
115

Coordination
and Tactics

In this chapter, we will learn techniques for coordination and devising tactics:

 Handling formations

 Extending A* for coordination: A*mbush

 Creating good waypoints

 Analyzing waypoints by height

 Analyzing waypoints by cover and visibility

 Exemplifying waypoints for decision making

Introduction
As we will see, this is not a chapter focused on a sole subject, but rather a chapter that has its
own original recipes and also learns from previous recipes in order to create new or improved
techniques.

Coordination and Tactics

116

In this chapter, we will learn different recipes for coordinating different agents into one
organism, such as formations and techniques that allow us to make tactical decisions based

from the previous chapters and recipes, especially from the graph construction and path
Chapter 2, Navigation.

Handling formations
This is a key

The end result from this recipe will be a set of target positions and rotations for each agent
in the formation. Then, it is up to you to create the necessary algorithms to move the agent to
the previous targets.

We can use the movement algorithms learnt in Chapter 1, Movement, in
order to target those positions.

Getting ready
We will need to create three base classes that are the data types to be used by the high-level
classes and algorithms. The class is very similar to the class and is

The class is a data type to match a list's indices and agents. Finally, the
 class component holds the target class.

The following is the code for the class:

Chapter 4

117

The following is the code for the class:

The following is the code for the class:

How to do it…
We will implement two classes— and :

1. Create the pseudo-abstract class:

Coordination and Tactics

118

2. Implement the function:

3.

the formation:

5. Implement the function for setting an offset in the locations, if necessary:

6. Create the appropriate class for managing the formation:

Chapter 4

119

7. Implement the function:

8.

9. Implement the function for adding a character in the formation:

10. Implement the function for removing a character in the formation:

Coordination and Tactics

120

11. Implement the function for updating the slots:

12. Finally, implement the loop:

How it works…
The class contains the relative positions to a given slot. For example,
a child class will implement the class, given the
number of slots and its locations over 360 degrees. It is intended to be a basic class, so it is
up to the manager to add a layer for permissions and rearrangement. That way, the designer
can focus on simple formation scripting, deriving from the base class.

The class, as stated earlier, handles the high-level layer and arranges
the locations in line with the formation's needs and permissions. The calculations are based
on the leader's position and rotation, and they apply the necessary transformations given the
pattern's principles.

There is more…
It is worth mentioning that the and classes are

null, the leader is the object itself. That way, we could have a different leader object in order to
have a clean inspector window and class modularity.

Chapter 4

121

See also
 Refer to Chapter 1, Movement, the Arriving and leaving recipe

 For further information on drift offset and how to play with this value, please refer to
Ian Millington's book,

Extending A* for coordination: A*mbush
After learning
to develop some kind of coordinated behavior in order to ambush the player. This algorithm
is especially useful when we want a non-expensive solution for the aforementioned problem,
and one that is also easy to implement.

This recipe sets the path for every agent to be taken into account when it comes to ambushing
a given vertex or point in the graph.

Getting ready
We need a special component for the agents called . This class will hold the paths
that are to be used later in the navigation process.

The following is the code for :

Coordination and Tactics

122

How to do it…
We will create the main function for setting the ambush path for all the agents and then the
function for setting each agent's path.

1.

2. Declare

3. Declare the necessary members for handling the extra cost of computations:

Initialize the regular cost and the extra cost variables:

5. Add extra cost to each vertex that is contained in another agent's path:

Chapter 4

123

6. Declare and initialize the variables for computing A*:

7. Start implementing the A* main loop:

8. Validate that the goal has already been reached; otherwise it's not worth computing
the costs, and it would be better to continue with the usual A* algorithm:

9. Traverse the neighbors and check whether they have been visited:

Coordination and Tactics

124

10. If they haven't been visited, add them to the frontier:

How it works…
The A*mbush algorithm analyses the path of every agent and increases the cost of that node.
That way, when an agent computes its path using A*, it is better to choose a different route
than the one chosen by other agents, thus, creating the perception of an ambush among the
target positions.

There is more…
There is an easy-to-implement improvement over the algorithm, which leads to the P-A*mbush
variation. Simply ordering the lurkers' list from the closest to the farthest might provide a
better result at almost no extra cost in computation. This is due to the fact that the ordering
operation is handled just once, and could be easily implemented via a priority queue, and
then retrieves it as a list to the main A*mbush algorithm with no extra changes.

Creating good waypoints
There are times when the number of waypoints must be reduced at a certain point during
the game or just for memory constraints. In this recipe, we will learn a technique called
condensation that helps us deal with this problem, forcing the waypoints to compete with
each other given their assigned value.

Getting ready
In this recipe, we will deal with static member functions. It is important that we understand
the use and value of static functions.

Chapter 4

125

How to do it…
We will create the class and add the functions for condensing the set of waypoints.

1. Create the class, deriving not only from , but also from
the interface:

2. Implement the function from the aforementioned interface:

3. Implement the static function to compute whether an agent can move between
two waypoints:

Start declaring the function for condensing the waypoints:

Coordination and Tactics

126

5. Initialize some variables and sort the waypoints in descending order:

6. Start the loop for computing each waypoint:

7. Retrieve the waypoint neighbors, sort them, and start the loop to make them compete
with each other:

8. Compute the target's position:

9. Compute the target's overall value and decide whether to keep it or throw it:

Chapter 4

127

How it works…
The waypoints are ordered according to their relevance (such as height to be used as a
sniping or advantage location) and then their neighbors are checked to see which ones are
going to be dismissed from the condensation. Naturally, the less valuable waypoints are kept
to the end of the computation cycle. In the next recipe, we will learn how to analyze waypoints.

See also
Refer to the the following recipes:

Analyzing waypoints by height
This recipe lets us evaluate a waypoint according to its position. Strategically speaking, lower

of a waypoint, given the heights of its surroundings.

Getting ready
This recipe is simple enough, so there is no extra content to be aware of. The algorithm is

the complete graph of waypoints. The surroundings heuristic is kept outside for our perusal

How to do it…
We will implement a function to evaluate a location given its height and its surrounding points:

1. Declare the function for evaluating the quality:

2. Initialize the variables for handling the computation:

Coordination and Tactics

128

3.

Compute the quality in the given range:

How it works…

compute the location value in the range of -1, 1. We could change this range to meet our
game's design, or invert the importance of the height in the formula.

Analyzing waypoints by cover and visibility
When dealing
capacity, to be a good cover point with the maximum visibility for shooting or reaching other
enemies visually. This recipe helps us compute a waypoint's value given these parameters.

Getting ready
We need to create a function for checking whether a position is in the same room as others:

Chapter 4

129

How to do it…
We will create the function that computes the quality of the waypoint:

1.

2. Initialize the variable for handling the degrees of rotation, possible hits received, and
valid visibility:

3. Start the main loop for the iterations to be computed on this waypoint and return the
computed value:

Create a random position near the waypoint's origin to see if the waypoint is
easily reachable:

Coordination and Tactics

130

5. Check whether the random position is in the same room:

6. If the random position in the same room, then:

7. Cast a ray to the visibility value to check whether:

How it works…
We create a number of iterations and then start putting random numbers around the

to determine its quality.

Exemplifying waypoints for decision making
Just like we
to just evaluate a waypoints' value, but rather a more complex condition. In this case, the
solution is to apply techniques learned previously and couple them into the waypoint for
attacking that problem.

The key idea is to add a condition to the node so that it can be evaluated, for example, using a
decision tree and developing more complex heuristics for computing a waypoint's value.

Getting ready
It is important to revisit the recipe that handled state machines in the previous chapter before
diving into the following recipe.

Chapter 4

131

How to do it…
We will make a little adjustment:

1. Add to the class:

2. Now, you'll be able to easily integrate it into decision-making techniques using derived
condition classes such as .

How it works…
The pseudo-abstract class, which we learned about previously, has a member
function called , which evaluates whether or not that condition is met.

See also
 Chapter 3, Decision Making

Another way to use

area of a map an agent, or a group of agents of the same party, covers.

This is a key element for creating good AI decision mechanisms based on the military
presence in real-time simulation games, or games where it is important to know how
much of the world is taken by a group of agents, each representing a given faction.

Getting ready
This is a recipe that requires the experience of graph building, so it is based on the
general

in Chapter 2, Navigation.

class general functions and the class.

Finally, we will need a base Unity component for our agent and .

Coordination and Tactics

132

The following is the code for the and classes. They can be written in the
:

How to do it…
We will build the and classes, used for handle vertices
and the graph, respectively:

1. Create the class, deriving from :

Chapter 4

133

2. Implement the function for setting up values and notifying success:

3. Create the class deriving from
implementation):

 function for initialization:

5. Implement the function for adding a unit on the map:

Coordination and Tactics

134

6. Implement the function for removing a unit from the map:

7.

8. Continue by creating a loop for iterating over the list of units:

9.

Chapter 4

135

How it works…

the BFS algorithm.

For each unit on the

There is more…

smarter function with the following example code, using the distance parameter:

It is important to note that the distance parameter is an integer indicating the distance
measured in vertices.

Finally, we could avoid using factions and instead use a reference to the unit itself. That way,

to think in terms of factions or teams.

See also
 Chapter 2, Navigation, the Representing the world with grids and Finding the shortest

path in a grid with BFS recipes

Coordination and Tactics

136

The previous
based on individual units helping a faction. However, this could lead to holes in the map
instead of covering a whole section. One technique to
on the Dijkstra algorithm.

Getting ready
In this case, we will blend the faction capability for tagging a vertex, with the unit's logic for
having a drop-off function, into a class called . This is a component to include in the
game object; one for each desired guild:

It also needs a drop-off function. However, this time we wanted to create an example using
Euclidean distance:

Chapter 4

137

Finally, we will need a data type for the Dijkstra algorithm representation
of a node:

1. Create the struct, deriving from the interface:

2. Implement the functions:

3. Implement the required functions:

Coordination and Tactics

138

How to do it…

1. Include the member in the class:

2. Include new members in the class:

3. Also, in , add the following line in the function:

5. Declare the main necessary variables:

6. Add the initial nodes for each guild in the priority queue:

7. Create the main Dijkstra iteration and return the assignments:

Chapter 4

139

8.

9. Create the loop for computing each neighbor, and put the current node in the
closed list:

10. Compute the drop off from the current vertex, and check whether it is worth trying to
change the guild assigned:

11. Create an auxiliary node with the current vertex's data:

12. Check the closed list and validate the time when a new assignment must be avoided:

Coordination and Tactics

140

13. Check the priority queue for the same reasons:

Create a new assignment and add it to the priority queue when
everything else fails:

15. Add it to the priority queue if necessary:

How it works…
The algorithm returns the guild's assignment for every vertex. It traverses the whole graph
starting from the guilds' bases and computes.

The algorithm traverses the whole graph starting from the guilds' positions. Given our previous
inverse subtraction, the priority queue always starts from the strongest node and computes
the assignment until it reaches a value below . It also checks for ways
to avoid a new assignment if the conditions are not met: if the vertex value is greater than the
current strength, or if the guild assignment is the same.

Chapter 4

141

See also
 The recipe

 Chapter 2, Navigation, the Finding the shortest path with Dijkstra recipe

Convolution
given a unit's value and its surroundings. In

Getting ready

recipe, so that you can understand the context in which it is applied.

How to do it…
We will implement the function:

1. Declare the function:

2. Initialize the variables for handling the computations and traversal of arrays:

3.

Coordination and Tactics

142

How it works…
We create a new grid to be swapped with the original source grid after the application of the

destination grid and compute its result, taking the original grid's value and applying the matrix

It is be an odd-square array for the algorithm to
work as expected.

There is more…
The following function helps us iterate using the function
implemented previously:

1. Declare the function:

2. Create the auxiliary variables for holding the grids:

Chapter 4

143

3. Swap the maps, regardless of whether the iterations are odd or even:

Apply the previous function during the iterations and swap:

See also
 The recipe

This recipe is based on the Kung-Fu Circle algorithm devised for the game,
. Its purpose is to offer an intelligent way for enemies to approach a given

player and set attacks on it. It is very similar to the formation recipe, but it uses a stage
manager that handles approach and attack permissions based on enemy weights and attack
weights. It is also implemented so that the manager has the capability to handle a list of

Getting ready

that accompany the technique. First, the class is a pseudo-abstract class for creating
general-purpose attacks for each enemy, and it works as a template for our custom attacks
in our game. Second, we need the class, which is the holder of the enemy's logic and
requests. As we will see, the class holds a list of the different attack components
found in the game object.

Coordination and Tactics

144

The code for the class is as follows:

The steps to build the component are as follows:

1. Create the class:

2. Implement the function:

Chapter 4

145

3.

function for requesting a slot to the manager:

5.

6. Implement the function for requesting an attack from the list (the order is the same
from the Inspector):

Coordination and Tactics

146

7.

How to do it…
Now, we implement the and classes

1. Create the class along with its member variables:

2. Implement the function for initialization:

Chapter 4

147

3. function so that the slots' positions get updated:

Implement the function for adding enemies to the circle:

5. Implement the function for removing enemies from the circle:

Coordination and Tactics

148

6. Implement the function for swapping enemy positions in the circle:

7.

8. Implement the function for computing the spatial location of a slot:

9. Implement the function for virtually adding attacks to the circle:

Chapter 4

149

10.

11. Now, create the class:

12. Implement the function for initialization:

13. Create the function for adding circles to the manager:

Coordination and Tactics

150

Also, create the function for removing circles from the manager:

15.

16. function for granting an enemy a slot in a given circle:

17. Implement the function for releasing an enemy from a given circle ID:

Chapter 4

151

18.

19. Step:

How it works…
The Attack and Enemy classes control the behaviors when needed, so the Enemy class can
be called from another component in the game object. The class is very
similar to , in that it computes the target positions for a given enemy.
It just does it in a slightly different way. Finally, the grants all the necessary
permissions for assigning and releasing enemy and attack slots for each circle.

There is more…

works as the target player itself, or a different empty object that holds a reference to the
player's game object.

wanted to keep them in the manager so that attack executions are centralized, and the circles
just handle target positions, just like formations.

Coordination and Tactics

152

See also
 Refer to the recipe

 For further information on the Kung-Fu Circle algorithm, please refer to the book,
Game AI Pro, by Steve Rabin

