
Patrolling
Patrolling
in mind, we might have two or more points. We might go back and forth between
them, or travel in a never-ending loop.

In this chapter, you will learn about:

How patrolling works

Getting to know more about behavior trees

Creating patrols that go to different points in a level by not always
following the same path

Patrolling is a way to get an object from point A to point B and then to point C,

but here, we daisy-chain them into a larger, more meaningful path.

Quick Path AI
 back again, with built-in capabilities to handle patrol. With its

simple approach to AI, only a few straightforward steps are needed to get a

Making the world ready for patrol

Setting up the patrol script

Patrolling

[20]

We'll start by expanding on our world from Chapter 1, the quick path
demo. Stretch out a couple of the blocks to make a larger surface area. Then, click on
the terrain object (the parent of all the cubes forming the terrain), and in the Inspector,
click on the Bake button. You can see what happens next in the following screenshot:

If the Bake function isn't covering all the areas, you'll need to check its grid
dimensions. X remains the same in the world space, but Y is actually the Z axis. You
might need to increase or decrease these numbers to cover everything in the scene:

Y or Z axis values internally. By default, it is set
to Y as the Up/Down axis, but you can change this with the Up Direction parameter.

Now that we have a larger surface area to work with, we'll get the NPC object set up
to patrol. If the object still has the following script, you will need to remove it, but then

Inspector panel for
the patrol script is change the speed to , as its default of 10 was rather fast.

Next, set Spill Distance to . Spill Distance is how close you have to be to a
waypoint before it picks the next waypoint as your target. If Ping Pong is checked,
the NPC will stop at the end of its path and backtrack. If it is unchecked, at the end

Chapter 2

[21]

 is an option that helps it navigate around obstacles
between waypoints. If your path is already clear, then you can keep this option off
and save extra processing.

Finally, we have Patrol Path, which houses the waypoints for the NPC to travel on.
Increase this to
move your NPC in the scene to the waypoint positions that you want and then copy
its position to one of the waypoints. So, select three points for your NPC to travel on.
You can refer to the following screenshot for the settings:

Now, your game is ready to run, with your NPC navigating a course that you just
set up.

React AI
React AI doesn't come equipped with a patrol script, so we provided one. We'll start
with this behavior tree script and look at how it works and how to use it. Here are
the steps to reproduce it:

1. Create a patrol script.

2. Create a patrol AI.

3. Set up the NPC patrol.

To start with, we've provided a script for you to use. In it, I started with the last script

It is based on the script from the previous chapter.

.

Patrolling

[22]

It stores a public array of , so the Inspector UI can allow designers to
set the waypoints.

Instead of the target being a player, it is set to the next waypoint in the list.
Once we are close enough, it selects the next waypoint. Close Enough is the

However, now we need to create the user endpoint. Right-click on a folder in the
Project tab and choose Create | Reactable. Name the reactable . In its
Inspector UI, add the patrol script as one of the behaviors. Next, right-click on the
PatrolAI asset and select Edit Reactable.

In the reactable, right-click on the root element and select AddBranch | Sequence.
A sequence repeats all the steps in an order. Under the Sequence option, right-click
and navigate to Add | Leaf | Action. Assuming that you only added the patrol
script to its behaviors, it should automatically select Patrol.Go as its action. You can
add notes to each step to help write a better story of what the AI is doing. When it is
this simple, it does not matter so much, but many AIs will become more complex.

Next, the NPC needs to be set up to use this new patrol AI. Find the NPC in the
previous chapter's React AI project. You'll need to remove the following AI that
was on the NPC before, or create a new NPC. If you create a new NPC, do not
forget to add the NavMesh agent so that it can navigate.

Add two components to the NPC: Reactor and Patrol. In the Reactor component,
you will need to set the Reactable value to the Patrol AI asset that we created earlier.

script, we need to set the Vector locations for each of the waypoints.

Chapter 2

[23]

A tip to get exact numbers is to just move the NPC to the
waypoint positions you want and then copy the position
of the NPC to one of the waypoints.

Now your game should have a character who patrols from point to point.

RAIN AI
RAIN has this section put together pretty well. In reality, we only have one small

demo had actually turned off the patrol feature.

Start with the project for RAIN AI from Chapter 1, . From the menu,
navigate to RAIN | Behavior Tree Editor. From the editor, select FollowGreenRoad.
Under Sequence is a patrol route node called waypointpatrol; select it. Finally,
we have a property called Loop Type. Presently, it is on One Way, which stops
at the last waypoint. You can switch it to Ping Pong or Loop, as shown in the
following screenshot:

Ping Pong bounces you back and forth on the path, while Loop connects the last

This works when creating a typical patrolling behavior, where a character loops
along a path. However, what if we want to have a character patrol an area by
walking around back and forth to different points without always following the

a waypoint graph and updating our behavior tree to randomly pick different points
in the level to go to.

Patrolling

[24]

To illustrate this, create a new scene, and like in our current patrol example, add a
character and some blocks and create a navigation mesh. Separate the blocks a bit so
that we can add different paths in between them. You can refer to the next screenshot
to view this setup:

In this demo, we will have the character walk to different points outside the walls,
but when patrolling, the character won't go in a circle outside the walls; instead, it
will always walk through the middle. To do this, we will need a waypoint network
similar to the one shown in the following screenshot:

Chapter 2

[]

To add a waypoint, navigate to RAIN | Create Waypoint Network. Then, set up
the network similar to how you set up a waypoint route, by creating different points.
However, unlike a waypoint route, with a waypoint network you can also connect
different points. To connect two waypoints, select them by pressing Ctrl + Shift and
left-clicking the mouse and then click on Connect in the RAIN Waypoint Network
component menu. Connect the points in a plus sign shape as illustrated in the previous
screenshot. With this network, to walk from the side of one wall to another, the
character will always need to walk through the middle of the scene.

The network waypoint describes how a character should walk to different spots
on a level, but it actually doesn't contain the different points we can tell the AI

need what RAIN calls a navigation target. A navigation target is just an object
that contains a point in the scene that we can use with the rest of the AI system.
You can create navigation targets by navigating to RAIN | Create Navigation
Target and place them like you would place a waypoint. Create three navigation
targets and place them on the side of three walls. We will follow a convention
used in other RAIN examples and name the navigation targets ,

, and , as shown in the following screenshot:

Patrolling

[26]

The Inspector panel should look like the following screenshot:

This is all of the scene setup that we need to specify routes and locations for
the character to walk. However, we will need to customize the behavior tree to
randomly choose different points to patrol to.

Create a new behavior tree for our character and call it . Open the behavior
tree editor, and below the new root node, create a Random node by right-clicking
on the root and navigating to Create | Decisions | Random. This creates a node that
randomly selects one of its children to execute. Don't worry too much about how the
different nodes work in the RAIN behavior tree for now; we will go into more detail
about them in the next chapter. For now, create three expression nodes as children of
the Random node by right-clicking on Random and navigating to Create | Actions
| Expression. An expression node allows us to execute a single statement, which is
called an expression in RAIN. Rename the expression nodes ,

,
, and do the same for the

other location expression nodes, using numbers 2 and 3. These expression nodes create
a variable location that is a randomly determined navigation target that we can use as
a target to walk to. The setup should look like this:

Chapter 2

[27]

All that is left is to add nodes to walk to the target. Right-click on the root node and
navigate to Create | Decisions | Waypoint Path (not waypoint patrol like last time).
In the waypoint path node, set the Waypoint Network (with
quotes) to tell it which network to use. Set the Path Target
quotes), which is the variable we stored our random target to walk to. Finally, set up
the rest of the tree as shown earlier, with an animation node and a child node.

If you run the project now, the character will randomly patrol the area of the level
by randomly walking from one navigation target location to the next and always
walking through the middle of the level.

Patrolling

[28]

Summary
We were able to get patrolling operational in all three AIs. Each AI had its
own approach.

not have patrol out of the box, as we saw in the last chapter. However, it was not

powerful system that you can use to allow designers to easily access and apply your
awesome scripts, but you have to be comfortable programming to build the pieces
for it. For RAIN, which made this about as easy as a big red button. With one setting

with a huge variety of prebuilt character controlling; we looked at how to use a
different waypoint system, a waypoint network, to give variety to our character
when patrolling.

movement. In later chapters, we will look in more detail at different aspects of
this, such as animation and creating navigation meshes. In the next chapter, we
will look at customizing our characters by investigating behavior trees in more
detail. We will also learn to create more advanced setups using behavior trees.

