
47

Navigation

In this chapter, we will cover the following recipes:

 Representing the world with grids

 Representing the world with Dirichlet domains

 Representing the world with points of visibility

 Representing the world with a self-made navigation mesh

 Finding your way out of a maze with DFS

 Finding the shortest path in a grid with BFS

 Finding the shortest path with Dijkstra

 Finding the best-promising path with A*

 Improving A* for memory: IDA*

 Planning navigation in several frames: time-sliced search

 Smoothing a path

Introduction

worlds are usually complex structures; whether a maze, an open world, or everything in
between. That's why we need different techniques for approaching these kinds of problems.

We'll learn some ways of representing the world using different kinds of graph structures, and

 and
, learnt in the previous chapter, in order to navigate the map.

Navigation

48

Representing the world with grids
A grid is the most used structure for representing worlds in games because it is easy
to implement and visualize. However, we will lay the foundations for advanced graph
representations while learning the basis of graph theory and properties.

Getting ready
First, we need to create an abstract class called , declaring the virtual methods that
every graph representation implements. It is done this way because, no matter how the

thus avoiding the implementation of the algorithms for each type of graph representation.

This class works as a parent class for the different representations to be learned in the
chapter and it's a good starting point if you want to implement graph representations not
covered in the book.

The following is the code for the class:

1. Create the backbone with the member values:

2.

3.

Chapter 2

49

Implement the function for getting the graph's size:

5.

6. Implement the function for getting the vertex given its ID:

7. Implement the function for retrieving a vertex' neighbours:

We also need a class, with the following code:

Navigation

50

Following, we need to create a class for storing a vertex' neighbours with their costs. This class
will be called , and let's implement it:

1. Create the class, deriving from :

2. Implement its constructor:

3. Implement the comparison member function:

Implement the function for comparing two edges:

5. Override the function for comparing two objects:

Chapter 2

51

6. Override the function for retrieving the hash code. This is necessary when overriding
the previous member function:

the cube primitive in order to visualize the ground (maybe a low-height cube) and walls or
obstacles. The prefab for the ground is assigned to the variable and the wall
prefab is assigned to the variable that is declared in the next section.

Finally, create a directory called

How to do it...
Now, it's time to go in-depth and be concrete about implementing our grid graph. First,

and in a following section we'll learn how to read
by a lot of games:

1. Create the class deriving from Graph

Navigation

52

2. and functions for transforming a position in the grid
into a vertex index, and vice versa, respectively

3. function for reading the

Override the LoadGraph function:

5. Override the function. This is the traditional way, without
considering that the resulting vertex is an obstacle. In the next steps we will learn
how to do it better:

Chapter 2

53

6. Override the function. It's is based on the Breadth-First Search
algorithm that we will learn in depth later in the chapter:

7.

8. Do it while the queue still have elements to explore. Otherwise, return null:

9. Retrieve it immediately if it's a valid vertex:

10. Add the position to the list of explored, if it's not already there:

Navigation

54

11. Add all its valid neighbors to the queue, provided they're valid:

How it works...

The algorithm makes use of its private functions in order to adapt itself to the general
functions derived from the parent's class, and it relies on simple mathematical functions to
convert from a two-dimensional vector position to a one-dimensional vector, or vertex index.

The function is open to your own implementation, but in the next section we we'll

Chapter 2

55

There's more...
We'll learn a way to implement the function by using the
an example:

1.

2. Declare and initialize the necessary variables

3.

Navigation

56

Initialize the member variables, allocating memory at the same time:

5. Declare the for loop for iterating over the characters in the following lines

6. Assign true or false to the logical representation depending on the character read

7. Instantiate the proper prefab

8. Assign the new game object as a child of the graph and clean-up its name

Chapter 2

57

9. Create a pair of nested loops right after the previous loop, for setting up the
neighbors for each vertex:

10. SetNeighbours function, called in the previous step:

11. Compute the proper values when we need vicinity of eight (top, bottom, right, left,
and corners):

Navigation

58

12. Set up everything for vicinity of four (no corners):

13. Add the neighbors in the lists. It's the same procedure regarding the type of vicinity:

See also
For further information about the map's format used and getting free maps from several
acclaimed titles, please refer to the Moving AI Lab's website, led by Professor Sturtevant,
available online at

Chapter 2

59

Representing the world with Dirichlet
domains

Also called a Voronoi polygon, a Dirichlet domain is a way of dividing space into regions
consisting of a set of points closer to a given seed point than to any other. This graph
representation helps in distributing the space using Unity's primitives or existing meshes, thus

domains are usually mapped using cones for delimiting the area of a given vertex, but we're

Example of a Voronoi Diagram or Voronoi Polygon

Getting ready
Before building our new class, it's important to create the class, make

 class, and add the tag in the project:

1. Prepend the class to the

Navigation

60

It's worth noting that the vertex objects in the scene must have a collider
component attached to them, as well as the tag assigned. These
objects can be either primitives or meshes, covering the maximum size of
the area to be considered that vertex node.

How to do it...

graph implementation, so everything works as intended:

1. First, create the class deriving from :

2. function for registering the object in the current vertex:

3. function for the inverse procedure

Chapter 2

61

Create the class deriving from :

5. Implement the function we called before:

6. function as well:

7. Override the function to initialize the member variables:

8. Implement the function for connecting everything:

Navigation

62

9. Override the function:

10. function, this time with a GameObject as input:

Chapter 2

63

11. Implement the function:

12. the function:

How it works...
When the agents or players enter into the area of a vertex, it sends a message to the graph
parent class, and indexes that vertex into the proper dictionary of objects, making the
appropriate quantization easier. The same inverse principle applies when the player leaves
the area. When the player is mapped into more than one vertex, the function returns the index
of the closest one.

Also, we're using a dictionary to facilitate the process of translating object instance IDs to the
indices of our vertex array.

Navigation

64

There's more...
Take into account that placing the vertices and making the connections between them (edges)
must be done manually using the implemented method. You're encouraged to implement a
way for getting a vertex's neighbors aimed at your own project if you need a more user-friendly
(or automated) technique.

Finally, we'll explore is an automated way to get a vertex's neighbors in the next recipe, using
ray casting that will probably serve as a starting point.

See also
 The recipe

Representing the world with points of
visibility

This is another widely-used technique for world representation based on points located
throughout the valid area of navigation, whether manually placed or automated via scripting.
We'll be using manually-placed points connected automatically via scripting.

Getting ready
Just like the previous representation, it's important to have several things in order before
continuing:

 Having the class prepended to the

 function in the class

 Having the class

The vertex objects in the scene must have a collider component
attached to them, as well as the tag assigned. It's
recommended for them to be unitary primitives.

Chapter 2

65

How to do it...
We'll be creating the graph representation class as well as a custom class:

1. Create the class deriving from :

2. function for automating the process of connecting
vertices among them:

3. Go over each object and cast a ray to validate whether it's completely visible and then
add it to the list of neighbors:

Navigation

66

Create the class:

5. Build the function for making the connections between vertices:

6. function:

Chapter 2

67

7. the function:

8. Finally, override the function:

How it works...
The parent class indexes every vertex on the scene and makes use
of the function on each one. This is in order to build the graph and make
the connections without total user supervision, beyond placing the visibility points where

corresponding edge.

Navigation

68

There's more...
It's important to make a point visible to one another for the graph to be connected. This
approach is also suitable for building intelligent graphs considering stairs and cliffs, it just
requires moving the function to an editor-friendly class in order to call it in edit mode,
and then modify or delete the corresponding edges to make it work as intended.

Take a look at the previous recipe's Getting ready section so you can better understand the
starting point in case you feel you're missing something.

For further information about custom editors, editor scripting, and how to execute code in edit
mode, please refer to the Unity documentation, available online at:

See also
 Representing the world with Dirichlet domains recipe

Representing the world with a self-made
navigation mesh

Sometimes, a custom navigation
as different types of graphs, but placing the graph's vertices manually is troublesome because
it requires a lot of time to cover large areas.

We will learn how to use a model's mesh in order to generate a navigation mesh based on its
triangles' centroids as vertices, and then leverage the heavy lifting from the previous recipe
we learned.

Getting ready
This recipe requires some knowledge of custom editor scripting and understanding and
implementing the points of visibility in the graph representation. Also, it is worth mentioning
that the script instantiates a game object automatically in the scene and
requires a prefab assigned, just like any other graph representation.

Chapter 2

69

Finally, it's important to create the following class, deriving from :

How to do it...
We will create an editor window for easily handling the automation process without weighing
down the graph's function, delaying the scene loading.

1. Create the class and place it in a directory called :

2. Add the attributes to the editor window:

3. Implement the function for initializing and showing the window:

Navigation

70

 function:

5. Implement the function for drawing the window's interior:

6. function for handling the left-click on the
scene window:

Chapter 2

71

7. Implement the second half for implementing the behavior when clicking on the mesh:

How it works...
We create a custom editor window and set up the delegate function for handling
events on the scene window. Also, we create the graph nodes by traversing the mesh vertex
arrays, computing each triangle's centroid. Finally, we make use of the graph's
function in order to compute neighbors.

Navigation

72

Finding your way out of a maze with DFS
The Depth-First Search (DFS

visited and discovered, however the main algorithm stays the same.

Getting ready
This is a high-level algorithm that relies on each graph's implementation of the general
functions, so the algorithm is implemented in the class.

It is important to

How to do it...

1. Declare the function:

2. Validate if input objects are null:

3. Declare and initialize the variables we need for the algorithm:

Chapter 2

73

How it works...
The algorithm is based on the iterative version of DFS. It is also based on the in-order
traversing of a graph and the LIFO philosophy using a stack for visiting nodes and adding
discovered ones.

There is more…
We called the function , but we haven't implemented it yet. It is important to note

why it's not part of the main recipe.

This is the code for the method:

Navigation

74

Finding the shortest path in a grid with BFS
The Breadth-First Search (BFS) algorithm is another basic technique for graph traversal
and it's aimed to get the shortest path in the fewest steps possible, with the trade-off being
expensive in terms of memory; thus, aimed specially at games on high-end consoles and
computers.

Getting ready
This is a high-level algorithm that relies on each graph's implementation of the general
functions, so the algorithm is implemented in the class.

How to do it...
Even though this

1. Declare the function:

2. Declare and initialize the variables we need for the algorithm:

3.

Chapter 2

75

How it works...
The BFS algorithm is similar to the DFS algorithm because it's based on the same in-order
traversing of a graph but, instead of a stack such as DFS, BFS uses a queue for visiting the
discovered nodes.

There is more…
In case you haven't noticed, we didn't implement the method . This is because we
talked about it at the end of the Depth-First Search recipe.

See also
 , recipe.

Finding the shortest path with Dijkstra
The Dijkstra's algorithm was initially designed to solve the single-source shortest path problem
for a graph. Thus, the algorithm
We will learn how to make use of it with two different approaches.

Getting ready
Game Programming Wiki

(GPWiki
structure for handling binary heaps or priority queues.

Navigation

76

For downloading the
refer to the documentation online available at

.

How to do it...
We will learn how to implement the Dijkstra algorithm using the same number of parameters
as the other algorithms, and then explain how to modify it to make maximum use of it
according to its original purpose.

1. function with its internal variables:

2. Add the source node to the heap (working as a priority queue) and assign a distance

Chapter 2

77

3.

Code the procedure when arriving at the destination:

5. Otherwise, process the visited nodes and add its neighbors to the queue, and return
the path (not empty if there is a path from source to destination vertex):

How it works...
The Dijkstra algorithm works in a similar way to BFS, but considers non-negative edge costs in
order to build the best route from the source vertex to every other one. That's why we have an
array for storing the previous vertex.

Navigation

78

There's more...
We will learn how to modify the current Dijkstra algorithm in order to approach the problem

big steps: modifying the main algorithm, creating the pre-processing function (handy in editor

1. Modify the main function's signature:

2. Change the returning value:

3. How to do it section:

Also, delete the following line at the beginning:

5. Create a new member value to the class:

6. :

7. Implement a new function for path retrieval:

In case you haven't noticed, we didn't implement the method . This is because we
talked about it at the end of the Depth-First Search recipe.

Chapter 2

79

See also
 , recipe.

Finding the best-promising path with A*
The A*

coincidence that there are several algorithms based on it. At the same time, A* shares some

Getting ready
Just like Dijkstra's algorithm, this recipe uses the binary heap extracted from the GPWiki.
Also, it is important to understand what delegates are and how they work for. Finally, we are
entering into the world of informed search; that means that we need to understand what a
heuristic is and what it is for.

In a nutshell, for the purpose of this recipe, a heuristic is a function for calculating the
approximate cost between two vertices in order to compare them to other alternatives and
take the minimum-cost choice.

We need to add small changes to the Graph class:

1.

2. Implement Euclidean distance member function to use it as default heuristic:

3. Implement Manhattan distance function to use as a different heuristic. It will help us
in comparing results using different heuristics:

Navigation

80

How to do it...

1. function along with its member variables:

2. Add the source node to the heap (working as a priority queue) and assign a distance

Chapter 2

81

3. Declare the loop for traversing the graph:

Implement the conditions for returning a path when necessary:

5. Get the vertex's neighbors (also called in some text books):

6. Traverse the neighbors for computing the function:

7. Expand the list of explored nodes (frontier) and updating costs, if necessary:

Navigation

82

How it works...
A* works in a similar fashion to Dijkstra's algorithm. However, instead of choosing the real
lowest-cost node from all the possible options, it chooses the most-promising one based on
a given heuristic, and goes on from there. In our case, the default heuristic is based solely on
the Euclidian distance between two vertices with the option of using Manhattan distance.

There's more...
You are welcome to play with different heuristic functions depending on the game and context,
and the following is an example of how to do so:

1. class:

The important thing here is that the heuristic we develop is both admissible and consistent.
For more theoretical insights about these topics, please refer to
Modern Approach by Russel and Norvig.

In case you haven't noticed, we didn't implement the method . This is because we
talked about it at the end of the Depth-First Search recipe.

See also
 The Finding the shortest path with Dijkstra recipe

 The recipe

online at:

Improving A* for memory: IDA*
IDA* is a variant of an algorithm called Iterative Deepening Depth-First Search. Its memory
usage is lower than A* because it doesn't make use of data structures to store the looked-up
and explored nodes.

Chapter 2

83

Getting ready
For this recipe, it is important to have some understanding of how recursion works.

How to do it…
This is a long recipe that can be seen as an extensive two-step process: creating the main
function, and creating an internal recursive one. Please take into consideration the comments
in the code to

1. :

2. Declare and compute the variables to use along with the algorithm:

3. Implement the algorithm's loop:

Navigation

84

Now it's time to build the recursive internal function:

5. Prepare everything to start the recursion:

6. Apply the recursion for each neighbor:

7. Return a value based on the recursion result:

Chapter 2

85

How it works…
As we can see, the algorithm is very similar to that of the recursive version of Depth-First
Search, but uses the principle of making decisions on top of a heuristic from A*. The main
function is responsible for starting the recursion and building the resulting path. The recursive
function is the one responsible for traversing the graph, looking for the destination node.

There is more…
This time we will need to implement a different a function, in case you have

Planning navigation in several frames:
time-sliced search

When dealing with large graphs, computing paths can take a lot of time, even halting the
game for a couple of seconds. This could ruins its overall experience, to say the least. Luckily
enough there are methods to avoid this.

This recipe is built on top of the principle of using coroutines as a

the background; some knowledge about coroutines is required.

Getting ready

algorithm learned previously, but we will handle its signature as a different function.

Navigation

86

How to do it...

1. Modify the class and add a couple of member variables. One for storing the

2. Declare the member function:

3. Include the following member variables at the beginning:

Modify the loop to traverse the graph:

5. Also, include the other path-retrieval validations:

Chapter 2

87

6. Finally, reset the proper values and return control at the end of the function, after
closing the main loop:

How it works...

the higher-level functions, thus computing each new loop in each new frame using Unity's
internal multi-tasking system.

See also
 The Finding the best-promising path with A* recipe

documentation available online at:

Smoothing a path
When dealing with regular-size vertices on graph, such as grids, it's pretty common to see
some kind of robotic movement from the agents in the game. Depending on the type of game
we're developing, this could be avoided using path-smoothing techniques, such as the one
we're about to learn.

Navigation

88

Getting ready
 and assign it to every object in the scene

that is intended to work as a wall or obstacle in the navigation.

How to do it…
This is an easy, yet powerful, function:

1. function:

2. Check whether it is worth computing a new path:

3. Implement the loops for traversing the list and building the new path:

Declare and compute the variables to be used by the ray casting function:

Chapter 2

89

5. Cast a ray from the current starting node to the next one:

6. Check whether there is a wall and break the loop accordingly:

How it works…
We create a new path, taking the initial node as a starting point, and apply ray casting to the
following node in the path, until we get a collision with a wall. When that happens, we take the
previous node as the following node in the new path and the starting point for traversing the
original one, until there are no nodes left to check. That way, we build a more intuitive path.

