
[96]

Navigation mesh
Next, we'll learn how to use Unity's built-in navigation mesh generator that can make

users. Previously a Unity Pro-only feature, NavMesh is now a part of the Personal
Chapter 2, Finite

State Machines and You, which relied on a NavMesh agent for movement in testing

know where the obstacles are, especially the static obstacles. Dealing with collision
avoidance between dynamically moving objects is another subject, primarily known
as steering behaviors. Unity has a built-in navigation feature to generate a NavMesh

optimum path to the target. This chapter comes with a Unity project that has four
scenes in it. You should open it in Unity and see how it works to get a feeling of what
we are going to build. Using this sample project, we'll study how to create a NavMesh
and use it with AI agents inside our own scenes.

Setting up the map
To get started, we'll build a simple scene, as shown in the following screenshot:

A scene with obstacles

[97]

. You
can use a plane as a ground object and several cube entities as the wall objects. Later,
we'll put in some AI agents (we'll be turning to our trusted tank for this example as
well) to go to the mouse-clicked position, as in an RTS (real-time strategy) game.

Navigation Static
Once we've added the walls and ground, it's important to mark them as Navigation
Static so that the NavMesh generator knows that these are the static obstacle
objects to avoid. Only game objects marked as navigation static will be taken into
account when building the NavMesh, so be sure to mark any environment elements
accordingly. To do this, select all those objects, click on the Static dropdown, and
choose Navigation Static, as shown in the following screenshot:

The Navigation Static property

[98]

Baking the navigation mesh
Now we're done with our scene. Let's bake the NavMesh. Firstly, we need to open
the navigation window. Navigate to Window | Navigation. The navigation window

Object, looks similar to the
following screenshot:

The navigation object window

The Object tab of the navigation window is simply a shortcut to selecting objects Object
and modifying their navigation-related attributes. Toggling between the Scene Filter
options, All, Mesh Renderers, and Terrains
accordingly so that you can easily select objects and change their Navigation Static
and Generate OffMeshLinks Navigation Area.

[99]

The second tab is the Bake tab. It looks similar to the following screenshot:

If you've ever stumbled across this tab prior to Unity 5, you may notice that it now
looks a bit different. Unity 5 added a visualizer to see exactly what each setting does.
Let's take a look at what each of these settings does:

Agent Radius: The Unity documentation describes it best as the NavMesh
agent's "personal space". The agent will use this radius when it needs to
avoid other objects.

Agent Height: This is similar to radius, except for the fact that it designates
the height of the agent that determines if it can pass under obstacles,
and so on.

Max Slope: This is the max angle that the agent can walk up to. The agent
will not be able to walk up the slopes that are steeper than this value.

Step Height: Agents can step or climb over obstacles of this value or less.

[100]

The second category of values only applies when you checked Generate
OffMeshLinks when building your NavMesh. This simply means that the agent
will be able to potentially navigate the NavMesh even when gaps are present due to
physical distance:

Drop Height: Fairly straightforward, this is the distance an agent can jump
down. For example, the height of a cliff from which an agent will be "brave
enough" to jump down.

Jump Distance: This is the distance an agent will jump between offmesh links.

to change:

Manual Voxel Size: Unity's NavMesh implementation relies on voxels. This
setting lets you increase the accuracy of the NavMesh generation. A lower
number is more accurate, while a larger number is less accurate, but faster.

Min Region Area: Areas smaller than this will simply be culled away,
and ignored.

Height Mesh: It gives you a higher level of detail in vertical placement of
your agent at the cost of speed at runtime.

The third and last tab is the Areas tab, which looks similar to the following screenshot:

If you recall, the ObjectObject
for example, grass, sand, water, and so on. You can then assign an area mask to an
agent, which allows you to pick areas agents can or cannot walk through. The cost
parameter affects the likeliness of an agent to attempt to traverse that area. Agents
will prefer lower-cost paths when possible.

[101]

We will keep our example simple, but feel free to experiment with the various settings.
For now, we'll leave the default values and just click on Bake at the bottom of the
window. You should see a progress bar baking the NavMesh for your scene, and after
a while, you'll see your NavMesh in your scene, as shown in following diagram:

The navigation mesh baked

[102]

Using the NavMesh agent
We're pretty much done with setting up our super simple scene. Now, let's add some
AI agents to see if it works. We'll use our tank model here, but if you're working with
your own scene and don't have this model, you can just put a cube or a sphere entity
as an agent. It'll work the same way.

The tank entity

The next step is to add the NavMesh Agent component to our tank entity. This

algorithms directly anymore as Unity handles this for us in the background. By just
setting the property of the component during runtime, our AI agent

[103]

Navigate to Component | Component Navigation | Nav Mesh Agent to add this component.Nav Mesh Agent

The Nav Mesh Agent properties

Unity reference for the NavMesh Agent component can be NavMesh Agent
found at

.

Setting a destination
Now that we've set up our AI agent, we need a way to tell this agent where to go and
update the destination of our tanks to the mouse-click position.

So, let's add a sphere entity to be used as a marker object and then attach the
following script to an empty game object. Drag-and-drop this sphere
entity onto this script's transform property in the inspector.

[104]

The Target class
This is a simple class that does three things:

Gets the mouse-click position using a ray

Updates the marker position

Updates the destination property of all the NavMesh agents

The following lines show the code present in this class:

[105]

At the start of the game, we look for all the type entities in our
game and store them in our reference array. Whenever there's a

with our ray. If the ray hits any object, we update the position of our marker and
update each NavMesh agent's destination by setting the destination property
with the new position. We'll be using this script throughout this chapter to tell the
destination position for our AI agents.

Now, test run the scene and click on a point where you want your tanks to go.
The tanks should come as close as possible to that point while avoiding the static
obstacles like walls.

Testing slopes
Let's build a scene with some slopes like this:

Scene with slopes

[106]

One important thing to note is that the slopes and the wall should be in contact with
each other. Objects need to be perfectly connected when creating such joints in the
scene with the purpose of generating a NavMesh later, otherwise, there'll be gaps in

sure to connect the slope properly.

A well-connected slope

Next, we can adjust the property in the Navigation window's Bake tab
according to the level of slope in our scenes that we want to allow agents to travel.
We'll use degrees here. If your slopes are steeper than this, you can use a higher

 value.

Bake the scene, and you should have a NavMesh generated like this:

NavMesh generated

[107]

Next, we'll place some tanks with the NavMesh Agent component. Create a new
cube object to be used as a target reference position. We'll be using our previous

 script to update the destination property of our AI agent. Test run the
scene, and you should have your AI agents crossing the slopes to reach the target.

Exploring areas
In games with complex environments, we usually have some areas that are harder
to travel in than others, such as a pond or lake compared to crossing a bridge. Even
though it could be the shortest path to target by crossing the pond directly, we
would want our agents to choose the bridge as it makes more sense. In other words,
we want to make crossing the pond to be more navigationally expensive than using

layers with different navigation cost values.

We're going to build a scene, as shown in the following screenshot:

Scene with layers

[108]

There'll be three planes to represent two ground planes connected with a bridge-like
structure and a water plane between them. As you can see, it's the shortest path for
our tank to cross over the water plane to reach our cube target, but we want our AI
agents to choose the bridge if possible and to cross the water plane only if absolutely
necessary, such as when the target object is on the water plane.

The scene hierarchy can be seen in the following screenshot. Our game level is
composed of planes, slopes, and walls. We've a tank entity and a destination cube
with the script attached.

The Scene Hierarchy

As we saw earlier, NavMesh areas can be edited in the Areas tab of the
Navigation window.

Unity comes with three default layers— , , and —each
with potentially different cost values. Let's add a new layer called and give
it a cost of .

[109]

Next, select the water plane. Go to the Navigation window and under the Object
tab, set Navigation Area to Water.

The Water area

Bake the NavMesh for the scene and run it to test it. You should see that the AI
agents now choose the slope rather than going through the plane marked as the
water layer because it's more expensive to choose this path. Try experimenting with
placing the target object at different points in the water plane. You will see that the
AI agents will sometimes swim back to the shore and take the bridge rather than
trying to swim all the way across the water.

Making sense of Off Mesh Links
Sometimes, there could be some gaps inside the scene that can make the navigation

slopes are not connected to the walls in our previous examples. Or, we could have
set up points where our agents could jump off the wall and onto the plane below.
Unity has a feature called Off Mesh Links to connect such gaps. Off Mesh Links can
either be set up manually or generated automatically by Unity's NavMesh generator.

[110]

Here's the example scene that we're going to build in this example. As you can see,
there's a small gap between the two planes. Let's see how to connect these two planes
using Off Mesh Links.

Scene with Off Mesh Links

Using the generated Off Mesh Links
Firstly, we'll use the autogenerated Off Mesh Links to connect the two planes. The

Off Mesh Link Generation static
in the property inspector, as shown in the following screenshot:

Off Mesh Link Generation static

[111]

You can set the distance threshold to autogenerate Off Mesh Links in the Bake tab of
the Navigation window as seen earlier.

Click on Bake, and you should have Off Mesh Links connecting two planes like this:

Generated Off Mesh Links

Now our AI agents can
essentially teleported to the other plane once they have reached the edge of the plane
and found the Off Mesh Link. Unless having a teleporting agent is what you want, it
might be a good idea to place a bridge to allow the agent to cross.

Setting the manual Off Mesh Links
If we don't want to generate Off Mesh Links along the edge, and want to force the
agents to come to a certain point to be teleported to another plane, we can also
manually set up the Off Mesh Links. Here's how:

The manual Off Mesh Links setup

[112]

of sphere entities on both sides of the plane. Choose a sphere, and add an Off Mesh
Link by navigating to Component | Component Navigation | Off Mesh Link. We only need to
add this component on Start
property, and the other sphere to the End property.

The Off Mesh Link component

The manual Off Mesh Links generated

Go to the Navigation window and bake the scene. The planes are now connected
with the manual Off Mesh Links that can be used by AI agents to traverse even
though there's a gap.

[113]

Summary
You could say we navigated through quite a bit of content in this chapter. We started
with a basic waypoint-based system, then learned how to implement our own simple

While many would opt to go with the simplicity of Unity's NavMesh system, others

What is most important, however, is understanding when and how to use these
different systems.

Furthermore, without even realizing it, we saw how these systems can integrate with
other concepts we learned earlier in the book.

In the next chapter, Flocks and Crowds, we'll expand on these concepts and learn
how we can simulate entire groups of agents moving in unison in a believable
and performant fashion.

