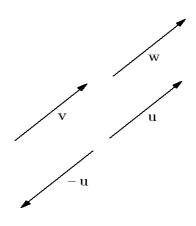
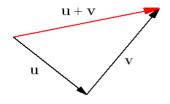
- Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira
- Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno resolvendo os problemas apresentados na bibliografia, sem consulta prévia das soluções propostas, análise comparativa entre as suas resposta e a respostas propostas, e posterior exposição junto do docente de todas as dúvidas associadas.

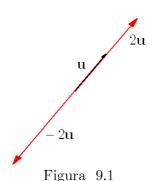
TÓPICOS
Vectores livres.
Vectores em R ² e R ³ .
Vectores em R ⁿ .
Vectores iguais.
Soma de vectores.
Produto de um escalar por um vector.
Notação matricial.
Vector nulo. Vector simétrico.
Propriedades da soma e do produto por um escalar

9. Vectores em Rⁿ.

9.1. Vectores livres.







Recorde do Ensino Secundário que um **vector u** é definido por uma **direcção**, um **sentido** e um **comprimento**, e representa-se geometricamente no plano, \mathbb{R}^2 , ou no espaço, \mathbb{R}^3 , por um **segmento orientado**, que corresponde a um deslocamento de um ponto para outro.

A ponta da seta do vector é chamada ponto final ou **extremidade**, e o outro ponto extremo é chamado ponto inicial ou **origem** do vector.

Segmentos orientados com a mesma direcção, o mesmo sentido e o mesmo comprimento representam o mesmo vector, ou seja, são considerados **vectores iguais**.

No exemplo figurado tem-se

$$\mathbf{u}=\mathbf{v}=\mathbf{w}$$

O vector simétrico de ${\bf u}$ é o vector que tem o mesmo comprimento, a mesma direcção e sentido oposto ao de ${\bf u}$. Representa-se por $-{\bf u}$.

A soma ${\bf u}$ e ${\bf v}$ é o vector ${\bf u}+{\bf v}$ que une a origem de ${\bf u}$ à extremidade de ${\bf v}$ quando se faz coincidir a origem de ${\bf v}$ com a extremidade de ${\bf u}$.

Um vector com comprimento zero e direcção e sentido indeterminados chama-se ${\bf vector}$ nulo e representa-se por ${\bf 0}$.

$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$

VECTORES EM Rº ALGEBRA LINEAR

O produto de um escalar real, α , por um vector u é o vector α u tal que:

Se $\alpha = 0$, $\alpha \mathbf{u}$ é o vector nulo.

Se $\alpha \neq 0$, $\alpha \mathbf{u}$ tem:

- comprimento igual a $|\alpha|$ vezes o comprimento de \mathbf{u} ;
- a direcção de ${\bf u}$;
- o sentido de ${\bf u}$ se $\alpha > 0$ e contrário ao de ${\bf u}$ se $\alpha < 0$.

Propriedades da soma de vectores

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (comutativa)
 $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (associativa)
 $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (elemento neutro)
 $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (todos os vectores têm simétrico)

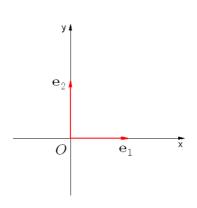
Propriedades do produto de um escalar real por um vector

$$\alpha(\beta \mathbf{u}) = (\alpha \beta)\mathbf{u}$$

$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$$
 (distributiva)
$$(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$$
 (distributiva)
$$1\mathbf{u} = \mathbf{u}$$
 (elemento neutro)

O **comprimento** de um vector \mathbf{u} é o comprimento de qualquer um dos segmentos orientados que o representam e é designado por **norma** do vector, usando-se a notação $\|\mathbf{u}\|$.

Um vector de norma igual a 1 é chamado **vector unitário**. Dado um vector não nulo ${\bf u}$, o vector



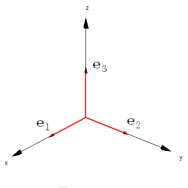


Figura 9.2

$$e = \frac{u}{\|u\|}$$

é o vector unitário com a direcção e sentido de ${\bf u}$ e chamase o **versor** de ${\bf u}$. A operação de multiplicação de um vector ${\bf u}$ pelo inverso da sua norma é designada por **normalização** do vector ${\bf u}$.

9.2. Vectores em R² e R³.

Bases canónicas de \mathbb{R}^2 e \mathbb{R}^3 .

Um conjunto de dois vectores não colineares $\{\mathbf{e}_1, \mathbf{e}_2\}$ diz-se uma **base** de vectores em \mathbb{R}^2 , e um conjunto de três vectores $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ não complanares diz-se uma base de vectores em \mathbb{R}^3 .

Uma base ortonormada em \mathbb{R}^2 é uma base de \mathbb{R}^2 em que os vectores \mathbf{e}_1 e \mathbf{e}_2 têm comprimento 1 e são perpendiculares, e uma base ortonormada em \mathbb{R}^3 é uma base de \mathbb{R}^3 em que os vectores \mathbf{e}_1 , \mathbf{e}_2 e \mathbf{e}_3 têm norma 1 e são perpendiculares dois a dois.

VECTORES EM R° ALGEBRA LINEA!

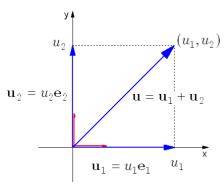
A base canónica de \mathbb{R}^2 é a base ortonormada de vectores com as direcções e sentidos dos eixos coordenados constituída pelos vectores $\mathbf{e}_1 = (1,0)$ e $\mathbf{e}_2 = (0,1)$, $\{(1,0),(0,1)\}$. Identicamente, a base canónica de \mathbb{R}^3 é constituída pelos vectores $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$ e $\mathbf{e}_3 = (0,0,1)$, $\{(1,0,0),(0,1,0),(0,0,1)\}$.

Componentes e coordenadas de um vector em \mathbb{R}^2 e \mathbb{R}^3

As componentes do vector \mathbf{u} , de \mathbb{R}^2 , numa base $\{\mathbf{e}_1, \mathbf{e}_2\}$ são os vectores \mathbf{u}_1 e \mathbf{u}_2 que têm, respectivamente, a direcção de \mathbf{e}_1 e \mathbf{e}_2 , e cuja soma é igual a \mathbf{u} :

$$\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$$

As componentes do vector \mathbf{u} , de \mathbb{R}^3 , numa base $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ são os vectores \mathbf{u}_1 \mathbf{u}_2 e \mathbf{u}_3 que têm, respectivamente, as direcções de \mathbf{e}_1 , \mathbf{e}_2 e \mathbf{e}_3 , e cuja soma é igual a \mathbf{u} :



$$\mathbf{u}_{3} = \mathbf{u}_{3} \mathbf{e}_{3}$$

$$\mathbf{u}_{1} = \mathbf{u}_{1} \mathbf{e}_{1}$$

$$\mathbf{u}_{2} = \mathbf{u}_{2} \mathbf{e}_{2}$$

$$\mathbf{u}_{1} = \mathbf{u}_{1} \mathbf{e}_{1}$$

$$\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3$$

As coordenadas do vector \mathbf{u} de \mathbb{R}^2 numa base $\{\mathbf{e}_1, \mathbf{e}_2\}$ são os números reais, u_1 e u_2 , que devemos multiplicar por \mathbf{e}_1 e \mathbf{e}_2 para obtermos as componentes de \mathbf{u}

$$\mathbf{u} = u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2$$

Tendo o vector o seu ponto inicial na origem do referencial, O=(0,0), as coordenadas do vector são coincidentes com as coordenadas do ponto onde o vector tem a sua extremidade (u_1,u_2) , ou seja, o conjunto de todos os pontos do plano corresponde ao conjunto de todos os vectores cujo ponto inicial é a origem do referencial, O, pelo que, também é usada a notação

$$\mathbf{u} = (u_1, u_2)$$

Temos, portanto, para os versores da base canónica,

$$\mathbf{e}_1 = 1\mathbf{e}_1 + 0\mathbf{e}_2$$

= $(1,0)$
 $\mathbf{e}_2 = 0\mathbf{e}_1 + 1\mathbf{e}_2$
= $(0,1)$

Figura 9.3

, como já tínhamos visto.

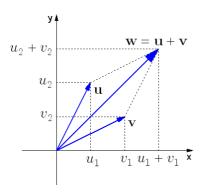
É também usual designar u_1 e u_2 como as componentes do vector segundo \mathbf{e}_1 e \mathbf{e}_2 , respectivamente.

As coordenadas do vector ${\bf u}$ de \mathbb{R}^3 numa base $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ são os números reais, u_1 , u_2 e u_3 , que devemos multiplicar por ${\bf e}_1$, ${\bf e}_2$ e ${\bf e}_3$ para obtermos as componentes de ${\bf u}$

$$\mathbf{u} = u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2 + u_3 \mathbf{e}_3$$

À semelhança de \mathbb{R}^2 , é também usual a notação $\mathbf{u}=(u_1,u_2,u_3)$, e a designação de u_1,u_2 e u_3 como as componentes do vector segundo cada um dos respectivos versores \mathbf{e}_1 , \mathbf{e}_2 , e \mathbf{e}_3 .

VECTORES EM R" ALGEBRA LINEAR



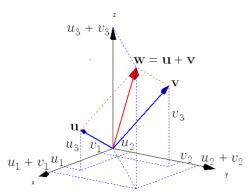


Figura 9.4



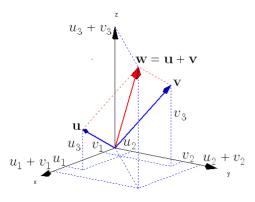


Figura 9.5

Soma de vectores em \mathbb{R}^2 e \mathbb{R}^3

O vector soma de dois vectores de \mathbb{R}^2 , $\mathbf{u} = u_1\mathbf{e}_1 + u_2\mathbf{e}_2$ e $\mathbf{v} = v_1\mathbf{e}_1 + v_2\mathbf{e}_2$, é o vector $\mathbf{w} = \mathbf{u} + \mathbf{v}$ de coordenadas $(u_1 + v_1, u_2 + v_2)$, ou seja, resultante da soma ordenada das componentes segundo cada um dos versores

$$\mathbf{w} = \mathbf{u} + \mathbf{v}$$
= $(u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2) + (v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2)$
= $(u_1 + v_1) \mathbf{e}_1 + (u_2 + v_2) \mathbf{e}_2$
= $w_1 \mathbf{e}_1 + w_2 \mathbf{e}_2$

O vector soma de dois vectores de \mathbb{R}^3 , $\mathbf{u} = u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2 + u_3 \mathbf{e}_3$ e $\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3$, é o vector $\mathbf{w} = \mathbf{u} + \mathbf{v}$ de coordenadas $(u_1 + v_1, u_2 + v_2, u_3 + v_3)$

$$\mathbf{w} = \mathbf{u} + \mathbf{v}$$

$$= (u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2 + u_3 \mathbf{e}_3) + (v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3)$$

$$= (u_1 + v_1) \mathbf{e}_1 + (u_2 + v_2) \mathbf{e}_2 + (u_3 + v_3) \mathbf{e}_3$$

$$= w_1 \mathbf{e}_1 + w_2 \mathbf{e}_2 + w_3 \mathbf{e}_3$$

Produto de um escalar por um vector em \mathbb{R}^2 e \mathbb{R}^3

O produto de um escalar α por um vector \mathbf{u} de \mathbb{R}^2 é o vector $\mathbf{v} = \alpha \mathbf{u}$ de coordenadas $(\alpha u_1, \alpha u_2)$, ou seja, resultante do produto do escalar pelas componentes segundo cada um dos versores

$$\mathbf{v} = \alpha \mathbf{u}$$

$$= \alpha (u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2) = (\alpha u_1) \mathbf{e}_1 + (\alpha u_2) \mathbf{e}_2$$

$$= v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2$$

O produto de um escalar α por um vector \mathbf{u} de \mathbb{R}^3 é o vector $\mathbf{v} = \alpha \mathbf{u}$ de coordenadas $(\alpha u_1, \alpha u_2, \alpha u_3)$

$$\mathbf{v} = \alpha \mathbf{u}$$

$$= \alpha (u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2 + u_3 \mathbf{e}_3)$$

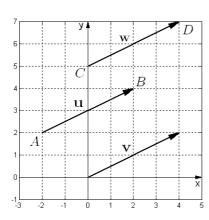
$$= (\alpha u_1) \mathbf{e}_1 + (\alpha u_2) \mathbf{e}_2 + (\alpha u_3) \mathbf{e}_3$$

$$= v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3$$

Exemplos

1. O vector que tem origem no ponto A = (-2,2) e extremidade no ponto B = (2,4), $\mathbf{u} = \overrightarrow{AB}$, é igual ao vector na posição canónica (com ponto inicial na origem do referencial)

VECTORES EM R° ALGEBRA LINEAR



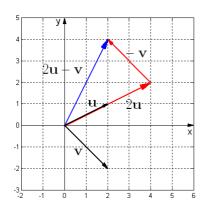


Figura 9.6

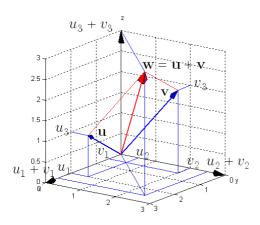


Figura 9.7

$$\mathbf{v} = B - A$$

$$= (2,4) - (-2,2)$$

$$= (2+2,4-2)$$

$$= (4,2)$$

, ou ainda, igual ao vector $\mathbf{w} = \overrightarrow{CD}$ com origem no ponto C = (0,5) e extremidade no ponto D

$$D = C + \mathbf{v}$$
= (0,5) + (4,2)
= (0 + 4,5 + 2)
= (4,7)

, ou seja, $\mathbf{u} = \mathbf{v} = \mathbf{w} = (4,2) = 4 \, \mathbf{e}_1 + 2 \, \mathbf{e}_2$.

2. Dados os vectores $\mathbf{u} = 2\mathbf{e}_1 + \mathbf{e}_2$ e $\mathbf{v} = 2\mathbf{e}_1 - 2\mathbf{e}_2$, o vector $\mathbf{w} = 2\mathbf{u} - \mathbf{v}$ é

$$\mathbf{w} = 2\mathbf{u} - \mathbf{v}$$
= $2(2\mathbf{e}_1 + \mathbf{e}_2) - (2\mathbf{e}_1 - 2\mathbf{e}_2)$
= $4\mathbf{e}_1 + 2\mathbf{e}_2 - 2\mathbf{e}_1 + 2\mathbf{e}_2$
= $2\mathbf{e}_1 + 4\mathbf{e}_2$

, ou,
$$\mathbf{w} = 2\mathbf{u} - \mathbf{v} = 2(2,1) - (2,-2) = (4,2) - (2,-2) = (2,4)$$
.

w = 2 4

3. Dados os vectores $\mathbf{u} = 2\mathbf{e}_1 + 0.5\mathbf{e}_2 + 1\mathbf{e}_3$ over $\mathbf{v} = 0.5\mathbf{e}_1 + 2\mathbf{e}_2 + 2\mathbf{e}_3$, o vector $\mathbf{w} = \mathbf{u} + \mathbf{v}$ é $\mathbf{w} = \mathbf{u} + \mathbf{v}$ $= (2\mathbf{e}_1 + 0.5\mathbf{e}_2 + 1\mathbf{e}_3) + (0.5\mathbf{e}_1 + 2\mathbf{e}_2 + 2\mathbf{e}_3)$

 $= 2.5 \mathbf{e}_1 + 2.5 \mathbf{e}_2 + 3 \mathbf{e}_3$

w =

2.5000 2.5000 3.0000

VECTORES EM Rⁿ ALGEBRA LINEA!

9.3. Vectores em Rn.

Sendo n um inteiro positivo, define-se o **espaço** \mathbb{R}^n como o conjunto de todas as sequências ordenadas de n números reais, $\mathbf{x} = (x_1, x_2, \dots, x_n)$, (ditas **n-uplos**).

Tal como em \mathbb{R}^2 e \mathbb{R}^3 , os elementos de \mathbb{R}^n podem ser interpretados como pontos, ou como vectores, num espaço n-dimensional.

Exemplos

4. \mathbb{R}^1 é o conjunto de todos os números reais que representamos sobre um eixo orientado \mathbf{x} . \mathbb{R}^2 é o conjunto de todos os pares ordenados de números reais, $\mathbf{x}=(x_1,x_2)$, que usualmente representamos geometricamente no plano 2D recorrendo a um sistema de eixos cartesiano $\mathbf{x}\mathbf{y}$. \mathbb{R}^3 é o conjunto de todos os ternos ordenados de números reais, $\mathbf{x}=(x_1,x_2,x_3)$, que usualmente representamos geometricamente no espaço 3D recorrendo a um sistema de eixos cartesiano $\mathbf{x}\mathbf{y}\mathbf{z}$. \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , ..., \mathbb{R}^n , é o conjunto de todos os quádruplos, $\mathbf{x}=(x_1,x_2,x_3,x_4)$, quíntuplos, $\mathbf{x}=(x_1,x_2,x_3,x_4,x_5)$, sêxtuplos, $\mathbf{x}=(x_1,x_2,x_3,x_4,x_5,x_6)$, ..., n-uplos, $\mathbf{x}=(x_1,x_2,\cdots,x_n)$, que não podemos representar geometricamente, mas que podemos continuar a pensar como pontos, ou vectores, de um espaço 4D, 5D, 6D, ..., nD.

9.4. Vectores iguais.

Em \mathbb{R}^n , dois **vectores**, $\mathbf{u} = (u_1, u_2, \dots, u_n)$ e $\mathbf{v} = (v_1, v_2, \dots, v_n)$, são **iguais** se, ordenadamente, cada uma das suas coordenadas é igual

$$u_1 = v_1, u_2 = v_2, \dots, u_n = v_n$$

9.5. Soma de vectores.

O vector soma de dois vectores, $\mathbf{u} = (u_1, u_2, \dots, u_n)$ e $\mathbf{v} = (v_1, v_2, \dots, v_n)$, é o vector $\mathbf{w} = \mathbf{u} + \mathbf{v}$ cujas coordenadas são a soma ordenada das coordenadas dos vectores \mathbf{u} e \mathbf{v}

$$\mathbf{w} = \mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

9.6. Produto de um escalar por um vector.

O produto de um escalar real α por um vector u é o vector

$$\mathbf{v} = \alpha \mathbf{u} = (\alpha u_1, \alpha u_2, \cdots, \alpha u_n)$$

, dizendo-se que \mathbf{v} é um múltiplo escalar de \mathbf{u} .

9.7. Notação matricial.

Um vector de \mathbb{R}^n pode ser escrito em **notação matricial** como uma matriz linha (ou **vector linha**) ou uma matriz coluna (ou **vector coluna**). Temos assim que

$$\mathbf{u} = (u_1, u_2, \cdots, u_n)$$

pode ser escrito na forma da matriz linha

VECTORES EM R" ALGEBRA LINEAR

$$\mathbf{u} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$$

ou na forma da matriz coluna

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

Utilizando a notação matricial as operações vectoriais de soma e produto por um escalar são idênticas às definidas para as matrizes

$$\mathbf{w} = \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

, e

$$\mathbf{v} = \alpha \mathbf{u} = \alpha \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \alpha u_2 \\ \vdots \\ \alpha u_n \end{bmatrix}$$

Exemplos

5. Em \mathbb{R}^2 , em alternativa à notação

$$\mathbf{u} = (u_1, u_2)$$

, ${\bf u}$ pode ser escrito na forma de um vector coluna

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Temos

$$\begin{aligned} \mathbf{u} &= \mathbf{u}_1 + \mathbf{u}_2 \\ &= u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2 \\ &= \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\ &= \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \end{aligned}$$

6. Dados os vectores de \mathbb{R}^4 , $\mathbf{u} = (1, -2, 3, 1)$ e $\mathbf{v} = (3, 1, -1, 0)$ o vector $\mathbf{w} = 3\mathbf{u} - 2\mathbf{v}$ é

$$\mathbf{w} = 3\mathbf{u} - 2\mathbf{v}$$

$$= 3 \times (1, -2, 3, 1) - 2 \times (3, 1, -1, 0)$$

$$= (3, -6, 9, 3) - (6, 2, -2, 0)$$

$$= (-3, -8, 11, 3)$$

, ou, em notação matricial,

VECTORES EM R° ALGEBRA LINEAR

$$\mathbf{w} = 3\mathbf{u} - 2\mathbf{v}$$

$$= 3\begin{bmatrix} 1\\-2\\3\\1 \end{bmatrix} - 2\begin{bmatrix} 3\\1\\-1\\0 \end{bmatrix} = \begin{bmatrix} 3\\-6\\9\\3 \end{bmatrix} - \begin{bmatrix} 6\\2\\-2\\0 \end{bmatrix}$$

$$= \begin{bmatrix} -3\\-8\\11\\3 \end{bmatrix}$$

```
>> u=[1 -2 3 1]';

>> v=[3 1 -1 0]';

>> w=3*u-2*v

w =

-3

-8

11

3
```

9.8. Vector nulo. Vector simétrico.

O vector nulo é representado por $\mathbf{0}$ e define-se como sendo o elemento neutro da adição em \mathbb{R}^n , ou seja,

$$\mathbf{0} = (0,0,\cdots 0)$$

Sendo $\mathbf{u}=(u_1,u_2,\cdots,u_n)$ um vector de \mathbb{R}^n , o vector simétrico de \mathbf{u} , representa-se por $-\mathbf{u}$, e é

$$-\mathbf{u}=(-u_1,\!-u_2,\!\cdots,\!-u_n)$$

, uma vez que

$$\mathbf{u} + (-\mathbf{u}) = (u_1, u_2, \dots, u_n) + (-u_1, -u_2, \dots, -u_n) = (0, 0, \dots, 0) = \mathbf{0}$$

9.9. Propriedades da soma e do produto por um escalar.

As propriedades da soma de vectores e do produto de um vector por um escalar real são idênticas às conhecidas para vectores livres.

Sendo $\mathbf{u}=(u_1,u_2,\cdots,u_n)$ e $\mathbf{v}=(v_1,v_2,\cdots,v_n)$ dois vectores em \mathbb{R}^n , e α e β dois escalares, temos

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{v} + \alpha \mathbf{u}$$

$$(\mathbf{u} + \mathbf{0}) = \mathbf{0} + \mathbf{u} = \mathbf{u}$$

$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{v} + \alpha \mathbf{u}$$

$$(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$$

$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$

$$1\mathbf{u} = \mathbf{u}$$