Invite Your Characters
to Unity

This chapter is all about taking your modeled, rigged, and animated characters from
your 3D modeling software and importing them into Unity.

In this chapter, we'll cover the following topics:

* Exporting character models from a 3D software package

* Configuring generic and humanoid animation types

* Creating a character avatar

* Getting your character ready for the Mecanim
By the end of this chapter, you will learn about the character import process,
its benefits, and how to deal with any issues. The example in this book features

a specific 3D modeling software package; however, even though the steps might
differ, the general process is the same, no matter what you choose to go with.

[111]

Invite Your Characters to Unity

Get your character ready

I have to tell you—the way you go about rigging and animating your character
can, and most likely will, vary from the example shown here. It may depend on
the software you are using, your needs, or your devotion to certain standards.
That being said, most paths will allow you to bake animations and export them

in the . fbx format. You don't have to do that though! If the Unity supports the
native file extension of your software of choice (at the moment Unity recognizes
the 3D Max, Maya, and Blender file formats) you should be able to import it as

is and use it in Unity (I am personally not familiar with every software program
there is for animation so I can't say for sure that you won't encounter any problems
along the way). However, by baking animations and exporting them in more or less
generic formats, we will be able to get on the same page regardless of where we've
started from.

Exporting from Blender

Our character is fully modeled, rigged, skinned, and animated in Blender.

Chapter 5

Model overview

This file contains all of the information about our character, there are no references of
any kind, and all animations are done on a single timeline.

Armature

The file is named Robot . fbx and can be found inside the Chapter 5 folder of the
complimentary files.

Apart from the geometry and the skeleton, it also contains a pair of IK handles

for legs and arms. In the end, we have a very basic character ready to be used for
video games. You can try to challenge yourself and bring a high-poly model with a
fancy rig and a complex set of animations, but that will only equate to doing extra
tweaking in Unity further down the line and there are certain limitations posed by
Unity that will encourage you to keep it as optimal as possible.

Let's talk about the skeleton. In order for your character to be working in Unity, you
don't have to go out of your way and force a certain bone topology. However, if you
are building a humanoid, it should have a bone topology similar to humanoids —no
three legged/ four armed creatures can actually be considered humanoids by Unity
standards, but can still be imported and used.

The skeleton structure of our character is not a template by any stretch of the
imagination and you don't have to follow it; work with what you feel comfortable with
and I'll show you how to communicate your preference to Unity later in this chapter.

[113]

Invite Your Characters to Unity

Exporting as FBX

In this section we are going to look into how to export the character into FBX
using Blender, a .blend file can be found in the same folder as the Robot . £bx.
This character is ready to be exported. There are a few general things to consider
before we get it into Unity:

* Character stands solidly on the ground at 0,0,0 coordinates

* Character is scaled properly

* Check your T-pose to make sure that the palms are facing the ground
* Check your normals to make sure they are facing the right direction

1 Unity unit equals to 1 meter; for better optimization and smoother
o import make sure to scale your character in the 3D app, accordingly.

Unity supports the .blend file extension; therefore, we can simply import it directly
or export it to the . £bx file format in the following manner:

1. InBlender, navigate to File | Export | FBX (Import-Export:FBX format
add-on needs to be enabled).

2. In the options, check the Baked Animation box.
3. Hit Export.

¥ Export FBX
Operator Presets S

FEX 7.4 binary H

-Z Forward
YUp

Apply Transform

™ Apply Modifiers

Chapter 5

Your file can now be safely imported into Unity.

| ® Robot
W Robot
W\ Robot_Armature
k2| Robot
n Robot_Armature|Robot
& RobotAvatar

You don't have to get rid of curve controls after baking animations for exporting;
they won't cause any problems and won't be visible in the game.

Importing referenced animations

For those of you who use referenced animations — Unity's got you covered.

Here is another example of a file that is referencing a different file that contains
geometry and rig, but no animations. This reference file, on the other hand, contains
our arm animation and a reference, nothing more. This is a different character and
this time in Maya.

7= Character

&3] * E.-" Root

Here is the process of getting this animation into Unity assuming that you've already
imported your referenced model in the . £bx format:

1. Bake animation by navigating to Edit | Keys | Bake simulation.

2. Select character's entire skeleton (every node).

3. Export that in . fbx format by going File | Export Selected (you'll only
need your skeleton, nothing else).

4. Name the file Character animationPass@ArmAnim.fbx.

[115]

Invite Your Characters to Unity

5. Import that into Unity, in the same folder as the referenced model.

V& Character
¥ Character_animationPass
‘i Character
[Root
|5l Character
I Take 001
o Character_animationPassAvatar
¥ Character_animationPass@Armanim

] aﬂlnnt
] lk

= Character_animationPass@ArmAnimAyatar

Unity will automatically assign the referenced model to the animation and will
allow us to use it with our character.

The key here is the file referencing the model, and the correct naming convention for
the animation file, which should be as follows: referencename@animat ionname.
fbx. In this case, our original file was named Character_animationPass and then we
named our animation ArmAnim, which you will

see in the hierarchy window in Unity.

Rinse and repeat for other animations if that is your usual working pipeline.
The major benefit of this approach is being able to add as many animations
as you like after importing the model into Unity.

We've covered the basics behind the character export from one of the 3D applications,
but there are others with their unique nuances. To find out how to export from a
specific 3D app, visit the Unity official documentation, where you can read about
importing objects from a specific app at:

http://docs.unity3d.com/Manual /HOWTO- importObject . html.

If you are using Blender and Rigify for character rigging, the following article on
how to import a Rigify rig into Unity should interest you:

http://docs.unity3d.com/Manual/BlenderAndRigify.html.

[116]

Chapter 5

Configuring a character in Unity

We will continue working with the character that was imported with embedded
animations.

With the character imported, we go right to the Rig tab of Import Settings to
explore the remaining two animation types: Generic and Humanoid. As mentioned
in previous chapters, there are two animation types that are required in order to
use Mecanim, a powerful animation control tool introduced in the 4th version of
Unity. I can't stress enough, how awesome Mecanim is; this system allows you to
significantly improve your development pipeline and reduce the amount of code

to control animations, but more about that in the next chapter. Right now we need
to figure out how to set up the model to be used by this system.

Generic and humanoid — what's the
difference?

This is exactly how it sounds — Generic can be used for everything, from a dragon
to a toaster, whereas, Humanoid can only be used on the characters that have the
humanoid bone topology.

Generic Animation Type

Generic is the easier type and you might end up using and relying on it most of the
time especially when the humanoid doesn't work for you. So let's get the easier part
out of the way and look at the following:

Model -m Animations

Animation Type | Generic £l
avatar Definition | Create From This Model &
Root node | Mone 3 |

Optimize Game Objects ||

Revert

* Avatar Definition: Generic Animation Type doesn't allow us to make
full use of Character Avatar, so leave it at the default; as Create From
This Model.

* Root node: This is the node that contains animation translation;
by selecting the node from the drop-down menu, you will enable
the Root Motion parameters in the Animation tab. For now set
Root node to Robot from the drop down menu.

[117]

Invite Your Characters to Unity

* Optimize Game Objects: By default, Unity creates an empty GameObject for
every transform in your character, checking this box allows us to prevent this
from happening and increase the overall performance, since Unity doesn't
have to deal with those extra transforms.

Thankfully, you can still create some of these transforms on demand if you need to
reference them through the code. Select the transform from the hierarchy by clicking
on the + sign of the Extra Transforms to Expose list which appears when you've
selected the Optimize Game Objects option.

Optimize Game Objects[¥

E_xtra Transforms to Expose
Hip

B,
Robot
Robot_Armature

Robot_Armature 4

Now let's move to the Animation tab and look at how the Clip options changed
since we last used them for Legacy Animation.

E Robot_Armature|Robot_ArmatureAction g #
Length 1.333 24 FPS
|§o:oo, oms, joiiz CECH j1:08 (1:0p|
Start 0 | End 32
Loop Time -

Leap Pose

Cycle Offset 0

Root Transform Rotation
Bake Into Pose -
Based Upon (at Stal Root Mode Rotation %
Offset 0

Root Transform Position (1)
Bake Into Pose |-
Based Upon | Qriginal
Offset 0

Root Transform Position (XZ)
Bake Into Pose -
Based Upon | Root Mode Position 4

= Mask

= Curves
= Events
* Motion

| Ravert || apply |

[118]

Chapter 5

As you can see, there is a significant increase in the number of options, as follows:

Loop Time: Checking this option will make our clip play through till the end
and then restart from the beginning. This also enables the following options:

o

Loop Pose: This makes your animation loop seamlessly. However,
this only works well if the starting pose matches the end pose; it will
take the difference and will make a blend throughout the clips length
to make them match.

° Cycle Offset: This is the offset to the cycle of a looping animation.
Root Transform Rotation, Root Transform Position (Y), and Root
Transform Position (XZ): These serve a very similar purpose — they prevent
the GameObject from being rotated or translated along the respected axis by
the AnimationClip. In other words, if you don't want your GameObject to be
moved by the animation, check Bake Into Pose in the required category, to
prevent it. They will only appear if you've specified the Root Node in the
Rig tab.

Based Upon: You can choose the GameObjects rotation or position to be
based on the Root Node specified in the Rig tab, or the way you set it up
on exporting, by choosing Original.

Offset: This allows you to add the offset to the rotation or translation of
the GameObject if you chose Root Transform Rotation or Root Transform
Position (Y) to be based on Root Node (the Original values will be taken
from the model).

Mask: This is very simple to understand and use. Let's say you need

to remove a motion from the Neck transform, and its children, in one of
your animations. To do that you, need to go under the transform menu,
and uncheck the Neck transform. If you run the animation now, you will
notice that the Neck transform, and its children, aren't moving. We will
talk about the application of Masks in the next chapter.

Definition: This allows you to choose to, either create the mask from this
specific model, or copy it from another mask.

To create a custom avatar mask for our character, do the following;:

Click on Create from the drop down menu and select Avatar Mask.
Go under the Transform drop down menu of the Avatar Mask.

Drag the RobotAvatar generated by our character model (it can be found
inside the imported Robot model).

Click on the Import skeleton button.

[119]

Invite Your Characters to Unity

This should load all the transforms from our character, into the mask, and allow us to
configure them here, to be assigned to multiple objects with the same bone structure.

) Inspector | o
4 New Avatar Mask [=
i_Openi

* Humanoid
¥ Transfarm

Use skeleton froem | & RobotAvatar [c]

| Import skeleton |

[v robot

M Robot_Armature
M Hip

) ¥ Back

i) ¥ Chest

Events are improved and expanded from the Legacy Animation; now you can
trigger any function on any GameODbject just by filling in the blanks and specifying
the frame on the timeline.

Function MNewEwvent

Float 1]

Int 0

String

Object | None (Object) @

This covers the Animation tab for the Generic Animation Type; we will omit talking
about the Curves and Motion parameters as they aren't required for this example.

Humanoid Animation Type

Imagine yourself in a situation where you have multiple humanoid characters
that require the same animation —sitting, walking, running, and so on; or there is
a specific animation that you would like to reuse on multiple humanoids. Usually,
you would be required to create each animation for every single character, taking
into consideration their body proportions. With Humanoid Animation Type, that
is not the case, you can cut out a lot of steps in your usual animation pipeline by
referencing animations using CharacterAvatars, and tweak them to match and
tailor to any character using a muscle system. Let's take a look at how this is done.

[120]

Chapter 5

Character avatar

First things first, we need to switch our Animation Type of the imported Robot from
Generic to Humanoid, and hit Apply.

=
arimation Type | Humanaid <]

Au.i't._ar Definition | Create From This Model# |

The avatarcan be configured after settings have ‘

been applizd.
i Cunﬁqure...|

Avatar Definition, using the default Create From This Model parameter, will
generate a Robot Avatar for this model automatically, by trying to map the Robot's
skeleton onto the humanoid topology. The key factors in successful mapping are
hierarchy and naming (bone direction and ratio also contribute, however, not as
significantly as those two). The algorithm will search for a bone called Hip, check if
it's a root bone, and which bones are attached to it. So make sure that you're using
proper naming conventions to get the best out of this process.

If the process is successful you'll see a check mark next to the Configure... button,
but regardless, let's click on it and see what has actually happened.

Unity will open a new scene with our character in the center and ask you to save

the current scene; it would be wise to do so.

© Inspector r © Optional Bone [
¥ RobotAvatar @ % | v Bady
o @ Hips [XHip_ °
= @ Spine | A Back (c]
Mapping 18 Chest [AChest °
¥ Left Arm
it Shoulder m Q
@ Upper Arm AL_T (o]
@ Lower Arm :_.LL Forearm | @
@® iand P —
¥ Right Arm
i Shoulder [KNone (Transforr| ©
(&) Upper Arm | AR_Arm | ®
@ Lower Arm [CR_Forearm | ©
@ Hand (c]
¥ Left Leg
@ Upper Leg W (o]
(&) Lower Leg | AL _Shin o
@ Foot @
18 Toes o
¥ Right Leg
@ Upper Leg @
Body (&) Lower Leg |]
(®) Foot | AR_Foot o
ke e
| Mapping '| Pose '|

[121]

Invite Your Characters to Unity

Robot Avatar shows us a humanoid body with bones represented by lined
(mandatory) and dotted (optional) circles. As you can see, all the mandatory
bones were successfully matched, leaving a few optional bones unchecked.

We can check the rest of our bones by switching between body parts at the
right bottom corner (Body, Head, LeftHand, and RightHand).

Here is where it gets interesting. Take a look at the Scene window in our
character model (hitting the Configure... button takes us to a different
scene with our character).

All the bones that were mapped on the avatar successfully, now appear green. Any
additional bones that don't follow the Unity topology standards will be marked as
grey. In order to map the skeleton on the template, Unity will exclude any additional
bones and, as a result, it will not be animated. A very common example of this is,

if you are using the three bone structure for the torso such as the lower back, spine,
and chest, then the spine will be grayed out; however, unlike avatar mask, it doesn't
exclude its children, therefore, chest and its children will animate just fine. This is

a bit unfortunate and there are some things that you need to keep in mind when
creating a skeleton if you wish it to be recognized as a humanoid by Unity.

[122]

Chapter 5

Correct topology

By topology, I mean that the skeleton must have certain bones that follow a strict
hierarchy. Now, that doesn't mean that your character must have a certain skeleton
or bust, you may or may not have certain bones, but there are those that define us
as humanoids and they must exist. Here is the structure skeleton we must respect
in order for our character to be recognized as a humanoid by Unity standards:

* Hips | Upper Leg | Lower Leg | Foot | Toes
* Hips | Spine | Chest | Neck | Head
e Chest | Shoulder | Arm | Forearm | Hand

* Hand | Proximal | Intermediate | Distal

The sad part here is that if you have any extra bones that are not included in

the list, there is no way to add them to the avatar, the list is fixed. Keep in mind,
however, that the humanoid animation type was designed as a compromise based
on numerous humanoid rig standards. If you are using a different standard or have
more bones to increase control and precision, or using the humanoid rig screws in
your animation, then you can always switch to Generic without a need to re-rig
your character.

Wrong topology example

Allow me to illustrate an example how a perfectly fine bone structure created in
Blender can go wrong when viewed in Unity.

Hips

R_Thigh L Thigh

Blender

[123]

Invite Your Characters to Unity

If you look at the image above you'll see that the Hips bone is the only one grayed out
by Unity. That is happening because Hips is a child of the LowerBack bone. This is
where Unity gets confused; it automatically assigns the topmost bone in the hierarchy
to be Hips, searches down the hierarchy for two bones that represent UpperLegs and
finds R_Thigh and L_Thigh (since they are children of the LowerBack child bone, they
meet the requirements and will work just fine). But with our Hips bone from Blender,
Unity will simply ignore it, as well as the animation data associated with it, as if it
doesn't exist.

If you aren't planning on using animation referencing, you may simply ignore

this issue and switch to Generic Animation Type, everything is going to work just
fine there. However, if you do plan to rely on the animation referencing, then the
only way to make it work, will be to go back to Blender, and reparent bones so that
LowerBack is a child of the Hips bone.

Muscles

Before we go into this topic, there is one thing that is vital to proper muscle work,
and that is the T-pose. Make sure that your character was modeled and rigged in

the T-pose; this is very important. If, for any reason, that's not the case with your

character, you can follow these steps:

1. Find the Pose drop down menu at the bottom of the Inspector window
2. Select Enforce T-Pose

With a bit of luck, this will help (note that it's OK to have your character animated
out of it, but the actual rig needs to be in the T-Pose).

The actual muscles in Unity are deceptively easy to use. Think of them as restrains
that you might have already applied during the rigging process. Unity tries to apply
its own settings of how the body parts should bend and twist.

Let's talk about the benefits of it. Imagine that you have an animation that is to be
applied on two characters, one of which is naked and the other one is geared in

tull plate medieval armor. Simply referencing animation won't work, you would
have a naked character looking stiff, or geared with body parts penetrating his own
armor. Muscles allow you to configure their avatars individually, applying different
restrains and making sure that the animations look better on both of them. Don't
expect this system to create miracles and make a full plated guy's backflip look
equally pretty, as it is ridiculous (unless you've designed a specific armor set).

[124]

Chapter 5

As for the actual muscle configuration, it's very intuitive:

Preview

| Muscle Group Preview

| Resetall |

Reset All Preview Values
Open Close

Left Right

Raoll Left Right

In Qut

Rall In Out

Finger Open Close
Finger In Out

Preview

Per-Muscle Settings

._.

.-.

e p—

¥ Body
¥ Spine Front-Back

b Spine Left-Right

b Spine Twist Left-Right
b Head

b Left Arm

b Left Fingers
b Right Arm

» Right Fingers
b Left Leg

b Right Leg

|Additiuna| Settings

i Muscles |

Upper &rm Twist 0.5
Lower Arm Twist 0.5
Upper Leg Twist 0.5
Lower Leg Twist 0.5
Arm Stretch 0.05
Leg Stretch 0.05

Feet Spacing

=}

[Revert || Apply || Done |

The editor is divided into three categories:

Muscle Group Preview: This allows you to test a group of muscles by
applying different motions that may or may not be a part of your animation.

Per-Muscle Settings: This allows you to apply restrains on each individual
muscle (generated from a humanoid skeleton and mapped on a character's
bones). You can dig into hierarchy, specify the range of motion using the slider
on the right, and test it with a slider on the left, under a Preview column.

Additional Settings: This gives you extra options to play with to make sure
that your character animates well.

[125]

Invite Your Characters to Unity

After all the options are set, just click on Apply, then on the Done button, and you
will return to the previous scene.

Adjust character muscles

In the next chapter, we will be importing the locomotion animation package from

the Unity Asset Store. The Humanoid animation type will help us to reference them
onto our character, but to make sure that the character looks fine with a random set of
animations; proper set up of the muscle system is required. Try to edit the muscles and
utilize the motion sliders to restrict character movement in order to avoid geometry
overlapping. In the case of our character, the most problematic area will be the chest
that might cause the hands to crush into the geometry while running. The final result
should have no overlapping geometry while testing the character with the Muscle
Group Preview sliders.

Additional options

The Humanoid animation type further extends our options in the Animation tab.

Animation clips now have additional indicators for Looping, RootTransforms, and
Root Rotation called loop match. These indicators evaluate the difference between
the first and final frame of the animation and suggest whether the Loop Pose option
should be used.

Loop Time L
Loop Fose loop match O
Cycle Offget 1}

Root Transform Rotation
Bake Into Pose L] loop match (L)
Based Upon (at Start) | Body Orientation .
Offset o

Root Transform Position {Y)
Bake Into Pose LJ loop match)
Based Upon | Criginal)
Offset o

Root Transform Position (X2Z)
Bake Into Pose] loop match ()
Based Upaon | Center of Mass % |

Mirrar -

| ;ﬂ;verage \.l'elnci;:',a:- (6_0_04 6004, -000_1) ;
| Average Angular ¥ Speed: 0.0 deg/s

[126]

Chapter 5

The new humanoid animation type also brought a Humanoid setting to a Mask.

Using the humanoid mask, you can enable or disable the different groups of
muscles and IKs to be affected by the animation, and see the result right in the
preview window. As of v5.01, Unity supports only LeftFoot, RightFoot, LeftHand,
and RightHand IK goals for the humanoid animation type.

This concludes this part of the animation pipeline. I hope you've managed to grasp
the essentials of how this system works and what to expect from it.

Summary

Getting your characters from the 3D modeling software to Unity could not have

been easier. Unity's support of popular file formats and additional compatibility with
Blender, Maya, and 3Ds Max creates a very flexible pipeline. Humanoid animation
type is an amazing feature that can speed up your animation process if you are willing
to adjust to its strict standards.

If you still experience strange behavior with your rig after importing it into Unity, try
searching the Unity forums (http://forum.unity3d.com/) for solutions, chances are
other people have experienced the same problem and managed to find a solution to it.

In the following chapter, we will finally take a good look at this new beast called
Mecanim and see how far we can get with all the work we've done up until now.

[127]

