LC 2016 (SET A): PAPER 1

QUESTION 4 (25 MARKS)

Question 4 (a)

Step 1: n = 1: Prove $8^1 - 1$ is divisible by 7. **Proof**: $8^1 - 1 = 7$. Therefore, it is true for n = 1.

Step 2: n = k: Assume $8^k - 1$ is divisible by 7. In other words, assume $8^k - 1 = 7m$, $m \in \mathbb{N}$. $\therefore 8^k = (7m+1)$

Step 3: n = (k + 1): Prove $8^{k+1} - 1$ is divisible by

Proof: $8^{k+1} - 1 = 8 \times 8^k - 1$ = 8(7m+1)-1 [By **Step 2**.] =56m+8-1=56m+7=7(8m+1) $=7\times$ (whole number) $\therefore 8^{k+1} - 1$ is divisible by 7.

Therefore, assuming it is true for n = k means it is true for n = k + 1. So true for n = 1 and true for n = k means it is true for n = k + 1 implies it is true for all $n \in \mathbb{N}$.

MARKING SCHEME NOTES

Question 4 (a) [Scale 15D (0, 4, 7, 11, 15)]

4: P_1 step

7: P_k step

• P_k step

• P_{k+1} step

11: • use of P_k step to prove P_{k+1} step

Note: accept P_1 step, P_k step and P_{k+1} step in any order

Question 4 (b)

$$\log_a 2 = p$$
, $\log_a 3 = q$, $a > 0$

(i)
$$\log_a \frac{8}{3} = \log_a 8 - \log_a 3$$

= $\log_a 2^3 - \log_a 3$
= $3\log_a 2 - \log_a 3$
= $3p - q$

(ii)
$$\log_a \frac{9a^2}{16} = \log_a 9 + \log_a a^2 - \log_a 16$$

 $= \log_a 3^2 + \log_a a^2 - \log_a 2^4$
 $= 2\log_a 3 + 2\log_a a - 4\log_a 2$
 $= 2q - 4p + 2$

FORMULAE AND TABLES BOOK **Indices and logs** [page 21]

$$\log_a(xy) = \log_a x + \log_a y$$
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$\log_a(x^q) = q \log_a x$$

$$\log_a 1 = 0$$

$$\log_a \left(\frac{1}{x}\right) = -\log_a x$$

MARKING SCHEME NOTES

Question 4 (b) (i) [Scale 5C (0, 2, 4, 5)]

2:
$$\log_a 8 - \log_a 3$$

4: •
$$\log_a 8 = 3 \log_a 2$$
 (and/or = $3p$)

Question 4 (b) (ii) [Scale 5D (0, 2, 3, 4, 5)]

2:
$$\log_a 9a^2 - \log_a 16$$

•
$$2 \log_a a$$

4:
$$\cdot 2(\log_a 3 + \log_a a) - 4 \log_a 2$$
 or equivalent