
your way from one point to another while navigating around obstacles. Unity excels
at linking the worlds of designers and programmers. AI is no different, and we'll see

probably the most common AI game task, and there are many Unity plugins for it.
We will be looking at three different ones.

In this chapter, you will learn:

Behavior trees

Applying characters to Character Controller

Unity's NavMesh

An overview
 a way to get an object from point A to point B. Assuming that there

are no obstacles, the object can just be moved in the direction of the target. But the
AI part of it is all about navigating the obstacles.

A poor AI might try walking a Non-Player Character (NPC) directly to the target.
Then, if it is blocked, it randomly tries to go to the right or left to look for a space
that might help. The character can get caught in different areas and become
permanently stuck.

[6]

A better AI will walk an NPC in an intelligent way to a target, and will never get
stuck in different areas. To compute a good path for the NPC to walk, the AI system
will use a graph that represents the game level, and a graph search algorithm is

A* (A
Star), a quick graph search algorithm that uses a cost function between nodes—in

A* because it is simple to implement and has a lot of simple improvements that you
can apply for your game's needs.

The AIs
and ultimately reduce the time it takes to breathe AI life into your game. Now let's

Quick Path AI

Store. Although the next two AIs have more features, this AI is added because of
its blocky nature. This block approach creates a grid-based path and is used with
many types of games, but this AI works especially well with the excitement in the
voxel game genre; it is suited for cubed topography.

To start with, perform the following steps:

1.

2. Next, set up some cubes, planes, or other objects as your terrain, and then
place all of these game objects into an empty game object. Name this game
object .

3. Next, on the Inspector panel, add a component, QuickPath | Grid.
Immediately, you should see a series of blue lines that show up on the
cubes. These indicate all the points where a character can move in the AI.

Chapter 1

[7]

4. Now, we need a character to move around the scene. Create a sphere, or any
object, and name it .

5. Then, we'll add a Component, QuickPath | AI | Follow Mouse Object.

6. Now, when you run the scene, assuming it is lit up and has the camera
pointing where you want it to, you'll see on .

7. Click somewhere on the object, and watch the object move to
that point.

8.
we should also add an obstacle to the scene: something that shouldn't be
stepped on. To do this, add another cube somewhere. Go to the Inspector
panel for the obstacle and tag it with Obstacle by selecting that tag from
the drop-down, or if it is not an option select Add Tag... and add

 to the tag list.

9. Next, in the game object, in the Grid component, expand
Disallowed Tags, increase the size to 1 and enter Obstacle for the
new element.

[8]

10. Next, click on the Bake button at the top of the Grid component. Now you
will see that the grid markers skipped the cube as an option. If you want to
test more, click somewhere else on the object and watch the
object move to the clicked point avoiding the obstacle.

Now, we've

React AI
Different
navigation mesh, or NavMesh. A NavMesh is a series of interconnected polygons

smoother and tends to have characters that travel better than a grid-based graph.
A behavior tree is a parent-child structure used for making decisions in many AIs.
We will look at behavior trees and navigation meshes in more detail in the later
chapters. NavMesh is a basic feature available in Unity, but the behavior tree is
not. Unlike the other two AIs shown, this AI requires a bit more coding to get
started, but not much.

Chapter 1

[9]

To begin with, you'll need a new scene, as well as to import React AI from the Asset
Store. Perform the following steps:

1. Add a plane or another ground type. Then add several obstacle objects,
such as cubes. Make sure that each of the objects we just created are
marked static at the top of the Inspector, or the NavMesh won't identify
them later on. The scene should look like this:

2. the Window menu and select Navigation. At the bottom of the
Navigation tab, click on the Bake command. You have now generated a
simple navigation mesh for your characters to navigate. It will highlight
the areas that NavMesh AIs can walk, as seen here:

3. Let's add a player who can move around the world now. Add a capsule
and name it . Fortunately, the demo contains a simple script for

Add
Component | Scripts | Simple Player Control. Now, this doesn't move
the object around on its own; instead it drives a Character Controller object.

[10]

Character Controller is a type of an object that you can inherit
in your code classes that many AIs can operate. In this case,
there is a basic Character Controller type to simply move a
given object around.

4. When adding the component, just start typing in
the search box, and it will show you all the similar component names. Add
Character Controller. Now, the player should be controllable. You will
probably need to increase the speed to 1 to detect the player movement.

Make sure that the game object, and any body parts, do not have
collider components. Controllers detect colliders to determine
whether or not they can move to a given place.

5. Next, we'll add an enemy in the same way, with Capsule. The enemy needs
a component called Nav Mesh Agent, which is a component capable of using
a NavMesh to move around, so add it. Now, the game object has the ability
to walk around, but it has nowhere to go. To get it moving, we need to add
the enemy AI agent.

6. Next, we get to the AI for the enemy agent. In React, a behavior tree is
called a Reactable. To add a reactor, we start the Project explorer, in a
folder of our choice, by navigating to Create | Reactable.

7. Once created, rename it to . In the Inspector, it has a list
of behaviors for it. We'll need to add a script, which can be found in the
book's contents: . Without
going in-depth in the code, let me explain the following key points:

 The C# file was copied from a sample script provided with React
AI that made a character move away from a target.

 It was rebuilt to make the player the target destination, and also
to turn seeking on and off by using a button. It is not hard to
adapt these scripts.

 Unlike normal mono behaviors, you use a special method. The
go method is called by React AI only if it is selected to be used.

 In the method, we see it obtain the NavMeshAgent that
we attached to the enemy in the Inspector panel.

 In the method, we see it feeding the destination to the
NavMeshAgent, and then checking to see whether it has
already found a path. Once it does, it just goes.

Chapter 1

[11]

 All uses of that agent are still following standard Unity calls to use
NavMesh, and can be applied without using the AI, by placing this
code in a traditional behavior method.

This script needs to be added to the Inspector for the EnemyMovement
asset, and also to the game object.

8. Once the script is attached to the enemy, the Inspector will reveal that it
has a target. Drag the player from the Hierarchy panel into the player
attribute on the Inspector panel.

9. Finally, we have the behavior tree to set up. In the Project panel,
right-click on the EnemyMovement asset, and click on Edit Reactable.
A behavior tree pops up an editor, which is how we train our AI.

For this chapter, we'll just give it a one track mind to follow the player. With
Root selected, click on the Action button under Leaf, as shown in the
following screenshot:

Since we only have one action in the behavior list, it selects it by default. What
makes the behavior tree nice is that we can make decisions, or check whether the
target is within X distance then try to follow, otherwise do something else–all
from the designer. The next section on RAIN also uses a behavior tree, and
most of the same basic types are used in both RAIN and React.

This took more steps than the previous AI, but there is also more going on.
It is playable now.

Downloading the example code

 for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit and register to have

[12]

RAIN AI
Rival Theory's RAIN AI is a very full-featured AI to use and it is free. It includes
a behavior tree with similar functionality to React, but has more features built in.
In fact, this one won't require any additional scripting to go from point A to point B.

To get this going, we'll need the following bases:

A map to move around on

A character to move around in the map

A route (series of waypoints) for the character to follow

A navigation mesh that knows what to avoid

An AI to control the character

A behavior tree to tell the AI what to do

To start with, you'll need to start a new Unity project, import Unity's Character
Controller, and import the RAIN AI package.

Don't get the RAIN AI package that is found in the Asset store. The
current release (at the time of writing this book) can be found at the
Rival Theory site, .

Perform the following steps:

1. To create our map, add a plane. Then, add a couple of objects to act as
obstacles. It is best if they create a U or V shape to potentially trap the player:

Chapter 1

[13]

2. Project | Standard Assets |
Character Controllers | Sources | Prototype Character | "constructor" into
the scene. From the scene depicted in the preceding screenshot, I recommend
placing him (the character) on the back left-hand side of the plane.

3. Next, we need a route. Although there is more than one waypoint system in
RAIN, I found that the route will be the fastest for this demo. In the RAIN
menu, click on Create Waypoint Route. Name it's game object .
We will need to call this later, so we want simple, easy names to remember.

4. In the Inspector panel for , click on the Add (Ctrl W) button.

the inside of the V, the second on the tip of the V, and the last on the far
edge of the plane, as shown in the following screenshot:

5. Just as in React AI and Unity NavMesh, we need a navigation mesh for this

In the RAIN menu, click on Create Navigation Mesh. Align and stretch it so
that it surrounds the area where you want the paths to be determined.

[14]

The Inspector panel for the NavMesh has a property called Ignored Tags.
Add Player to this list. (You might need to make sure that the player object
actually has that tag selected as well.) Otherwise, the NavMesh will not

Then click on Generate Navigation Mesh at the bottom of the Inspector
panel. The result should look like this:

6. Next, we need to add an AI to control the character. Select the player object
in the Hierarchy panel, and from the RAIN menu, click on Create AI.

7. Next, select the middle button of the character running in the AI Inspector
panel, then click on the Add Existing Animations button at the bottom.
This will add all the player's animations: idle, walk, jump, pose, and run.
You can refer to the following screenshot:

Chapter 1

[]

8.
decisions and actions for AI characters. We will discuss them in more detail
in Chapter 3, Behavior Trees. For now, add one by clicking on the head/brain
icon in the Inspector panel and then click on the Open Behaviour Editor
button. On the right-hand side is a behavior tree drop-down selector, so
click on it and choose Create New Behaviour Tree.

9. Name it FollowGreenRoad. It will already have one element, SEQ
(Sequence), under the root BT (behavior tree) node. Sequence it means
that it will run any child nodes in order. Right-click on the SEQ node and
navigate to Switch To | Parallel, which means that it will run all its child
nodes simultaneously.

10. Let's add the child nodes and then set them up. Right-click on the PAR node,
then navigate to Create | Actions | Animations. Right-click on PAR again
and navigate to Create | Actions | Choose Patrol Waypoints. Then right-
click on the new WAY node and navigate to Create | Actions | Move.

Because the decision is to run things in parallel, it will animate the character
and follow the waypoints at the same time.

11. Click on the green animate node, and set its animation state to walk. It is
case sensitive, but you can select which animation the character should use.

12. Next, select the WAY node. Here, you need to set Waypoint Route to use.
This was the navigation route we created earlier with the three waypoints.
We called it .

13. For the loop type, we'll make it One Way so that the character only travels
to the end and stops there. Also, change the name of the loop to Follow
Green Path. This shows up next to the WAY node, and helps explain
what is happening.

[16]

14. Finally, set the Move Target Variable to NextWayPoint. This is a variable
that we are setting with the next waypoint in the path. When it is reached,
the patrol route will set the variable to the next location in the path. We use
this in the Move node.

15. Select the move node, and in the properties, set the Move Target to
NextWayPoint, the variable that is being set by the patrol route we just

Move Speed to a number, such as 3. This is
how fast the character will move.

16. Now that we have created the behavior tree, we need to set the Character AI
to use it. Select the AI object under the player object in the Hierarchy panel.
On the Mind icon, for the Behavior Tree Asset, set it to FollowGreenRoad.
This can be found by navigating to Project | AI | Behavior Trees, or from
the selector in the Inspector panel, choose the Assets tab, and it should be
right on top.

The demo should be able to run now. The character will move around the block
and walk to the last waypoint in the path.

Comparing AI solutions
Each AI has
to designer friendliness. Also, each AI has more than one way to accomplish this
chapter's task of moving a character from point A to point B. We selected paths
that were faster and easier to start with, but keep in mind that each of them has

simple planes and cubes.

Chapter 1

[17]

Experiences of working with all three:

good choice for a beginner. It has the fewest steps to do to

the others are larger AI systems that can be expanded to many more areas
because of their use of behavior trees.

RAIN has

other AI solutions, the source code is unavailable, but it is a good all-round
solution for game AI. And while RAIN has the ability to be customized

Unity GUI without needing to write scripts often.

React includes a behavior, but requires more code to get it running, which
is good if you are interested in coding more. You build all the actions it can
use, and let the designers focus on the tree. RAIN can do this too, but with
React, you are building the blocks from square one.

Overall, the best AI for you is the one best suited for your game and that you
enjoy using. We will be looking at these three and other AI systems in detail
throughout this book.

Summary
Our AI characters need to be able to move between different points in our scene in

to be able to do more than just walk from one point to a second one in our levels.

by seeing how to set up patrolling behaviors for our characters. This will be the
start for having characters walk around a level in a realistic way.

