = 0;

previous [src.id] = src.id;
for (int 1 = 0; 1 < size; 1++)
{
if (i == src.id)
continue;
distValue[i] = Mathf.Infinity;
previous[i] = -1;

w0

www.it-ebooks.info

Chapter 2

Declare the loop for traversing the graph:

while (frontier.Count != 0)

{
}

return new List<Vertex> () ;

// next steps

Implement the conditions for returning a path when necessary:

node = frontier.Remove () ;
int nodeId = node.vertex.id;
if (ReferenceEquals (node.vertex, dst))

{
}

Get the vertex's neighbors (also called successors in some text books):

return BuildPath(src.id, node.vertex.id, ref previous) ;

edges = GetEdges (node.vertex) ;

Traverse the neighbors for computing the cost function:

foreach (Edge e in edges)

int eId = e.vertex.id;
if (previous[eId] != -1)
continue;

float cost = distValue[nodeId] + e.cost;
// key point

cost += h(node.vertex, e.vertex) ;

// next step

}

Expand the list of explored nodes (frontier) and updating costs, if necessary:

if (cost < distValue[e.vertex.id])

{
distValue[eId] = cost;
previous [eId] = nodeId;
frontier.Remove (e) ;
child = new Edge(e.vertex, cost);
frontier.Add (child) ;

o7}

www.it-ebooks.info

Navigation

A* works in a similar fashion to Dijkstra's algorithm. However, instead of choosing the real
lowest-cost node from all the possible options, it chooses the most-promising one based on
a given heuristic, and goes on from there. In our case, the default heuristic is based solely on
the Euclidian distance between two vertices with the option of using Manhattan distance.

You are welcome to play with different heuristic functions depending on the game and context,
and the following is an example of how to do so:

1. Define a heuristic function in the Graph class:

public float Heuristic(Vertex a, Vertex b)

{

float estimation = Of;
// your logic here
return estimation;

}

The important thing here is that the heuristic we develop is both admissible and consistent.
For more theoretical insights about these topics, please refer to Artificial Intelligence: A
Modern Approach by Russel and Norvig.

In case you haven't noticed, we didn't implement the method BuildPath. This is because we
talked about it at the end of the Depth-First Search recipe.

» The Finding the shortest path with Dijkstra recipe
» The Finding your way out of a maze with DFS recipe

For further information about Delegates, please refer to the official documentation available
online at:

» https://unity3d.com/learn/tutorials/modules/intermediate/
scripting/delegates

Improving A* for memory: IDA*

IDA* is a variant of an algorithm called Iterative Deepening Depth-First Search. Its memory
usage is lower than A* because it doesn't make use of data structures to store the looked-up
and explored nodes.

[z

www.it-ebooks.info

Chapter 2

Getting ready

For this recipe, it is important to have some understanding of how recursion works.

How to do it...

This is a long recipe that can be seen as an extensive two-step process: creating the main
function, and creating an internal recursive one. Please take into consideration the comments
in the code to understand the indentation and code flow more effectively:

1. Let's start by defining the main function called Get PathIDAstar:

public List<Vertex> GetPathIDAstar (GameObject srcObj, GameObject
dstObj, Heuristic h = null)

{
if (srcObj == null || dstObj == null)
return new List<Vertex> () ;
if (ReferenceEquals (h, null))
h = EuclidDist;
// next steps;

}

2. Declare and compute the variables to use along with the algorithm:

List<Vertex> path = new List<Vertexs> () ;

Vertex src = GetNearestVertex (srcObj.transform.position) ;
Vertex dst = GetNearestVertex (dstObj.transform.position) ;
Vertex goal = null;

bool[] visited = new bool [vertices.Count] ;

for (int i = 0; 1 < visited.Length; i++)
visited[i] = false;
visited[src.id] = true;

3. Implement the algorithm's loop:

float bound = h(src, dst);
while (bound < Mathf.Infinity)

{

bound = RecursiveIDAstar (src, dst, bound, h, ref goal, ref
visited) ;
}
if (ReferenceEquals(goal, null))
return path;
return BuildPath(goal) ;

(&5}

www.it-ebooks.info

Navigation

4,

Now it's time to build the recursive internal function:

private float RecursiveIDAstar (
Vertex v,
Vertex dst,
float bound,
Heuristic h,
ref Vertex goal,
ref bool[] visited)

// next steps

}

Prepare everything to start the recursion:

// base case

if (ReferenceEquals (v, dst))
return Mathf.Infinity;

Edge[] edges = GetEdges (V) ;

if (edges.Length == 0)
return Mathf.Infinity;

Apply the recursion for each neighbor:
// recursive case

float fn = Mathf.Infinity;
foreach (Edge e in edges)

{

int eId = e.vertex.id;
if (visited[eId])

continue;
visited[eId] = true;
e.vertex.prev = Vv;
float £ = h(v, dst);
float b;

if (f <= bound)

{

b = RecursivelIDAstar (e.vertex, dst,
ref visited) ;
fn = Mathf.Min(f, b);

else
fn = Mathf.Min(fn, £f);

}

Return a value based on the recursion result:

return fn;

bound, h,

ref goal,

)

www.it-ebooks.info

Chapter 2

As we can see, the algorithm is very similar to that of the recursive version of Depth-First
Search, but uses the principle of making decisions on top of a heuristic from A*. The main
function is responsible for starting the recursion and building the resulting path. The recursive
function is the one responsible for traversing the graph, looking for the destination node.

There is more...

This time we will need to implement a different a BuildPath function, in case you have
followed along with the previous path finding recipes. Otherwise, we will need to implement
this method that we haven't defined yet:

private List<Vertex> BuildPath (Vertex v)

{

List<Vertex> path = new List<Vertexs> () ;
while (!ReferenceEquals (v, null))

{

path.Add (v) ;
vV = V.prev;

}

return path;

Planning navigation in several frames:

time-sliced search

When dealing with large graphs, computing paths can take a lot of time, even halting the
game for a couple of seconds. This could ruins its overall experience, to say the least. Luckily
enough there are methods to avoid this.

This recipe is built on top of the principle of using coroutines as a
method to keep the game running smoothly while finding a path in
g the background; some knowledge about coroutines is required.

Getting ready

We'll learn how to implement path-finding techniques using coroutines by refactoring the A*
algorithm learned previously, but we will handle its sighature as a different function.

[}

www.it-ebooks.info

Navigation

How to do it...

Even though this recipe is only defining a function, please take into consideration the
comments in the code to understand the indentation and code flow more effectively:

1. Modify the Graph class and add a couple of member variables. One for storing the
path and the other to know whether the coroutine has finished:

public List<Vertex> path;
public bool isFinished;

2. Declare the member function:
public IEnumerator GetPathInFrames (GameObject srcObj, GameObject
dstObj, Heuristic h = null)

{

//next steps

}

3. Include the following member variables at the beginning:
isFinished = false;
path = new List<Vertex>();
if (srcObj == null || dstObj == null)
{
path = new List<Vertex>();
isFinished = true;
yield break;

}
4. Modify the loop to traverse the graph:

while (frontier.Count != 0)

{

// changes over A%
yield return null;

LIT101777777777777777777777777

node = frontier.Remove () ;

5. Also, include the other path-retrieval validations:

if (ReferenceEquals (node.vertex, dst))

{
// changes over A*
path = BuildPath(src.id, node.vertex.id, ref previous);
break;

[I77017777777777777777777177777

www.it-ebooks.info

Chapter 2

6. Finally, reset the proper values and return control at the end of the function, after
closing the main loop:

isFinished = true;
yield break;

The yield return null statement inside the main loop works as a flag for delivering control to
the higher-level functions, thus computing each new loop in each new frame using Unity's
internal multi-tasking system.

» The Finding the best-promising path with A* recipe

For further information about Coroutines and more examples, please refer to the official
documentation available online at:

» http://docs.unity3d.com/Manual/Coroutines.html

» https://unity3d.com/learn/tutorials/modules/intermediate/
scripting/coroutines

Smoothing a path

When dealing with regular-size vertices on graph, such as grids, it's pretty common to see
some kind of robotic movement from the agents in the game. Depending on the type of game
we're developing, this could be avoided using path-smoothing techniques, such as the one
we're about to learn.

Original path Smoothed path

o7}

www.it-ebooks.info

Navigation

Getting ready

Let's define a new tag in the Unity editor called wall and assign it to every object in the scene
that is intended to work as a wall or obstacle in the navigation.

How to do it...

This is an easy, yet powerful, function:

1. Define the smooth function:
public List<Vertex> Smooth (List<Vertexs> path)

{

// next steps here

}

2. Check whether it is worth computing a new path:

List<Vertex> newPath = new List<Vertex>() ;
if (path.Count == 0)

return newPath;
if (path.Count < 3)

return path;

3. Implement the loops for traversing the list and building the new path:

newPath.Add (path[0]) ;
int 1, j;
for (i = 0; i < path.Count - 1;)
{
for (j =i + 1; j < path.Count; j++)
{
// next steps here
!
i=3 - 1;
newPath.Add (path[i]) ;

}

return newPath;

4. Declare and compute the variables to be used by the ray casting function:

Vector3 origin = pathl[i].transform.position;
Vector3 destination = path[j].transform.position;
Vector3 direction = destination - origin;

float distance = direction.magnitude;

bool isWall = false;

direction.Normalize() ;

w5

www.it-ebooks.info

Chapter 2

5. Cast a ray from the current starting node to the next one:
Ray ray = new Ray(origin, direction);
RaycastHit [] hits;
hits = Physics.RaycastAll (ray, distance) ;

6. Check whether there is a wall and break the loop accordingly:
foreach (RaycastHit hit in hits)

{
string tag = hit.collider.gameObject.tag;
if (tag.Equals("Wall"))
{
isWall = true;
break;

}
}

if (iswall)
break;

We create a new path, taking the initial node as a starting point, and apply ray casting to the
following node in the path, until we get a collision with a wall. When that happens, we take the
previous node as the following node in the new path and the starting point for traversing the
original one, until there are no nodes left to check. That way, we build a more intuitive path.

[}

www.it-ebooks.info

www.it-ebooks.info

