
Unity C# Refresher

practical, and advanced knowledge of scripting. Fluency is the keyword here. From the
outset of learning any programming language, the focus invariably turns to language
syntax and its rules and laws—the formal parts of a language. This includes concepts
such as variables, loops, and functions. However, as a programmer gets experience,

is applied to solve real-world problems. The focus changes from language-oriented
problems to questions of context-sensitive application. Consequently, most of this
book will not primarily be about the formal language syntax of C#.

After this chapter, I'll assume that you already know the basics. Instead, the book
will be about case studies and real-world examples of the use of C#. However, before
turning to that, this chapter will focus on the C# basics generally. This is intentional.
It'll cover, quickly and in summary, all the C# foundational knowledge you'll need
to follow along productively with subsequent chapters. I strongly recommend

primarily at readers who are reasonably new to C# but fancy jumping in at the deep
end. However, it can also be valuable to experienced developers to consolidate their
existing knowledge and, perhaps, pick up new advice and ideas along the way. In this
chapter, then, I'll outline the fundamentals of C# from the ground up, in a step-by-step,

programming generally, perhaps with another language, but have never encountered
C#. So, let's go.

Unity C# Refresher

[8]

Why C#?
When it comes to Unity scripting, an early question when making a new game
is which language to choose, because Unity
are C# or JavaScript. However, there's a debate about whether JavaScript should

adaptations made to the language. This point is not our concern here. The question is
which language should be chosen for your project. Now, it initially seems that as we

up the languages. This is, of course, technically possible. Unity won't stop you from
doing this. However, it's a "bad" practice because it typically leads to confusion

in miles and
kilometers at the same time.

The recommended approach, instead, is to choose one of the three languages and
apply it consistently across your project as the authoritative language. This is a
slicker, more one language must be chosen at the

than the others. There is no absolute "better" or "worse" in my view. Each and every
language has its own merits and uses, and all the Unity languages are equally
serviceable for making games. The main reason is that C# is, perhaps, the most
widely used and supported Unity language, because it connects most readily to the
existing knowledge that most developers already have when they approach Unity.
Most Unity tutorials are written with C# in mind, as it has a strong presence in other

which is also used in Unity (known as Mono there), and C# most closely resembles
C++, which generally has a strong presence in game development. Further, by

demand for Unity programmers in the contemporary games industry. Therefore, I've
chosen C# to give this book the widest appeal and one that connects to the extensive
body of external tutorials and literature. This allows you to more easily push your
knowledge even further after reading this book.

If you need to

for Unity to follow. As mentioned, the instructions can be written in either C#,
JavaScript, or Boo; for this book, the language will be C#. There are multiple ways

Chapter 1

[9]

One way is to go to Assets | Create | C# Script from the application menu,
as shown in the following screenshot:

Creating a script file via the application menu

Another way is to right-click on the empty space anywhere within the Project panel
and choose the C# Script option in the Create menu from the context menu, as
shown in the following screenshot. This creates the asset in the currently open folder.

Creating a script file via the Project panel context menu

Unity C# Refresher

[10]

 folder with a

unique and meaningful name.

should have a unique name across the project. The name should also be meaningful
by expressing clearly what your script intends to do. Further, there are rules of

these rules can be found online at

and the name should include no spaces, although underscores (_) are allowed:

Name your script files in a unique way and according
to the C# class naming conventions

Visual Studio and Notepad++, but Unity provides the free and open source editor,
MonoDevelop. This software is part of the main Unity package included in the
installation and doesn't need to be downloaded separately. By double-clicking on

 Project

following screenshot. Failure to do so will result in invalid code and compilation

Chapter 1

[11]

Renaming classes to match the renamed script files

Compiling code

To compile
MonoDevelop by choosing the Save option in the File menu from the
application menu (or by pressing Ctrl + S on the keyboard) and then
return to the main Unity Editor. On refocusing on the Unity window,

your code in response. If there are errors, the game cannot be run,
and the errors are printed to the Console window. If the compile was
successful, you don't need to do anything else, except press Play on the
Editor toolbar and test run your game. Take care here; if you forget to

will still use the older, compiled version of your code. For this reason
as well as for the purpose of backup, it's really important to save your
work regularly, so be sure to press Ctrl + S to save in MonoDevelop.

Unity C# Refresher

[12]

Instantiating scripts

that can be instantiated. It is a collection of related variables, functions, and events

 folder

as a component), where it comes alive at runtime. Now, scripts, being logical and
mathematical in nature, are not added to the scene as tangible, independent objects

audible presence. Instead, they're added onto existing game objects as components,

or behavior pattern for an object
that can be reused successfully across many similar objects in all possible scenarios.

Project
panel onto the destination object in the scene. The script will be instantiated as a
component, and its public variables will be visible in the Object Inspector whenever
the object is selected, as shown in the following screenshot:

Attaching scripts onto game objects as components

Chapter 1

[13]

Variables are considered in more depth in the next section.

More information on creating and using scripts in Unity can be found
online at

.

Variables
Perhaps, the core concept in programming and in C# is the variable. Variables often
correspond to the letters used in algebra and stand in for numerical quantities, such as
X, Y, and Z and a, b, and c. If you need to keep track of information, such as the player
name, score, position, orientation, ammo, health, and a multitude of other types of

variable will be your friend. A variable
represents a single unit of information. This means that multiple variables are needed

or kind. For example, the player's name represents a sequence of letters, such as "John",
"Tom", and "David". In contrast, the player's health refers to numerical data, such as
100 percent (1) or 50 percent (0.5), depending on whether the player has sustained
damage. So, each variable necessarily has a data type. In C#, variables are created

, which declares three
different variables with class scope, each of a unique type. The word "declare" means
that we, as programmers, are telling the C# compiler about the variables required:

Unity C# Refresher

[14]

Variable data types

Each variable has a data type. A few of the most common ones include
, , , , and . Here, are a few examples

of these types:
 (integer or whole number) = -3, -2, -1, 0, 1, 2, 3…

 (floating point number or decimal) = -3.0, -2.5, 0.0, 1.7,
3.9…

 (Boolean or) = or (1 or 0)
 (string of characters) = "hello world", "a", "another

word…"
 (a position value) = (0, 0, 0), (10, 5, 0)…

Notice from lines 06-08 of code sample 1-1 that each variable is assigned a starting
value, and its data type is explicitly stated as (integer), , and ,
which represent the points in a 3D space (as well as directions, as we'll see). There's no
full list of possible data types, as this will vary extensively, depending on your project
(and you'll also create your own!). Throughout this book, we'll work with the most
common types, so you'll see plenty of examples. Finally, each variable declaration line
begins with the keyword public. Usually, variables can be either or
(and there is another one called , which is not covered here).The
variables will be accessible and editable in Unity's Object Inspector (as we'll see soon,
you can also refer to the preceding screenshot), and they can also be accessed by
other classes.

Variables are so named because their values might vary (or change) over time.
Of course, they don't change in arbitrary and unpredictable ways. Rather, they
change whenever we explicitly change them, either through direct assignment in
code, from the Object Inspector, or through methods and function calls. They can
be changed both directly and indirectly. Variables can be assigned values directly,
such as the following one:

They can also be assigned indirectly using expressions, that is, statements whose

variable as follows:

Chapter 1

[15]

Variable scope

Each variable is declared with an implicit scope. The scope determines

a variable can be successfully referenced and accessed. Scope is
determined by the place where the variable is declared. The variables
declared in code sample 1-1 have class scope, because they are declared
at the top of a class and outside any functions. This means they can
be accessed everywhere throughout the class, and (being public) they
can also be accessed from other classes. Variables can also be declared

their scope is restricted to the function, that is, a local variable cannot
be accessed outside the function in which it was declared. Classes and
functions are considered later in this chapter.
More information on variables and their usage in C# can be
found at

.

Conditional statements
Variables change in potentially many different circumstances: when the player
changes their position, when enemies are destroyed, when the level changes, and so
on. Consequently, you'll frequently need to check the value of a variable to branch the
execution of your scripts that perform different sets of actions, depending on the value.
For example, if reaches 0 percent, you'll perform a death sequence, but
if is at 20 percent, you might only display a warning message. In this

C# offers two main conditional statements to achieve a program branching like this.
These are the statement and the statement. Both are highly useful.

The if statement
The statement has various forms. The most basic form checks for a condition
and will perform a subsequent block of code if, and only if, that condition is .
Consider the following code sample 1-2:

Unity C# Refresher

[16]

The preceding code is executed like all other types of code in Unity, by pressing the
Play
on an object in the active scene. The statement at line 18 continually checks the

 class variable for its current value. If the variable is
exactly equal to () , then the code inside the braces (in lines 19–21) will be
executed. This works because all conditional checks result in a Boolean value of either

 or ; the conditional statement is really checked to see whether the queried
condition () is . The code inside the braces can, in theory,
span across multiple lines and expressions. However, here, there is just a single line
in line 20: the Unity function outputs the Player has full health string to
the console, as shown in the following screenshot. Of course, the statement could
potentially have gone the other way, that is, if was not equal to
(perhaps, it was or), then no message would be printed. Its execution always
depends on the previous statement evaluating to .

Chapter 1

[17]

The Unity Console is useful for printing and viewing debug messages

More information on the statements, the statement, and their usage in C#
can be found online at

.

Unity Console

As you can see in the preceding screenshot, the console is a debugging
tool in Unity. It's a place where messages can be printed from the code
using the statement (or the function) to be viewed by
developers. They are helpful to diagnose issues at runtime and compile
time. If you get a compile time or runtime error, it should be listed in
the Console tab. The Console tab should be visible in the Unity Editor
by default, but it can be displayed manually by selecting Console in the
Window
on the function can be found at

.

), as we did in
 and operators to check whether a variable

operator to check whether a variable is not equal to another value. Further, you
can even combine multiple conditional checks into the same statement using
the (AND) operator and the (OR) operator. For example, check out the
following statement. It performs the code block between the braces only if the

 variable is between and and is not equal to , as shown here:

Unity C# Refresher

[18]

The if-else statement

One variation of the statement is the statement. The
statement performs a code block if its condition evaluates to .
However, the statement extends this. It would perform
an code block if its condition is and a code block if its
condition is :

The switch statement
As we've seen, the
condition is or
The statement, in contrast, lets you check a variable for multiple possible
conditions or states, and then lets you branch the program in one of many possible
directions, not just one or two as is the case with statements. For example, if
you're creating an enemy character that can be in one of the many possible states of
action (, , , , and so on), you'll probably need to branch your

 keyword is used to
exit from a state returning to the end of the statement. The following code
sample 1-3 handles a sample enemy using enumerations:

Chapter 1

[19]

Unity C# Refresher

[20]

Enumerations

This line 07 in code sample 1-3 declares an enumeration (enum) named
. An enum is a special structure used to store a range of

potential values for one or more other variables. It's not a variable itself
per se, but a way of specifying the limits of values that a variable might
have. In code sample 1-3, the variable declared in line
10 makes use of . Its value can be any valid value from
the enumeration. Enums are a great way of helping you

series of options.

Another great
appear as selectable options from drop-down boxes in the Object Inspector,
as shown in the following screenshot:

Enumerations offer you drop-down options for your variables from the Object Inspector

More information on enums and their usage in C# can be found online at
.

The following are the comments for code sample 1-3:

Line 20: The statement begins. Parentheses, , are used to select
the variable whose value or state must be checked. In this case, the

 variable is being queried.

Line 22 statement. The
following block of code (lines 24 and 25) will be executed if the
variable is set to . Otherwise, the code will be ignored.

Chapter 1

[21]

Lines 30 and 31: Here, two case statements follow one another. The code
block in lines 33 and 34 will be executed if, and only if, is
either or .

Line 38: The default statement is optional for a statement. When
included, it will be entered if no other case statements are . In this
case, it would apply if is .

Lines 27, 36, and 44: The statement should occur at the end of a case
statement. When it is reached, it will exit the complete statement to
which it belongs, resuming program execution in the line after the
statement, in this case, line 45.

More information on the statement and its usage in
C# can be found at

.

Arrays
Lists and sequences are everywhere in games. For this reason, you'll frequently need
to keep track of lists of data of the same type: all enemies in the level, all weapons
that have been collected, all power ups that could be collected, all spells and items
in the inventory, and so on. One type of list is the array. Each item in the array is,
essentially, a unit of information that has the potential to change during gameplay,
and so a variable is suitable to store each item. However, it's useful to collect together
all the related variables (all enemies, all weapons, and so on) into a single, linear, and
traversable list structure. This is what an array achieves. In C#, there are two kinds of

possible entries in memory, decided in advance, and this capacity remains unchanged
throughout program execution, even if you only need to store fewer items than the
capacity. This means some slots or entries could be wasted. Dynamic arrays might
grow and shrink in capacity, on demand, to accommodate exactly the number of
items required. Static arrays typically perform better and faster, but dynamic arrays
feel cleaner and avoid memory wastage. This chapter considers only static arrays,
and dynamic arrays are considered later, as shown in the following code sample 1-4:

Unity C# Refresher

[22]

In code sample 1-4, line 07 declares a completely empty array of , named
. To create this, it uses the syntax after the data type to

designate an array, that is, to signify that a list of is being declared as
opposed to a single . Here, the declared array will be a list of all objects
in the scene. It begins empty, but you can use the Object Inspector in the Unity Editor
to build the array manually by setting its maximum capacity and populating it with
any objects you need. To do this, select the object to which the script is attached in
the scene and type in a Size value for the My Objects
the array. This should be the total number of objects you want to hold. Then, simply
drag-and-drop objects individually from the scene hierarchy panel into the array
slots in the Object Inspector to populate the list with items, as shown here:

Building arrays from the Unity Object Inspector

Chapter 1

[23]

 function instead of
using the Object Inspector. This ensures that the array is constructed as the level

The following are the comments for code sample 1-5:

Line 10: The function is executed at level startup. Functions are
considered in more depth later in this chapter.

Line 13: The keyword is used to create a new array with a capacity
of three. This means that the list can hold no more than three elements at
any one time. By default, all elements are set to the starting value of
(meaning nothing). They are empty.

Unity C# Refresher

[24]

Line 15
in the scene. Two important points should be noted here. First, elements in
the array can be accessed using the array subscript operator . Thus, the

 can be accessed with . Second, C#

, the next is at , the next at , and so on. For the three-element
array, each element can be accessed with , ,
and . Notice that the last element is and not .

Lines 18 and 19: Elements and of the array are populated
with objects using the function . This searches the active

 array. If no
object of a matching name is found, then is inserted instead.

More information on arrays and their usage in C# can be found online at
.

Loops
Loops are one of the most powerful tools in programming. Imagine a game where
the entire level can be nuked. When this happens, you'll want to destroy almost
everything in the scene. Now, you can do this by deleting each and every object
individually in code, one line at a time. If you did this, then a small scene with only
a few objects would take just a few lines of code, and this wouldn't be problematic.
However, for larger scenes with potentially hundreds of objects, you'd have to write
a lot of code, and this code would need to be changed if you altered the contents of
the scene. This would be tedious. Loops can simplify the process to just a few lines,
regardless of scene complexity or object number. They allow you to repeatedly
perform operations on potentially many objects. There are several kinds of loops
in C#. Let's see some examples.

The foreach loop
Perhaps, the simplest loop type in C# is the loop. Using , you can
cycle through every element in an array, sequentially from start to end, processing
each item as required. Consider the following code sample 1-6; it destroys all

 from a array:

Chapter 1

[25]

Downloading the example code

 for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit and register to

The loop repeats the code block between lines 14–17, once for each element
in the array . Each pass or cycle in the loop is known as an iteration. The

more processing time. The loop also features a local variable . This is declared
in the statement in line 13. This variable stands in for the selected or active
element in the array as the loop passes each iteration, so

element on the second iteration,
and so on.

More information on the loop and its usage in C# can
be found at

.

Unity C# Refresher

[26]

The for loop
The loop is handy when you need to iterate through a single array
sequentially from start to end, processing each element one at a time. But

a loop backwards from the end to the start, you might need to process two arrays
of equal length simultaneously, or you might need to process every alternate array

 loop, as
shown here:

The following are the comments for the preceding code snippet:

Here, the loop traverses the array backwards from the end
to the start, deleting each in the scene. It does this using a local
variable . This is sometimes known as an variable, because it
controls how the loop progresses.

The loop line has the following three main parts, each separated by a
semicolon character:

 (the last element

element is always . This ensures that loop
iteration begins at the array end.

 : This expression indicates the condition when the loop
should terminate. The variable acts like a countdown variable,
decrementing backwards through the array. In this case, the loop
should end when is no longer greater than or equal to , because

 represents the start of the array.

 : This expression controls how the variable changes on each
iteration of the loop moving from the array end to the beginning.
Here, will be decremented by one on each iteration, that is,
a value of will be subtracted from on each pass of the loop.
In contrast, the statement will add .

During the loop, the expression is used to access
array elements.

Chapter 1

[27]

More information on the loop and its usage in C# can be found at
.

The while loop
Both the and loops were especially useful when cycling through an array,

 loop, in contrast, is useful
to continually .
For example, if you must deal damage to the player as long as they're standing on
hot lava or continually move a vehicle until the breaks are applied, then a
loop could be just what you need, as shown in the following code sample 1-7:

Unity C# Refresher

[28]

ToString

Many classes and objects in Unity have a function (see line
16 of code sample 1-7). This function converts the object, such as an
integer (whole number), to a human-readable word or statement that
can be printed to the Console or Debugging window. This is useful
for printing objects and data to the console when debugging. Note that
converting numerical objects to strings requires an implicit conversion.

The following are the comments for code sample 1-7:

Line 13 begins the loop with the condition that it repeats until the
integer variable exceeds or equals 5

The code block between lines 15 and 19 is repeated as the body of the
 loop

Line 19 increments the variable on each iteration

The result of code sample 1-7, when executed in the game mode, will be to print

following screenshot:

Printing messages to Console in a while loop

More information on the loop and its usage in C# can be found at
.

Chapter 1

[29]

One danger of using loops, especially

the application or even worse, causing a complete system crash! Often, Unity will
catch the problem and exit but don't rely on this. For example, removing line 19 of
the code sample 1-7 would

 loop condition,

your game, so be sure to avoid them:

you need for your game under the right conditions! If you need a moving platform
to travel up and down endlessly, a magical orb to continually spin round and round,

provided it's implemented appropriately. Later in this book, we'll see examples

crashes, stalls, and performance issues, so take care. In this book, we'll see good
practices for creating loops.

Functions
We already used functions in this chapter, such as the and functions.
However, now, it's time to consider them more formally and precisely. In essence, a

which is given a collective name and can be executed on demand, each line of the
function being executed in sequence. When you think about the logic of your game,
there are times when you need to perform some operations repeatedly on your

consolidate the recyclable code into a function that can be executed by a name when
you need it, as shown in the following code sample 1-8:

Unity C# Refresher

[30]

Chapter 1

[31]

The following is the breakdown of the code present for code sample 1-8:

Line 08: A private, integer class variable is declared to keep track
of a sample score value. This variable will be used later in the function

.

Lines 11, 23, and 28: The class has three functions (sometimes
called methods or member functions). These are , , and

. and are special functions that Unity provides,
as we'll see shortly. is a custom function for .

Line 28: The function represents a complete block of code

the game score must change. When called, the code block (lines 29–38) will
be executed sequentially. In this way, functions offer us code recyclability.

Lines 14-19: The function is called several times during the
 function. For each call, the execution of the function pauses

until the function completes. At this point, the execution
resumes in the next line.

Line 28: accepts two parameters or arguments. These are
an integer and a Boolean . Arguments act
like inputs we can plug in to the function to affect how they operate. The

 variable expresses how much should be added to the current
 variable, and determines whether the variable

should be shown in the Console window when the function is executed.
There is theoretically no limit to the number of arguments a function can
have, and a function can also have no arguments at all, such as the
and functions.

Lines 31–34: Here, the score is actually updated and printed to Console,
if required. Notice that the argument has a default value
of already assigned to the function declaration in line 28. This makes
the argument optional whenever the function is called. Lines 14, 15, and 16
explicitly override the default value by passing a value of . Line 19,
in contrast, omits a second value and thereby accepts the default of .

Unity C# Refresher

[32]

Lines 28 and 37: The function has a return value, which is a

. This means on exiting or completion, the function will output an integer.
The integer, in this case, will be the current . This is actually output in
line 37 using the statement. Functions don't have to return a value,
it's not essential. If no return value is needed, the return type should be

 as with and .

More information on functions and their usage in C# can be found at
.

Events
Events are essentially functions used in a distinctive way. Both the and

 functions, which we have already seen, would more accurately be described
 are functions called to notify an object that something

has died, the player has jumped, and others. In being called at these critical times,
they offer objects the chance to respond if necessary. The function is called

 function is also called automatically, once on each frame. The function,

and the function on each frame many times per second. The function
is especially useful, therefore, to achieve motion and animation in your games. Refer
to code sample 1-9, which rotates an object over time:

Chapter 1

[33]

Line 15 in code sample 1-9 is called once per frame. It continually rotates an object 2
degrees around the y axis. This code is frame rate dependent, which means that it'll
turn objects faster when run on machines with higher frame rates, because
will be called more often. There are techniques to achieve frame rate independence,
ensuring that your games perform consistently across all machines, regardless of the

your game directly from the Unity Editor Game tab. Select the Game tab and click
on the Stats button in the top-right hand corner of the toolbar. This will show the
Stats panel, offering a general, statistical overview of the performance of your game.
This panels displays the game frames per second (FPS), which indicates both how
often is called on your objects and the general performance of your game on

problem. Strive for FPS rates of 30 or above. Refer to the following screenshot to
access the Stats panel:

Accessing the Stats panel for the Game tab to view FPS

There are too many event types to list comprehensively. However,
some common events in Unity, such as and , can
be found in the class. More information on

 is available at
.

Unity C# Refresher

[34]

Classes and object-oriented
programming
A class is an amalgam of many related variables and functions, all brought together
into a self-contained unit or "thing". To put it another way, if you think about a game

orcs, trees, houses, the player, quests, inventory items, weapons, spells, doorways,
objects

in the real world too. However, crucially, each of these things is an independent

and separate from a tree. Each of these things, then, can be thought of as an object—a

example, we can identify the properties and behaviors in this object. The orc will
have a position, rotation, and scale; these correspond to variables.

The orc might have several kinds of attacks too, such as a melee attack with an axe
and a ranged attack with a crossbow. These attacks are performed through functions.
In this way, a collection of variables and functions are brought together into a
meaningful relationship. The process of bringing these things together is known as
encapsulation. In this example, an orc has been encapsulated into a class. The class,
in this case, represents the template for a general, abstract orc (the concept of an
orc). Objects, in contrast, are particular, concrete instantiations of the class in

 as an object in
the level, add it to . As we've seen, classes are attached to game objects
as components. Components are objects, and multiple components together form a

. Refer to code sample 1-10 for a sample class stub:

Chapter 1

[35]

The following are the comments for code sample 1-10:

Line 04: Here, the class .
This class derives from . The next section of this chapter
will consider inheritance and derived classes further.

Lines 09-19: Several variables and an enum are added to the class.
The variables are of different types, but all are related to the concept of
an orc.

Lines 35-45: The orc has two methods: and .

More information on classes and their usage in C# can be found at
.

Unity C# Refresher

[36]

Classes and inheritance
Imagine a scenario where you create an class to encode an orc object in the
game. Having done so, you then decide to make two upgraded types. One is an Orc
Warlord, with better armor and weapons, and the other is an Orc Mage who, as the
name implies, is a spell caster. Both can do everything that the ordinary orc can do,
but more besides. Now, to implement this, you can create three separate classes, ,

, and , by copying and pasting common code between them.

The problem is that as Orc Warlord and Orc Mage share a lot of common ground and
behaviors with orc, a lot of code will be wastefully copied and pasted to replicate the
common behaviors. Furthermore, if you discovered a bug in the shared code of one

both tedious and technically dangerous, as it risks wasting time, introducing bugs,
and causing needless confusion. Instead, the object-oriented concept of inheritance can
help us. Inheritance allows you to create a completely new class that implicitly absorbs
or contains the functionality of another class, that is, it allows you to build a new class
that extends an existing class without affecting the original one. When inheritance
happens, two classes are brought into a relationship with each other. The original
class (such as the class) is known as the case class or ancestor class. The new class
(such as the Orc Warlord or Orc Mage), which extends on the ancestor class, is called a
super class or derived class.

More information on inheritance in C# can be found at

.

. This means every new script contains all the
functionality and has the potential to go beyond, based on the additional code
that you add. To prove this, refer to the following code sample 1-11:

Chapter 1

[37]

The following are the comments for code sample 1-11:

Line 04: The class is derived from
however, substitute for almost any valid class name from
which you want to derive.

Line 10: Here, the variable name is assigned a string during the event.
However, notice that the name is not explicitly declared as a variable anywhere
in the were a completely new class with

 derives from , it automatically inherits all of its
variables, allowing us to access and edit them from .

When to inherit

Only use inheritance where it's really appropriate; otherwise, you'll
make your classes large, heavy, and confusing. If you're creating
a class that shares a lot of common functionality with another and
it makes sense to establish connection between them, then use
inheritance. Another use of inheritance, as we'll see next, is when
you want to override specific functions.

Classes and polymorphism
To illustrate polymorphism in C#, let's start by considering the following code
sample 1-12. This sample doesn't demonstrate polymorphism immediately but
represents the start of a scenario where polymorphism will be useful, as we'll see.

non-player character (NPC) in
a generic RPG game. The class is intentionally not comprehensive and features basic
variables that only mark the starting point for a character. The most important thing
here is that the class features a function, which should be invoked
when the player engages the NPC in conversation. It displays a generic welcome
message to Console as follows:

Unity C# Refresher

[38]

instantiated from will offer exactly the same greeting when
is invoked: men, women, orcs, and everybody. They'll all say the same thing, namely,

. This is neither believable nor desirable. Perhaps, the most
elegant solution would be to just add a public string variable to the class, thus allowing

let's try a different solution. We could create several additional classes instead, all
derived from , one for each new NPC type and each offering a unique
greeting from a function. This is possible with , because

 has been declared using the virtual keyword (line 13). This allows
derived classes to override the behavior of in the class.
This means the function in derived classes will replace the behavior of
the original function in the base class. Such a solution might look similar to the code
sample 1-13:

Chapter 1

[39]

Unity C# Refresher

[40]

With this code, some improvement is made, that is, different classes are created for
each NPC type, namely, , , and . Each
offers a different greeting in the function. Further, each NPC inherits
all the common behaviors from the shared base class . However, a
technical problem regarding type

enjoying a tankard of grog. As the player enters the tavern, all NPCs should offer
their unique greeting. To achieve this functionality, it'd be great if we could have
a single array of all NPCs and simply call their function from a loop,
each offering their own greeting. However, it seems, initially, that we cannot do this.
This is because all elements in a single array must be of the same data type, such as

 or . We cannot mix types for the same array. We
could, of course, declare multiple arrays for each NPC type, but this feels awkward
and doesn't easily allow for the seamless creation of more NPC types after the array

solution. This is where polymorphism comes to the rescue. Refer to the following
 class in

Chapter 1

[41]

The following are the comments for code sample 1-14:

Line 07: To keep track of all NPCs in the tavern, regardless of the NPC
type, a single array () of type is declared.

Lines 16-20: The array is populated with multiple NPCs of
different types. This works because, though they are of different types,
each NPC derives from the same base class.

Line 27: The function is called at level startup.

Line 34: A loop cycles through all NPCs in the array,
calling the function. The result is shown in the following
screenshot. The unique messages for each NPC are printed instead of

 allows the
overridden method in the derived classes to be called instead.

Polymorphism produces a backwards transparency between data types that share a common lineage

Unity C# Refresher

[42]

More information on polymorphism in C# can be found at
.

C# properties
When assigning values to class variables, such as , there are a
couple of important things to take care of. First, you'll typically want to validate
the value being assigned, ensuring that the variable is always valid. Typical cases
include clamping an integer between a minimum and maximum range or allowing
only a limited set of strings for a string variable. Second, you might need to detect
when a variable changes, initiating other dependent functions and behaviors. C#
properties let you achieve both these features. Refer to the following code sample
1-15, which limits an integer between and and prints a message to the console
whenever it changes:

Chapter 1

[43]

The following are the comments for code sample 1-15:

Line 10: A public integer property is declared. This property is not an
independent variable but simply a and interface for
the private variable , declared in line 34.

Line 13: When is used or referenced, the internal function
is called.

Line 14: When is assigned a value, the internal function is called.

Line 25: The function features an implicit argument value that represents
the value to be assigned.

Line 28: The event is called when the variable is
assigned a value.

Unity C# Refresher

[44]

Properties and Unity

Properties are useful to validate and control the assignment of values
to variables. The main problem with using them in Unity concerns their
visibility in the Object Inspector. Specifically, C# properties are not
shown
in the editor. However, community-made scripts and solutions are
available that can change this default behavior, for example exposing
C# properties. These scripts and solutions can be found at

.

More information on Properties in C# can be found at
.

Commenting
Commenting is the practice of inserting human readable messages into your code,
purely for annotation, description, and to make things clearer to the reader. In C#,

 symbol, and multiline comments begin
with and end with . Comments are used throughout the code samples in this
book. Comments are important, and I recommend that you get into the habit of

in your team (if you work with others), but you too! They help remind you of what
your code is doing when you return to it weeks or months later, and they even
help you get clear and straight about the code you're writing right now. Of course,

comments too to describe functions and

working in teams. Let's see how to use this. Start by writing your function or any
function, as shown in the following screenshot:

Writing a function (AddNumbers) in MonoDevelop (preparing for code commenting)

Chapter 1

[45]

Then insert three forward-slash characters on the line above the function title (),
as shown in the following screenshot:

ready for you to complete with appropriate descriptions. It creates a summary
section that describes the function generally and param entries for each argument
in the function, as shown in the following screenshot:

Unity C# Refresher

[46]

Be sure to give each parameter an appropriate comment too, as shown in the
following screenshot:

Now, when calling the function elsewhere in code, the code-completion
pop-up helper will display both the summary comment for the function as well as
the parameter comments' context sensitively, as shown here:

Viewing comments when making function calls

Chapter 1

[47]

Variable visibility

variables inside the Object Inspector in the Unity Editor, allowing you to edit and
preview variables, even at runtime. This is especially convenient for debugging.
However, by default, the Object Inspector doesn't expose private variables. They are
typically hidden from the inspector. This isn't always a good thing because there are
many cases where you'll want to debug or, at least, monitor private variables from
the inspector without having to change their scope to public. There are two main
ways to overcome this problem easily.

Debug mode. To do this, click
on the context menu icon in the top-right corner of the Inspector window and select
Debug from the context menu, as shown in the following screenshot. When Debug
is selected, all the public and private variables for a class will show.

Enabling the Debug mode in the Object Inspector will show all the variables in a class

you mark explicitly as wanting to display in the Object Inspector. These will show
in both the Normal and Debug modes. To achieve this, declare the private variable
with the attribute . C# attributes are considered later in this book,
as shown here:

Unity C# Refresher

[48]

 the attribute to hide a
global variable from the inspector.

The ? operator
The
shorthand notation is available for writing simpler ones, without resorting to the
full multiline statements. This shorthand is called the operator. The basic
form of this statement is as follows:

Let's see the operator in a practical example as shown here:

The operator is useful for shorter statements, but for long and more
intricate statements, it can make your code harder to read.

Chapter 1

[49]

The class included in the Unity API, which acts as the base class for
most new scripts, offers the and methods. Using
these, you can easily execute functions by name on all components attached to an
object. To invoke a method of a class, you typically need a local reference to that
class to access and run its functions as well as to access its variables. However, the

 and functions let you run functions using string
values by simply specifying the name of a function to run. This is very convenient

see later. Refer to the following code sample 1-16:

The following are the comments for code sample 1-16:

Line 09: is called to invoke the function .
 will be invoked not only on this class but on all other

components attached to , if they have a
member, including the component as well as others.

Line 09: The parameter
 is not present on a component.

on to the next calling wherever it is found.

Unity C# Refresher

[50]

The term function and member function mean the same thing when
the function belongs to a class. A function that belongs to a class is
said to be a member function.

We've seen that
attached to a single . incorporates the
behavior and goes a stage
components on and then repeats this process recursively for all child
objects in the scene hierarchy, cascading downwards to all children.

More information on and can be found at

 and
.

 and are effective ways
to facilitate inter-object communication and inter-component
communication, that is, it's a great way to make components

and recycle functionality. However, both and
 rely internally on a C# feature known as

. By invoking a function using a string, your application

for the intended function to run. This process is computationally
expensive compared to running a function in the normal way.

and , especially during events or
other frame-based scenarios, as the impact on performance can be

might be times when their use is rare, infrequent, and convenient
and has practically no appreciable impact. However, later chapters
in this book will demonstrate alternative and faster techniques using
delegates and interfaces.

If you'd like more information on C# and its usage before proceeding further
with this book, then I recommend the following sources:

Learning C# by Developing Games with Unity 3D Beginner's Guide, Terry
Norton, Packt Publishing

Chapter 1

[51]

, Alan Thorn
(3DMotive video course found at

)

Pro Unity Game Development with C#, Alan Thorn, Apress

The following are a few online resources:

Summary

the most common and widely-used language features for game development.
Later chapters will revisit some of these subjects in a more advanced way, but
everything covered here will be critical for understanding and writing the code
featured in subsequent chapters.

