
[75]

Next up, we'll be implementing the A* algorithm in a Unity environment using C#.

even though there are other algorithms, such as Dijkstra's algorithm, because of

in Chapter 1, The Basics of AI in Games, but let's review the algorithm again from an
implementation perspective.

Revisiting the A* algorithm
Let's review the A* algorithm again before we proceed to implement it in the
next section. First, we'll need to represent the map in a traversable data structure.
While many structures are possible, for this example, we will use a 2D grid array.
We'll implement the class later to handle this map information. Our

 class will keep a list of the objects that are basically titles in a 2D
grid. So, we need to implement that class to handle things such as node type
(whether it's a traversable node or an obstacle), cost to pass through and cost to reach
the goal , and so on.

[76]

We'll have two variables to store the nodes that have been processed and the nodes
that we have to process. We'll call them closed list and open list, respectively. We'll
implement that list type in the
A* algorithm will be implemented in the class. Let's take a look at it:

1. We begin at the starting node and put it in the open list.

2. As long as the open list has some nodes in it, we'll perform the
following processes:

1. Pick the first node from the open list and keep it as the current node.
(This is assuming that we've sorted the open list and the first node has
the least cost value, which will be mentioned at the end of the code.)

2. Get the neighboring nodes of this current node that are not obstacle
types, such as a wall or canyon that can't be passed through.

3. For each neighbor node, check if this neighbor node is already in the
closed list. If not, we'll calculate the total cost () for this neighbor
node using the following formula:

4. In the preceding formula, is the total cost from the previous
node to this node and is the total cost from this node to the
final target node.

5. Store this cost data in the neighbor node object. Also, store the
current node as the parent node as well. Later, we'll use this parent
node data to trace back the actual path.

6. Put this neighbor node in the open list. Sort the open list in ascending
order, ordered by the total cost to reach the target node.

7. If there's no more neighbor nodes to process, put the current node in
the closed list and remove it from the open list.

8. Go back to step 2.

Once you have completed this process your current node should be in the target goal
node position, but only if there's an obstacle free path to reach the goal node from
the start node. If it is not at the goal node, there's no available path to the target node
from the current node position. If there's a valid path, all we have to do now is to
trace back from current node's parent node until we reach the start node again. This

ordered from the target node to the start node. We then just reverse this path list
since we want to know the path from the start node to the target goal node.

This is a general overview of the algorithm we're going to implement in Unity using
C#. So let's get started.

[77]

Implementation
We'll implement the preliminary classes that were mentioned before, such as
the , , and classes. Then, we'll use them in
our main class.

Implementing the Node class
The class will handle each tile object in our 2D grid, representing the maps
shown in the

[78]

The class has properties, such as the cost values (and
whether it is an obstacle, its positions, and parent node. The is ,
which is the movement cost value from starting node to this node so far and the

 is , which is total estimated cost from this node to the target goal
node. We also have two simple constructor methods and a wrapper method to set
whether this node is an obstacle. Then, we implement the method as
shown in the following code:

This method is important. Our class inherits from because we
want to override this method. If you can recall what we discussed in the
previous algorithm section, you'll notice that we need to sort our list of node arrays
based on the total estimated cost. The type has a method called .
This method basically looks for this method, implemented inside the
object (in this case, our objects) from the list. So, we implement this method to
sort the node objects based on our value.

The method, which is a .NET framework
feature, can be found at

.

Establishing the priority queue
The class is a short and simple class to make the handling of the
nodes' easier, as shown in the following class:

[79]

The preceding code listing should be easy to understand. One thing to notice is
that after adding or removing node from the nodes' , we call the
method. This will call the object's method and will sort the nodes
accordingly by the value.

Setting up our grid manager
The class handles all the properties of the grid, representing the map.
We'll keep a singleton instance of the class as we need only one object
to represent the map, as shown in the following

[80]

We look for the object in our scene and if found, we keep it in our
 static variable:

Next, we declare all the variables; we'll need to represent our map, such as number
of rows and columns, the size of each grid tile, and some Boolean variables to
visualize the grid and obstacles as well as to store all the nodes present in the grid,
as shown in the following code:

[81]

We look for all the game objects with an tag and put them in
our property. Then we set up our nodes' 2D array in the

 method. First, we just create the normal node objects with
default properties. Just after that, we examine our . Convert their
position into row-column data and update the nodes at that index to be obstacles.

The class has a couple of helper methods to traverse the grid and get
the grid cell data. The following are some of them with a brief description of what
they do. The implementation is simple, so we won't go into the details.

The method returns the position of the grid cell in world
coordinates from the cell index, as shown in the following code:

[82]

The method returns the grid cell index in the grid from the
given position:

The and methods return the row and column data of the grid cell
from the given index:

Another important method is , which is used by the class to
retrieve the neighboring nodes of a particular node:

[83]

First, we retrieve the neighboring nodes of the current node in the left, right, top, and
bottom, all four directions. Then, inside the method, we check
the node to see whether it's an obstacle. If it's not, we push that neighbor node to the
referenced array list, . The next method is a debug aid method to visualize
the grid and obstacle blocks:

[84]

Gizmos can be used to draw visual debugging and setup aids inside the editor
scene view. The method is called every frame by the engine. So, if

 and , are checked, we just draw
the grid with lines and obstacle cube objects with cubes. Let's not go through the

 method, which is quite simple.

[85]

You can learn more about gizmos in the Unity reference
documentation at

.

Diving into our A* implementation
The class is the main class that will utilize the classes we have implemented
so far. You can go back to the algorithm section if you want to review this. We start
with our and declarations, which are of the
type, as shown in the

Next, we implement a method called to calculate the cost

between the two by subtracting one position vector from another. The magnitude of
this resultant vector gives the direct distance from the current node to the goal node:

Next, we have our main method:

We initialize our open and closed lists. Starting with the start node, we put it in our
open list. Then we start processing our open list:

[86]

[87]

This code implementation resembles the algorithm that we have previously
discussed, so you can refer back to it if you are not clear of certain things.
Perform the following steps:

1. Get the first node of our . Remember our of nodes is
always sorted every time a new node is added. So, the first node is always
the node with the least estimated cost to the goal node.

2. Check whether the current node is already at the goal node. If so, exit the
 loop and build the array.

3. Create an array list to store the neighboring nodes of the current node being
processed. Use the method to retrieve the neighbors from
the grid.

4. For every node in the array, we check whether it's already
in . If not, we calculate the cost values, update the node
properties with the new cost values as well as the parent node data,
and put it in .

5. Push the current node to and remove it from . Go back
to step 1.

If there are no more nodes in , our current node should be at the target
node if there's a valid path available. Then, we just call the method
with the current node parameter:

The method traces through each node's parent node object and
builds an array list. It gives an array list with nodes from the target node to the start
node. Since we want a path array from the start node to the target node, we just call
the method.

So, this is our class. We'll write a test script in the following code to test all this
and then set up a scene to use them in.

[88]

Implementing a Test Code class
This class will use the
node, as shown in the following

First, we set up the variables that we'll need to reference. The is to store
the nodes array returned from the method:

[89]

In the method, we look for objects with the and tags and initialize
our
our property in case the positions of the start and end nodes have
changed. Then, we call the method:

has now become a lot simpler. First, we take the positions of our start and end game
objects. Then, we create new objects using the helper methods of
and to calculate their respective row and column index positions
inside the grid. Once we get this, we just call the method with the
start node and goal node and store the returned array list in the local
property. Next, we implement the method to draw and visualize the
path found:

[90]

We look through our and use the method to draw the
lines connecting the nodes from the . With this, we'll be able to see a green
line connecting the nodes from start to end, forming a path, when we run and test
our program.

Setting up our sample scene
We are going to set up a scene that looks something similar to the following screenshot:

A sample test scene

[91]

We'll have a directional light, the start and end game objects, a few obstacle objects, a
plane entity to be used as ground, and two empty game objects in which we put our

 and scripts. This is our scene hierarchy:

The scene Hierarchy

Create a bunch of cube entities and tag them as . We'll be looking for

The Obstacle node

[92]

Create a cube entity and tag it as .

The Start node

Then, create another cube entity and tag it as .

The End node

[93]

Now, create an empty game object and attach the script. Set the name
as because we use this name to look for the object from
our script. Here, we can set up the number of rows and columns for our grid as well
as the size of each tile.

The GridManager script

[94]

Testing all the components
Let's hit the play button
once you play the scene, Unity will switch to the Game
visualization code is written for the debug drawn in the editor view, you'll need to
switch back to the Scene view or enable Gizmos to see the path found.

Found path one

[95]

Now, try to move the start or end node around in the scene using the editor's
movement gizmo (not in the Game view, but the Scene view).

Found path two

You should see the path updated accordingly if there's a valid path from the start
node to the target goal node, dynamically in real time. You'll get an error message in
the console window if there's no path available.

