
Driving
In this chapter, we will look at another specialized AI, driving. The other AI we
have looked at so far had pretty simple movement for characters. However, car
movement needs to take into account physics, and this makes driving AI more
complex, which is why we need an AI system specially designed for driving.
The AI driving system we will use for our demos is Smart Car AI. Smart Car
uses Unity's built-in navigation mesh system, so we will also take a look at it.

In this chapter, you will learn about:

Setting up the AI driving system
Creating a Unity navigation mesh
Using Smart Car to drive AI along a path
Using Smart Car to drive and avoid obstacles

An overview of driving
When designing AI for our characters, one of the basic concepts is to have AI move
with the same rules as the player. If you ever played any old racing games, sometimes
the opponent cars wouldn't follow the same physics as the player, zooming along
unrealistically and therefore creating a bad player experience. So, it's important to
take car physics into account, including the shape of the car and four wheels, and
have the AI move in the same way as the player. This is the main reason for using
an AI system especially designed for autos and driving, instead of a general-purpose
game AI system we have been using such as RAIN.

The driving system we'll use is Smart Car AI by BoneBreaker, which at the time of

for the car and uses ray casting to sense the car's environment. It actually uses two
systems for navigation, which are Unity's built-in navigation system to determine
paths along a road and ray casting to sense obstacles and make adjustments to the car.

Driving

[106]

Additionally, Smart Car uses four-wheel physics for realistic movement. Because
of the advanced use of physics, we can't just drop any car model in and have it

colliders. Wheel
made for vehicles. Let's look at how to set up a car.

Setting up a Smart Car vehicle
As
vehicle. To create a Smart Car vehicle, you'll need a car model with different models
for wheels and Unity wheel colliders setup on them. After adding a car model to
your scene, import the Smart Car 2.3 package and attach the
script from . In the following screenshot, you can see some

Chapter 9

[107]

Engine
Torque Curve, and the distances for the ray casts used for sensing. Most of these
can be left to
properties, dragging from your model the colliders for the four wheels to the Wheel_
FL, Wheel_FR, Wheel_RL, and Wheel_RR properties. You also need transforms for
the wheel set. Also, there needs to be a transform for center of mass (COM), a lower
point in the middle of the car. If COM is placed in the wrong position, the physics of

run in a game as it still needs waypoints and a Unity navigation mesh setup, which
we will add in the demo.

The Smart Car AI demo
Now, we'll start setting up our driving demo that will have a car driving along a
road and avoiding obstacles.

Setting up a Unity test scene
Besides needing Smart Car, we'll need an environment for our AI cars to drive in.
We'll use Car Tutorial v1.3 that is made by Unity, which you can download for free
from the Asset Store. Import the project and open TheTrack scene from the imported

 folder. Next, add a car to the scene. The car prefab that comes with Car

the steps in the last section or use the EnemyAICar prefab from Smart Car. To make
the car work better with the Tutorial scene, extend the rays a little, set Wide and
Tight Ray Distance both to and Long Ray Distance to . This keeps the car from
hitting obstacles when going too fast and missing tight turns. Once you have a car in

Main_Camera object and set your car
to Target for the Car Camera script.

Driving

[108]

If you start the demo now, the car still won't run but the main camera in the scene
will follow it:

This screenshot is of the Main_Camera game object of Car Tutorial. These are the
settings for the TheTrack scene with Target set to the Smart Car prefab.

Another setting in the scene that can cause problems is the
 Sound Toggler script. As it isn't

important to use, select the script
and remove that component to avoid errors later.

Using Unity's built-in NavMesh system
The next thing we need for our car demo is a navigation mesh. Smart Car uses
Unity's built-in system. Unity's system is similar to RAIN's but we haven't used
it much yet as unlike other plugins, Unity does not have a built-in behavior tree
system. Fortunately, we don't need behavior trees for our car demos, so navigate
to Window | Navigation.

Chapter 9

[109]

This brings up the Navigation
the NavMesh:

Object
navigation mesh. Any objects that are tagged with Navigation Static
will be included in the mesh as a walkable area.

Bake: This has options to bake the mesh. The two most important options
are Radius and Height, which are dimensions for the character to navigate
on the mesh.

Layers: This allows you to customize the placement of different navigation
meshes on different layers.

For our demo, we want only the roads to be navigable. Select the other building and
miscellaneous objects in the scene and set their static property (which is to the right
of their name in Inspector) to not have Navigation Static set. Then, for the different
road objects, such as Road_Coll, Road_Coll01, and so on, make sure that they have
Navigation Static checked. Then, go back to the Navigation tab and click on Bake. If
you have everything set correctly after you bake, you should see the navigation mesh
in the same area as the road:

This is how the road navigation mesh setup should look.

Driving

[110]

This should have been pretty quick to recreate, but depending on the character size
settings and the amount of geometry in the scene, this can take a bit of time. We will
discuss navigation meshes more and the algorithm behind how they are generated in
Chapter 11, Advanced NavMesh Generation.

NavMeshAgent is the built-in Unity component to create characters
that move on a navigation mesh. Smart Car uses this internally. We
won't be using this class directly but you can if you want to try more
of Unity's built-in navigation system; it is a good class to look at.

Setting up waypoints
 step to get a car driving is to set up waypoints for the car to follow. The

name it . Then, create a few more empties with the names waypoint
1, waypoint 2, waypoint 3, and so on. Place the waypoint empties at different parts

waypoint to the next, so the line between waypoints doesn't have to go through
the road. For instance, you could have one waypoint at the start of a curve and the
second at the end and the car would still go around the curve through the waypoints.
In the Smart AICar script, set the empties to the Waypoints
the waypoints will be visualized in the edit or view to make adjusting their locations
easier. Refer to the following screenshot, and you can see how the visualization of
Smart car AI waypoints looks:

Chapter 9

[111]

If you run the demo after setting the waypoints, the car drives realistically across

settings with Smart Car that can be adjusted to change how the car acts.

Adding obstacles to driving
As Smart Car uses a combination of a NavMesh and ray casting, you can add
objects dynamically to the scene, and as long as they have colliders attached
(and are on a car's Recast Layers), the car will avoid them. To try this out, add
a few large cylinders to the road, as shown in the following screenshot:

Then, in the Recast Layers dropdown for your car, make sure that it is set to ray cast
on the same layer as the obstacles. Select a Cylinder object and in Inspector, select
Add Layer. We need to create an obstacles layer, so select the dropdown and in the

User Layer, set it to obstacles.

Driving

[112]

Then, for each cylinder, set its layer to obstacles:

Chapter 9

[113]

This is how the Inspector window should look after creating the obstacle layer.

Then, for Smart Car in the Raycast Layers dropdown, make sure that the obstacles
layer is selected. Once you have this set up, if you run the demo, the car will drive and
avoid the obstacles. The car still uses physics for its control, and sometimes if you place
the obstacles too close to one another, the car will run into one. Fortunately, in this
case, the car will back up and then drive past it, which is a nice touch Smart Car has.

The cylinders are static objects in our scene, but as ray casting is used, there is no
reason why you cannot script dynamic objects and the car will still avoid them. To
see this, run the demo and in the scene view, grab one of the obstacles and move it
around to block the car; the car will try to avoid it.

Additional features
We've just completed creating a driving demo with a car avoiding obstacles, but
there are a few more things you can do with driving AI. We can add brake and drift

 the general behavior of the car as it drives around the scene,
and we can integrate Smart Car with other AI systems such as RAIN.

Adding brake zones and drift zones
Another interesting thing you can do zones in the level to
either cause the car to brake and slow down or adjust the friction of the car to make it

Chapter 5, Crowd Control, where
we place them in the level to affect the AI, and they aren't visible to the player but
are good to use for scripting level experiences. To create a brake or drift zone in your
game, add a cube to the game (go to GameObject | Create Other | Cube) and scale
and translate the area you want to tag in the level. In the Inspector window for the
cube, set its tag to BrakeZone and for a drift zone set the tag to DriftZone. Next, in
Box Collider for the cube, check Is Trigger to true, so the car will get a message of
intersecting with a cube but won't stop and collide with it. Lastly, in the Inspector
window, uncheck Mesh Renderer so that the cube is invisible in the game. Now when
you run the demo, if the car's speed is 25 or over when it enters the brake zone, you
will see it slow down, and if its speed is 15 or over, you will see it drift in the drift zone.

Driving

[114]

Integrating with other AI systems
In this demo, we've seen that setting up an AI car that drives around is easy to do with
Smart Car. However, what if your game isn't just a driving game but has car driving as

easily. For RAIN integration, import the RAIN package into your scene. Then, go to
RAIN | Create Entity and then select Add Aspect: Visual Aspects. This creates an
entity with an aspect that can be sensed by additional RAIN AI entities you can create
in the scene, making the car just one part of a larger AI system.

Summary

We discussed why automotive AI is different than most AIs because of the physics
involved, and we also saw how to set up a car model, create a path for the car, and
add obstacles. We also looked at using Unity's built-in navigation mesh system,
instead of using third-party ones such as RAIN, and discussed additional features
for car AI and how we can integrate it with another AI system such as RAIN.

In the next two chapters, we will look at how to combine character animations
and AI to give them a realistic appearance and learn more about creating complex
navigation meshes for different AIs.

