SAMPLE PAPER 7: PAPER 2

QUESTION 8 (75 MARKS)

Question 8 (a)

- (i) A triangle is a three-sided polygon. The sum of the three interior angles in a triangle in degrees is 180°.
- (ii) A triangle with three equal sides and angles is called an **equilateral** triangle. Each angle in degrees in this triangle is equal to 60° .

Question 8 (b)

Polygon	Sum of the interior angles
Three-sided polygon (Triangle)	180°
Four-sided polygon (Quadrilateral)	360°
Five-sided polygon	540°
Six-sided polygon	720°

A four-sided polygon can be divided into two triangles, giving a sum of $2 \times 180^{\circ} = 360^{\circ}$ for its interior angles.

A five-sided polygon can be divided into three triangles, giving a sum of $3 \times 180^{\circ} = 540^{\circ}$ for its interior angles.

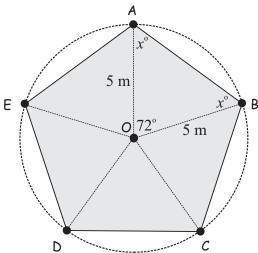
Question 8 (c)

	Nаме	SIZE OF EACH INTERIOR ANGLE
Three-sided regular polygon	equilateral triangle	60°
Four-sided regular polygon	square	90°
Five-sided regular polygon	pentagon	108°
Six-sided regular polygon	hexagon	120°

Question 8 (d)

Sum of the interior angles = $(n-2) \times 180^{\circ}$

Measure of each interior angle =
$$\frac{(n-2) \times 180^{\circ}}{n}$$


Question 8 (e)

(i)
$$|\angle AOB| = \frac{360^{\circ}}{5} = 72^{\circ}$$

(ii) Triangle *AOB* is an isosceles triangle as two sides (the radii) have the same length.

Therefore, the base angles are equal in measure.

$$72^{\circ} + x^{\circ} + x^{\circ} = 180^{\circ}$$
$$2x^{\circ} = 180^{\circ} - 72^{\circ} = 108^{\circ}$$
$$\therefore x = 54^{\circ}$$
$$|\angle OAB| = |\angle OBA| = 54^{\circ}$$

(iii)
$$\frac{|AB|}{\sin 72^{\circ}} = \frac{5}{\sin 54^{\circ}} \qquad \frac{a}{\sin A} = \frac{b}{\sin B}$$
$$\therefore |AB| = \frac{5\sin 72^{\circ}}{\sin 54^{\circ}} = 5.9 \text{ m}$$

Perimeter = $5 \times 5.9 = 29.4$ m

(iv) Area of
$$\triangle AOB = \frac{1}{2}(5)(5)\sin 72^{\circ} = 11.88 \text{ m}^2$$
 Area of flower bed = $5 \times 11.88 = 59.4 \text{ m}^2$

(v) Number of kilograms of fertiliser = $59.4 \times 0.75 = 44.55$ kg

Number of bags =
$$\frac{44.55}{1.5}$$
 = $29.7 \approx 30$

Cost of fertiliser = $30 \times \in 3.45 = \in 103.50$