
Advanced NavMesh
Generation

Navigation mesh generation is one of the most important topics in game AI. We
have been using navigation meshes in almost all the chapters in this book, but
haven't looked at them in detail. In this chapter, we will provide a more detailed
overview of navigation meshes and look at the algorithm used to generate them.
Then, we'll look at different options of customizing our navigation meshes better.

In this chapter, you will learn about:

The working of navigation mesh generation and the algorithm behind it

Advanced options for customizing navigation meshes

Creating advanced navigation meshes with RAIN

An overview of a NavMesh
To use navigation meshes effectively, also referred to as NavMeshes, the
things we need to know are what exactly navigation meshes are and how they are

in a level. It is a mesh, but it is not intended to be rendered or seen by the player;
instead, it is used by the AI system. A NavMesh usually does not cover all the area
in a level (if it did, we wouldn't need one) as it's just the area a character can walk.

that show different details in the rock; however, for the navigation mesh, the areas

level. The purpose

for a character. This is its purpose; let's discuss how they are created.

Advanced NavMesh Generation

[128]

It used to be a common practice in the games industry to create navigation meshes
manually. A designer or artist would take the completed level geometry and create
one using standard polygon mesh modeling tools and save it. As you might imagine,
this allowed for
the level changed, the navigation mesh would need to be manually edited and
updated. In recent years, there has been more research in automatic navigation
mesh generation.

There are many approaches to automatic navigation mesh generation, but the most
popular is Recast, originally developed and designed by Mikko Monomen. Recast

the size of the character and how big of steps it can take, and then does a multipass
of this is

voxelizing the level based on an inputted cell size. This means the level geometry is
divided into voxels (cubes), creating a version of the level geometry where everything
is partitioned into different boxes called cells. Then, the geometry in each of these cells

culled based on things such as the slope of the geometry or how big a step height is

The source code and more information on the original
C++ implementation of Recast is available at

.

Advanced NavMesh parameters
Now that we know how navigation mesh generations works, let's look at the
different parameters you can set to generate them in more detail.

We'll look at how to do these parameters with RAIN using the following steps:

1.
some blocks for walls.

2. Then, go to RAIN | Create NavMesh. Also, right-click on the RAIN menu
and choose Show Advanced Settings. The setup should look something
like the following screenshot:

Chapter 11

[129]

The NavMesh setup

Now let's look at some of the important parameters:

 Size: This is the overall size of the navigation mesh. You'll want
the navigation mesh to cover your entire level and use this parameter
instead of trying to scale up the navigation mesh through the Scale
transform in the Inspector window. For our demo here, set the Size
parameter to 20.

 Walkable Radius: This is an important parameter to define the
character size of the mesh. Remember, each mesh will be matched to
the size of a particular character, and this is the radius of the character.
You can visualize the radius for a character by adding a Unity Sphere
Collider script to your object (by going to Component | Physics |
Sphere Collider) and adjusting the radius of the collider.

 Cell Size: This is also a very important parameter. During the voxel
step of the Recast algorithm, this sets the size of the cubes to inspect
the geometry. The smaller the size, the more detailed and finer the
mesh, but the longer the processing time for Recast. A large cell size
makes computation fast but loses detail.

Advanced NavMesh Generation

[130]

For example, here is a NavMesh from our demo with a cell size of 0.01:

You
with a cell size of 0.1:

Chapter 11

[131]

Note the difference between the two screenshots. In the former, walking through
the two walls lower down in our picture is possible, but in the latter with a larger cell
size, there is no path even though the character radius is the same. Problems like
this become greater with larger cell sizes. The following is a navigation mesh with
a cell size of 1:

As you can see, the detail becomes jumbled and the mesh itself becomes
unusable. With such differing results, the big question is how large should a cell

one important consideration is that as the processing time to generate one is done
during development and not at runtime, even if it takes several minutes to generate
a good mesh then it can be worth it to get a good result in the game.

Setting a small cell size on a large level can cause mesh processing

It is a good practice to save the scene before attempting to generate
a complex navigation mesh.

Advanced NavMesh Generation

[132]

The Size, Walkable Radius, and Cell Size parameters are the most important
parameters when generating the navigation mesh, but there are more that are
used to customize the mesh further:

Max Slope: This is the largest slope that a character can walk on. This is
how much a piece of geometry that is tilted can still be walked on. If you
take the wall and rotate it, you can see it is walkable:

The preceding is a screenshot of a walkable object with a slope.

Step Height: This is how high a character can step from one object to another.
For example, if you have steps between two blocks, as shown in the following

whether the area is still considered walkable:

Chapter 11

[133]

This is a screenshot of the navigation mesh with the step height set to connect
adjacent blocks.

Walkable Height: This is the vertical height that is needed for the character
to walk. For example, in the previous screenshot, the second block is not
walkable underneath because of the walkable height. If you raise it to at least
one unit off the ground and set the walkable height to 1, the area underneath
would become walkable:

You can see a screenshot of the navigation mesh with the walkable height set to
allow going under the higher block.

These are the most important parameters. There are some other parameters related to
the visualization and to cull objects. We will look at culling more in the next section.

Culling areas
Being able to set up areas as walkable or not is an important part of creating a level.
To demo this, let's divide the level into two parts and create a bridge between the

of the walls to a bridge. Then, add two other pieces of geometry to mark areas that
are dangerous to walk on, like lava.

Advanced NavMesh Generation

[134]

Here is an example setup:

This is a basic scene with a bridge to cross.

If you recreate the navigation mesh now, all the geometry will be covered and the
 and

tag the geometry under the bridge with it. Then, in the navigation meshes' RAIN
component, add to the unwalkable tags. If you then regenerate the mesh, only
the bridge is walkable. This is a screenshot of a navigation mesh with polygons that
are under the bridge culled out:

Chapter 11

[]

To see this in action, create a new ship and add a target to the scene on different
sizes of the bridge. Set the ship's behavior tree to have a move node with the target,
as shown in the following screenshot:

The preceding screenshot shows a basic move node to a navigation point behavior tree.

If you run the demo now, you will see the ship cross the bridge:

The preceding screenshot shows the ship crossing the bridge to go to its navigation
target. Using layers and the walkable tag, you can customize navigation meshes.

Advanced NavMesh Generation

[136]

Multiple navigation meshes
So far, we have only looked at setting up a single navigation mesh in a scene,
but navigation meshes are designed to be per character and not just one for the

called

graph tags to correlate meshes with characters. To see how this works, let's add a
second bridge to our scene that is larger and a second ship with double the scale.
Here is an example setup:

This is a demo scene setup with an additional larger ship and larger bridge.
Regenerating the mesh gives us a path over both bridges:

Chapter 11

[137]

This is a navigation mesh with a smaller walkable radius that can cross both bridges.

Any character using this mesh will be able to go across either bridge. For our larger
character to not be able to cross the smaller bridge, we need to generate another mesh
with a smaller Walkable Radius. Create a second navigation mesh in the scene
(RAIN | Create NavMesh

 and the new one to . In the large one, set the Walkable
Radius parameter to 1.75. Generate this mesh and see how it goes over the second

It is a navigation mesh with a larger walkable radius that can cross one bridge.

Then, to match the meshes with the characters for ,
make sure that you are in Advanced Settings and in Graph Tags, add an
element called .

Advanced NavMesh Generation

[138]

The following is a screenshot of a navigation mesh with a graph tag:

Do the same for with the Graph Tags
. Then, for the smaller ship character AI, go to the Navigator tab and set its

Graph Tags :

Chapter 11

[139]

This is a ship navigator with a graph tag setup.

Do the same with Graph Tags for larger ships. With the graph tags matched, if you
run the demo now, the larger ship will not take the smaller bridge and go through
the smaller one:

This is a demo with two ships. Only the larger ship can cross the larger bridge.

Summary
Navigation meshes are an important part of game AI. In this chapter, we looked at
the different parameters to customize navigation meshes. We looked at things such as
setting the character size and walkable slopes and discussed the importance of the cell
size parameter. We then saw how to customize our mesh by tagging different areas as
not walkable and how to set up multiple navigation meshes for different characters.

We now have all the essential skills we need to create AI in Unity. We've seen how to
have a character move, navigate, and sense other characters in our game scenes as well
as how to set up behavior trees to make decisions and integrate animation. We also
looked at different AI use cases, such as crowds, driving, and had our characters attack
and change behavior based on game events. This covers a lot about AI, but game AI
is a huge and much studied topic and there is much more to learn. By doing some

talks that you can study to make even more advanced AI.

