Instituto Superior de Engenharia de Lisboa LEETC • LEIC • LERCM

Álgebra Linear e Geometria Analítica 🛮 Exame de 1ª Fase 🗷 2009 Julho 04, 10:00h

Resolva cada um dos Grupos I, II, III e IV em folhas separadas. Identifique cada folha com o seu *número de aluno*, *nome completo* e *turma*. A inobservância destas normas pode conduzir ao anulamento do(s) Grupo(s) não identificado(s).

Duração: 2h 30m

GRUPO I

1 • Seja
$$A$$
 uma matriz tal que $(3A - I_2)^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

- **a** Determine a matriz A.
- **b** Calcule a matriz X tal que

$$(3A - I_2)X = B.$$

2 Considere o seguinte sistema de equações lineares, nas incógnitas reais (x, y, z), onde a e b são parâmetros reais:

$$\begin{cases} x + ay + bz = 1\\ a(b-1)y = a\\ x + ay + z = b^2 \end{cases}$$

- **a** Discuta o sistema, em função dos valores dos parâmetros reais a e b.
- **b** Considere agora a = b = 2 e, neste caso, calcule o determinante de A, sendo A a matriz dos coeficientes do sistema. Diga ainda se A é invertível e conclua sobre a natureza do sistema.
- **c** Resolva o sistema para a = 0 e b = 1.

GRUPO II

1 No espaço cartesiano real \mathbb{R}^3 , considere o subespaço

$$F = \{(x, y, z): 3x + y = 0\}$$

e a sequência s = ((1,0,1), (0,1,1), (2,-1,1)).

- **a** Mostre que é possível escrever o vector (1, -1, 0) de duas formas diferentes como combinação linear dos vectores de s.
- **b** Determine uma base e a dimensão de F.
- **C** Seja G o subespaço gerado por s. Indique uma base e a dimensão de G e caracterize os vectores $(x, y, z) \in G$ por meio de uma condição em x, y e z.
- **d** Determine o subespaço $H = F \cap G$, indicando uma base e a dimensão de H.
- **e** Será $F \cup G$ um subespaço de \mathbb{R}^3 ? Justifique a resposta.

Pág. 1 de 2 Volte s.f.f. ⇒

GRUPO III

1 Considere a função linear $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$\begin{cases} f(1,0,0) = (1,0,-1) \\ f(0,1,0) = (0,-1,2) \\ f(0,0,1) = (1,-1,1) \end{cases}$$

- **a** Determine f(x, y, z), para qualquer $(x, y, z) \in \mathbb{R}^3$.
- **b** Determine o núcleo e a imagem de f, indicando uma base para cada um destes subespaços de \mathbb{R}^3 . Determine ainda a nulidade e a característica de f.
- **c** Determine a matriz de f em relação à base ((1,1,1),(0,1,1),(0,0,1)) de \mathbb{R}^3 .
- **d** Diga, justificando, se f é um automorfismo de \mathbb{R}^3 . Será $\lambda = 0$ um valor próprio de f? Justifique adequadamente a resposta.
- **2** Considere o endomorfismo $g: \mathbb{R}^2 \to \mathbb{R}^2$ definido por

$$g(x,y) = (8x + 18y, -3x - 7y).$$

- **a** Determine a matriz G_c de g na base canónica.
- **b** Determine os valores próprios de *g* e os respectivos subespaços próprios.
- **C** Diga, justificando, se g é diagonalizável e, em caso afirmativo, determine uma matriz diagonal D e uma matriz invertível T tais que $G_c = TDT^{-1}$.
- **d** Determine a matriz G_e de g na base e = ((0,1),(1,1)) e verifique que G_c e G_e têm o mesmo determinante e o mesmo traço.

GRUPO IV

- **1** Considere o espaço cartesiano real \mathbb{R}^3 dotado do produto interno canónico.
 - **a** Mostre que os vectores $\vec{u}=(1,-2,2)$ e $\vec{v}=(2,2,1)$ são ortogonais e determine um vector $\vec{w}\in\mathbb{R}^3$ de modo que a sequência de vectores $s=\left(\vec{u},\vec{v},\vec{w}\right)$ seja ortogonal. Obtenha de s uma sequência ortonormada.
 - **b** Diga se o ângulo entre \vec{u} e $\vec{e}=(2,2,-1)$ é agudo ou obtuso e determine a projecção ortogonal de \vec{u} sobre \vec{e} .
- **2** Seja E um espaço vectorial real com produto interno e \vec{u} e \vec{v} vectores de E. Mostre que $\vec{u} + \vec{v} \perp \vec{u} \vec{v}$ se e só se $||\vec{u}|| = ||\vec{v}||$ e interprete geometricamente este resultado.

FIM

Cotações

	Grupo I		Grupo II	Grupo III		Grupo IV	
	Problema 1	Problema 2	Problema 1	Problema 1	Problema 2	Problema 1	Problema 2
а	0,5	1,0	1,0	0,5	0,5	1,5	1,0
b	0,5	0,7	0,5	1,5	1,5	1,0	
С		0,8	1,5	1,5	0,5		
d			1,0	1,0	1,0		
е			1,0				

Pág. 2 de 2